So e.g. if we have `fn foo<T: SomeTrait<u32>>() -> T::Item`, we want to lower
that to `<T as SomeTrait<u32>>::Item` and not `<T as SomeTrait<_>>::Item`.
4106: Fix wrong substitution code r=matklad a=flodiebold
We need to shift in when we're substituting inside a binder.
This should fix#4053 (it doesn't fix the occasional overflow that also occurs on the Diesel codebase though).
Co-authored-by: Florian Diebold <flodiebold@gmail.com>
We need to shift in when we're substituting inside a binder.
This should fix#4053 (it doesn't fix the occasional overflow that also occurs
on the Diesel codebase though).
4023: Fix another crash from wrong binders r=matklad a=flodiebold
Basically, if we had something like `dyn Trait<T>` (where `T` is a type parameter) in an impl we lowered that to `dyn Trait<^0.0>`, when it should be `dyn Trait<^1.0>` because the `dyn` introduces a new binder. With one type parameter, that's just wrong, with two, it'll lead to crashes.
Co-authored-by: Florian Diebold <flodiebold@gmail.com>
Basically, if we had something like `dyn Trait<T>` (where `T` is a type
parameter) in an impl we lowered that to `dyn Trait<^0.0>`, when it should be
`dyn Trait<^1.0>` because the `dyn` introduces a new binder. With one type
parameter, that's just wrong, with two, it'll lead to crashes.
Fixes a lot of false type mismatches.
(And as always when touching the unification code, I have to say I'm looking
forward to replacing it by Chalk's...)
It's not entirely clear what subnode ranges should mean in the
presence of macros, so let's leave them out for now. We are not using
them heavily anyway.
3979: fix missing match arm false positive for enum with no variants r=flodiebold a=JoshMcguigan
fixes#3974
Co-authored-by: Josh Mcguigan <joshmcg88@gmail.com>
3966: Add support for bounds on associated types in trait definitions r=matklad a=flodiebold
E.g.
```rust
trait Trait {
type Item: SomeOtherTrait;
}
```
Note that these don't simply desugar to where clauses; as I understand it, where clauses have to be proved by the *user* of the trait, but these bounds are proved by the *implementor*. (Also, where clauses on associated types are unstable.)
(Another one from my recursive solver branch...)
3968: Remove format from syntax_bridge hot path r=matklad a=edwin0cheng
Although only around 1% speed up by running:
```
Measure-Command {start-process .\target\release\rust-analyzer "analysis-stats -q ." -NoNewWindow -wait}
```
Co-authored-by: Florian Diebold <flodiebold@gmail.com>
Co-authored-by: Edwin Cheng <edwin0cheng@gmail.com>
3964: Nicer Chalk debug logs r=matklad a=flodiebold
I'm looking at a lot of Chalk debug logs at the moment, so here's a few changes to make them slightly nicer...
3965: Implement inline associated type bounds r=matklad a=flodiebold
Like `Iterator<Item: SomeTrait>`.
This is an unstable feature, but it's used in the standard library e.g. in the definition of Flatten, so we can't get away with not implementing it :)
(This is cherry-picked from my recursive solver branch, where it works better, but I did manage to write a test that works with the current Chalk solver as well...)
3967: Handle `Self::Type` in trait definitions when referring to own associated type r=matklad a=flodiebold
It was implemented for other generic parameters for the trait, but not for `Self`.
(Last one off my recursive solver branch 😄 )
Co-authored-by: Florian Diebold <flodiebold@gmail.com>
E.g.
```
trait Trait {
type Item: SomeOtherTrait;
}
```
Note that these don't simply desugar to where clauses; as I understand it, where
clauses have to be proved by the *user* of the trait, but these bounds are proved
by the *implementor*. (Also, where clauses on associated types are unstable.)
Like `Iterator<Item: SomeTrait>`.
This is an unstable feature, but it's used in the standard library e.g. in the
definition of Flatten, so we can't get away with not implementing it :)
3938: fix missing match arm false positive r=flodiebold a=JoshMcguigan
This fixes#3932 by skipping the missing match arm diagnostic in the case any of the match arms don't type check properly against the match expression.
I think this is the appropriate behavior for this diagnostic, since `is_useful` relies on all match arms being well formed, and the case of a malformed match arm should probably be handled by a different diagnostic.
Co-authored-by: Josh Mcguigan <joshmcg88@gmail.com>