mir-opt and custom target fixes
From https://github.com/rust-lang/rust/issues/115642#issuecomment-1879589022
> > Could you please test the last two commits from https://github.com/onur-ozkan/rust/commits/panic-abort-mir-opt when you have the time? The first commit should resolve the error of using the nightly flag with a stable compiler, and the second one should resolve the custom target issue.
> I tested with the two commits and the errors of using nightly flag and custom target specs were not seen.
Testing was completed for the test suites like ui, run-pass-valgrind, coverage, mir-opt, codegen, assembly, incremental.
Fixes#115642
Use `assert_unsafe_precondition` for `char::from_u32_unchecked`
Use `assert_unsafe_precondition` in `char::from_u32_unchecked` so that it can be stabilized as `const`.
Add -Zuse-sync-unwind
Currently Rust uses async unwind by default, but async unwind will bring non-negligible size overhead. it would be nice to allow users to choose this.
In addition, async unwind currently prevents LLVM from generate compact unwind for MachO, if one wishes to generate compact unwind for MachO, then also needs this flag.
internal: VFS no longer stores all source files in memory
Turns out there is no need to keep the files around. We either upload them to salsa once processed, or we need to keep them around for the `DidChangeTextDocumentNotification`, but that notification is only valid for opened documents, so instead we can just keep the files around in the `MemDocs`!
Fixes https://github.com/rust-lang/rust-analyzer/issues/16301
Rewrite Iterator::position default impl
Storing the accumulating value outside the fold in an attempt to improve code generation has shown speedups on various handwritten benchmarks, see discussion at #119551.
Avoid specialization in the metadata serialization code
With the exception of a perf-only specialization for byte slices and byte vectors.
This uses the same trick of introducing a new trait and having the Encodable and Decodable derives add a bound to it as used for TyEncoder/TyDecoder. The new code is clearer about which encoder/decoder uses which impl and it reduces the dependency of rustc on specialization, making it easier to remove support for specialization entirely or turn it into a construct that is only allowed for perf optimizations if we decide to do this.
Exhaustiveness: Statically enforce revealing of opaques
In https://github.com/rust-lang/rust/pull/116821 it was decided that exhaustiveness should operate on the hidden type of an opaque type when relevant. This PR makes sure we consistently reveal opaques within exhaustiveness. This makes it possible to remove `reveal_opaque_ty` from the `TypeCx` trait which was an unfortunate implementation detail.
r? `@compiler-errors`
Replace a number of FxHashMaps/Sets with stable-iteration-order alternatives
This PR replaces almost all of the remaining `FxHashMap`s in query results with either `FxIndexMap` or `UnordMap`. The only case that is missing is the `EffectiveVisibilities` struct which turned out to not be straightforward to transform. Once that is done too, we can remove the `HashStable` implementation from `HashMap`.
The first commit adds the `StableCompare` trait which is a companion trait to `StableOrd`. Some types like `Symbol` can be compared in a cross-session stable way, but their `Ord` implementation is not stable. In such cases, a `StableCompare` implementation can be provided to offer a lightweight way for stable sorting. The more heavyweight option is to sort via `ToStableHashKey`, but then sorting needs to have access to a stable hashing context and `ToStableHashKey` can also be expensive as in the case of `Symbol` where it has to allocate a `String`.
The rest of the commits are rather mechanical and don't overlap, so they are best reviewed individually.
Part of [MCP 533](https://github.com/rust-lang/compiler-team/issues/533).
Separate immediate and in-memory ScalarPair representation
Currently, we assume that ScalarPair is always represented using a two-element struct, both as an immediate value and when stored in memory.
This currently works fairly well, but runs into problems with https://github.com/rust-lang/rust/pull/116672, where a ScalarPair involving an i128 type can no longer be represented as a two-element struct in memory. For example, the tuple `(i32, i128)` needs to be represented in-memory as `{ i32, [3 x i32], i128 }` to satisfy alignment requirements. Using `{ i32, i128 }` instead will result in the second element being stored at the wrong offset (prior to LLVM 18).
Resolve this issue by no longer requiring that the immediate and in-memory type for ScalarPair are the same. The in-memory type will now look the same as for normal struct types (and will include padding filler and similar), while the immediate type stays a simple two-element struct type. This also means that booleans in immediate ScalarPair are now represented as i1 rather than i8, just like we do everywhere else.
The core change here is to llvm_type (which now treats ScalarPair as a normal struct) and immediate_llvm_type (which returns the two-element struct that llvm_type used to produce). The rest is fixing things up to no longer assume these are the same. In particular, this switches places that try to get pointers to the ScalarPair elements to use byte-geps instead of struct-geps.
internal: Only compare relevant parts in `ide::{runnables,inlay_hints}` tests
This PR limits the data being compared. Therefore the tests should be more readable, as well as being more robust to changes to the data structure.
Part of https://github.com/rust-lang/rust-analyzer/issues/14268.