Refactor NLL constraint generation and most of polonius fact generation
As discussed in #118175, NLL "constraint generation" is only about liveness, but currently also contains legacy polonius fact generation. The latter is quite messy, and this PR cleans this up to prepare for its future removal:
- splits polonius fact generation out of NLL constraint generation
- merges NLL constraint generation to its more natural place, liveness
- extracts all of the polonius fact generation from NLLs apart from MIR typeck (as fact generation is somewhat in a single place there already, but should be cleaned up) into its own explicit module, with a single entry point instead of many.
There should be no behavior changes, and tests seem to behave the same as master: without polonius, with legacy polonius, with the in-tree polonius.
I've split everything into smaller logical commits for easier review, as it required quite a bit of code to be split and moved around, but it should all be trivial changes.
r? `@matthewjasper`
chore: remove unused `PhantomData`
This PR removes an unused `PhantomData` in `FileItemTreeId`.
*Note:* I am not sure how this should be implemented, maybe as a type instead of a wrapper struct? I'd be happy to do so if needed 👍
Improve error handling for top-level `let` statements
This commit addresses the issue of excessive and unrelated errors generated by top-level `let` statements. Now, only a single error is produced, indicating that `let` statements are invalid at the top level.
---
Fixes https://github.com/rust-lang/rust-analyzer/issues/14963.
While I'm not really sure if handling a particular case in a special manner is appropriate, it would be good to suppress the excessive number of annoying and unrelated errors.
This commit addresses the issue of excessive and unrelated errors
generated by top-level `let` statements. Now, only a single error is
produced, indicating that `let` statements are invalid at the top level.
Add thinlto support to codegen, assembly and coverage tests
Using `--emit=llvm-ir` with thinlto usually result in multiple IR files.
Resolve test case failure issue reported in #113923.
miri: add test checking that aggregate assignments reset memory to uninit
Also, `write_aggregate` is really just a helper for evaluating `Aggregate` rvalues, so it should be in `step.rs`, not `place.rs`. Also factor out `Repeat` rvalues into their own function while we are at it.
r? `@saethlin`
Fixes https://github.com/rust-lang/miri/issues/3195
utilize stdlib debug assertion status in compiletest
Implemented a new flag `--with-debug-assertions` on compiletest to pass the stdlib debug assertion status from bootstrap.
Resolves#115171
Use `usize::repeat_u8` instead of implementing `repeat_byte` in `memchr.rs`
It's simpler that way and the tricks don't actually make a difference: https://godbolt.org/z/zrvYY1dGx
Cut code size for feature hashing
This locally cuts ~32 kB of .text instructions.
This isn't really a clear win in terms of readability. IMO the code size benefits are worth it (even if they're not necessarily present in the x86_64 hyperoptimized build, I expect them to translate similarly to other platforms). Ultimately there's lots of "small ish" low hanging fruit like this that I'm seeing that seems worth tackling to me, and could translate into larger wins in aggregate.
Expand in-place iteration specialization to Flatten, FlatMap and ArrayChunks
This enables the following cases to collect in-place:
```rust
let v = vec![[0u8; 4]; 1024]
let v: Vec<_> = v.into_iter().flatten().collect();
let v: Vec<Option<NonZeroUsize>> = vec![NonZeroUsize::new(0); 1024];
let v: Vec<_> = v.into_iter().flatten().collect();
let v = vec![u8; 4096];
let v: Vec<_> = v.into_iter().array_chunks::<4>().collect();
```
Especially the nicheful-option-flattening should be useful in real code.
effects: Run `enforce_context_effects` for all method calls
So that we also perform checks when overloaded `PartialEq`s are called.
r? `@compiler-errors`