Support generic function in `generate_function` assist
Part of #3639
This PR adds support for generic function generation in `generate_function` assist. Now the assist looks for generic parameters and trait bounds in scope, filters out irrelevant ones, and generates new function with them.
See `fn_generic_params()` for the outline of the procedure, and see comments on `filter_unnecessary_bounds()` for criteria for filtering. I think it's good criteria for most cases, but I'm open to opinions and suggestions.
The diff is pretty big, but it should run in linear time w.r.t. the number of nodes we operate on and should be fast enough.
Some notes:
- When we generate function in an existing impl, generic parameters may cause name conflict. While we can detect the conflict and rename conflicting params, I didn't find it worthwhile mainly because it's really easy to resolve on IDE: use Rename functionality.
- I've implemented graph structure myself, because we don't have graph library as a dependency and we only need the simplest one.
- Although `petgraph` is in our dependency graph and I was initially looking to use it, we don't actually depend on it AFAICT since it's only used in chalk's specialization graph handling, which we don't use. I'd be happy to replace my implementation with `petgraph` if it's okay to use it though.
- There are some caveats that I consider out of scope of this PR. See FIXME notes on added tests.
add wrapping/checked/saturating assist
This addresses #13452
I'm not sure about the structure of the code. I'm not sure if it needs to be 3 separate assists, and if that means it needs to be in 3 separate files as well.
Most of the logic is in `util.rs`, which feels funny to me, but there seems to be a pattern of 1 assist per file, and this seems better than duplicating the logic.
Let me know if anything needs changes 😁
This makes code more readale and concise,
moving all format arguments like `format!("{}", foo)`
into the more compact `format!("{foo}")` form.
The change was automatically created with, so there are far less change
of an accidental typo.
```
cargo clippy --fix -- -A clippy::all -W clippy::uninlined_format_args
```
feat: Add an option to hide adjustment hints outside of `unsafe` blocks and functions
As the title suggests: this PR adds an option (namely `rust-analyzer.inlayHints.expressionAdjustmentHints.hideOutsideUnsafe`) that allows to hide adjustment hints outside of `unsafe` blocks and functions:
![2022-12-21_23-11](https://user-images.githubusercontent.com/38225716/208986376-d607de62-8290-4e16-b7fe-15b762dc5f60.png)
Requested by `@BoxyUwU` <3
Compute data layout of types
cc #4091
Things that aren't working:
* Closures
* Generators (so no support for `Future` I think)
* Opaque types
* Type alias and associated types which may need normalization
Things that show wrong result:
* ~Enums with explicit discriminant~
* SIMD types
* ~`NonZero*` and similar standard library items which control layout with special attributes~
At the user level, I didn't put much work, since I wasn't confident about what is the best way to present this information. Currently it shows size and align for ADTs, and size, align, offset for struct fields, in the hover, similar to clangd. I used it some days and I feel I liked it, but we may consider it too noisy and move it to an assist or command.
feat: Display the value of enum variant on hover
fixes#12955
This PR adds const eval support for enums, as well as showing their value on hover, just as consts currently have.
I developed these two things at the same time, but I've realized now that they are separate. However since the hover is just a 10 line change (not including tests), I figured I may as well put them in the same PR. Though if you want them split up into "enum const eval support" and "show enum variant value on hover", I think that's reasonable too.
Since this adds const eval support for enums this also allows consts that reference enums to have their values computed now too.
The const evaluation itself is quite rudimentary, it doesn't keep track of the actual type of the enum, but it turns out that Rust doesn't actually either, and `E::A as u8` is valid regardless of the `repr` on `E`.
It also doesn't really care about what expression the enum variant contains, it could for example be a string, despite that not being allowed, but I guess it's up to the `cargo check` diagnostics to inform of such issues anyway?