Don't mark `#[rustc_deprecated_safe_2024]` functions as unsafe
`std::env::set_var` will be unsafe in edition 2024, but not before it. I couldn't quite figure out how to check for the span properly, so for now we just turn the false positives into false negatives, which are less bad.
`std::env::set_var` will be unsafe in edition 2024, but not before it.
I couldn't quite figure out how to check for the span properly, so for now
we just turn the false positives into false negatives, which are less bad.
Allow sysroots to only consist of the source root dir
Fixes https://github.com/rust-lang/rust-analyzer/issues/17159
This PR encodes the `None` case of an optional sysroot into `Sysroot` itself. This simplifies a lot of things and allows us to have sysroots that consist of nothing, only standard library sources, everything but the standard library sources or everything. This makes things a lot more flexible. Additionally, this removes the workspace status bar info again, as it turns out that that can be too much information for the status bar to handle (this is better rendered somewhere else, like in the status view).
Fix: infer type of async block with tail return expr
Fixes#17106
The `infer_async_block` method calls the `infer_block` method internally, which returns the never type without coercion when `tail_expr` is `None` and `ctx.diverges` is `Diverges::Always`.This is the reason for the bug in this issue.
cfce2bb46d/crates/hir-ty/src/infer/expr.rs (L1411-L1413)
This PR solves the bug by adding a process to coerce after calling `infer_block` method.
This code passes all the tests, including tests I added for this isuue, however, I am not sure if this solution is right. I think that this solution is an ad hoc solution. So, I would appreciate to have your review.
I apologize if I'm off the mark, but `infer_async_block` method should be rewritten to share code with the process of infering type of `expr::Closure` instead of the `infer_block` method. That way it will be closer to the infer process of rustc.
feat: More callable info
With this PR we retain more info about callables other than functions, allowing for closure parameter type inlay hints to be linkable as well as better signature help around closures and `Fn*` implementors.
When viewing traces, it's slightly confusing when the span name doesn't
match the function name. Ensure the names are consistent.
(It might be worth moving most of these to use #[tracing::instrument]
so the name can never go stale. @davidbarsky suggested that is marginally
slower, so I've just done the simple change here.)
Instead of using `core::fmt::format` to format panic messages, which may in turn
panic too and cause recursive panics and other messy things, redirect
`panic_fmt` to `const_panic_fmt` like CTFE, which in turn goes to
`panic_display` and does the things normally. See the tests for the full
call stack.
Handle panicking like rustc CTFE does
Instead of using `core::fmt::format` to format panic messages, which may in turn panic too and cause recursive panics and other messy things, redirect `panic_fmt` to `const_panic_fmt` like CTFE, which in turn goes to `panic_display` and does the things normally. See the tests for the full call stack.
The tests don't work yet, I probably missed something in minicore.
fixes#16907 in my local testing, I also need to add a test for it
Instead of using `core::fmt::format` to format panic messages, which may in turn
panic too and cause recursive panics and other messy things, redirect
`panic_fmt` to `const_panic_fmt` like CTFE, which in turn goes to
`panic_display` and does the things normally. See the tests for the full
call stack.
In the evaluation of const values of recursive types
certain declarations could cause an endless call-loop
within the interpreter (hir-ty’s create_memory_map),
which would lead to a stack overflow.
This commit adds a check that prevents values that contain
an address in their value (such as TyKind::Ref) from being
allocated at the address they contain.
The commit also adds a test for this edge case.
Add fuel to match checking
Exhaustiveness checking is NP-hard hence can take extremely long to check some specific matches. This PR makes ehxaustiveness bail after a set number of steps. I chose a bound that takes ~100ms on my machine, which should be more than enough for normal matches.
I'd like someone with less recent hardware to run the test to see if that limit is low enough for them. Also curious if the r-a team thinks this is a good ballpark or if we should go lower/higher. I don't have much data on how complex real-life matches get, but we can definitely go lower than `500 000` steps.
The second commit is a drive-by soundness fix which doesn't matter much today but will matter once `min_exhaustive_patterns` is stabilized.
Fixes https://github.com/rust-lang/rust-analyzer/issues/9528 cc `@matklad`
feat: Implement ATPIT
Resolves#16584
Note: This implementation only works for ATPIT, not for TAIT.
The main hinderence that blocks the later is the defining sites of TAIT can be inner blocks like in;
```rust
type X = impl Default;
mod foo {
fn bar() -> super::X {
()
}
}
```
So, to figure out we are defining it or not, we should recursively probe for nested modules and bodies.
For ATPIT, we can just look into current body because `error[E0401]: can't use 'Self' from outer item` prevent such nested structures;
```rust
trait Foo {
type Item;
fn foo() -> Self::Item;
}
struct Bar;
impl Foo for Bar {
type Item = impl Default;
fn foo() -> Self::Item {
fn bar() -> Self::Item {
^^^^^^^^^^
|
use of `Self` from outer item
refer to the type directly here instead
5
}
bar()
}
}
```
But this implementation does not checks for unification of same ATPIT between different bodies, monomorphization, nor layout for similar reason. (But these can be done with lazyness if we can utilize something like "mutation of interned value" with `db`. I coundn't find such thing but I would appreciate it if such thing exists and you could let me know 😅)
Bump dependencies and use in-tree `rustc_pattern_analysis`
One last `pattern_analysis` API change. I don't have any more planned! So we can now use the in-tree version when available.
internal: Compress file text using LZ4
I haven't tested properly, but this roughly looks like:
```
1246 MB
59mb 4899 FileTextQuery
1008 MB
20mb 4899 CompressedFileTextQuery
555kb 1790 FileTextQuery
```
We might want to test on something more interesting, like `bevy`.
From `impl Into<DiagnosticMessage>` to `impl Into<Cow<'static, str>>`.
Because these functions don't produce user-facing output and we don't
want their strings to be translated.
fix: Wrong closure kind deduction for closures with predicates
Completes #16472, fixes#16421
The changed closure kind deduction is mostly simlar to `rustc_hir_typeck/src/closure.rs`.
Porting closure sig deduction from it seems possible too and I'm considering doing it with another PR
performance: Speed up Method Completions By Taking Advantage of Orphan Rules
(Continues https://github.com/rust-lang/rust-analyzer/pull/16498)
This PR speeds up method completions by doing two things without regressing `analysis-stats`[^1]:
- Filter candidate traits prior to calling `iterate_path_candidates` by relying on orphan rules (see below for a slightly more in-depth explanation). When generating completions [on `slog::Logger`](5e9e59c312/common/src/ledger.rs (L78)) in `oxidecomputer/omicron` as a test, this PR halved my completion times—it's now 454ms cold and 281ms warm. Before this PR, it was 808ms cold and 579ms warm.
- Inline some of the method candidate checks into `is_valid_method_candidate` and remove some unnecessary visibility checks. This was suggested by `@Veykril` in [this comment](https://github.com/rust-lang/rust-analyzer/pull/16498#issuecomment-1929864427).
We filter candidate traits by taking advantage of orphan rules. For additional details, I'll rely on `@WaffleLapkin's` explanation [from Zulip](https://rust-lang.zulipchat.com/#narrow/stream/185405-t-compiler.2Frust-analyzer/topic/Trait.20Checking/near/420942417):
> A type `A` can only implements traits which
> 1. Have a blanket implementation (`impl<T> Trait for T {}`)
> 2. Have implementation for `A` (`impl Trait for A {}`)
>
> Blanket implementation can only exist in `Trait`'s crate. Implementation for `A` can only exist in `A`'s or `Trait`'s crate.
Big thanks to Waffle for its keen observation!
---
I think some additional improvements are possible:
- `for_trait_and_self_ty` seemingly does not distinguish between `&T`, `&mut T`, or `T`, resulting in seemingly irrelevant traits like `tokio::io::AsyncWrite` being being included for, e.g., `&slog::Logger`. I don't know they're being considered due to the [autoref/autoderef behavior](a02a219773/crates/hir-ty/src/method_resolution.rs (L945-L962)), but I wonder if it'd make sense to filter by mutability earlier and not consider trait implementations that require `&mut T` when we only have a `&T`.
- The method completions [spend a _lot_ of time in unification](https://rust-lang.zulipchat.com/#narrow/stream/185405-t-compiler.2Frust-analyzer/topic/Trait.20Checking/near/421072356), and while there might be low-hanging fruit there, it might make more sense to wait for the new trait solver in `rustc`. I dunno.
[^1]: The filtering occurs outside of typechecking, after all.
Setup infra for handling auto trait bounds disabled due to perf problems
This patch updates some of the partially-implemented functions of `ChalkContext as RustIrDatabase`, namely `adt_datum()` and `impl_provided_for()`. With those, we can now correctly work with auto trait bounds and distinguish methods based on them.
Resolves#7856 (the second code; the first one is resolved by #13074)
**IMPORTANT**: I don't think we want to merge this until #7637 is resolved. Currently this patch introduces A LOT of unknown types and type mismtaches as shown below. This is because we cannot resolve items like `hashbrown::HashMap` in `std` modules, leading to auto trait bounds on them and their dependents unprovable.
|crate (from `rustc-perf@c52ee6` except for r-a)|e3dc5a588f07d6f1d3a0f33051d4af26190abe9e|HEAD of this branch|
|---|---|---|
|rust-analyzer @ e3dc5a588f |exprs: 417528, ??ty: 907 (0%), ?ty: 114 (0%), !ty: 1|exprs: 417528, ??ty: 1704 (0%), ?ty: 403 (0%), !ty: 20|
|ripgrep|exprs: 62120, ??ty: 2 (0%), ?ty: 0 (0%), !ty: 0|exprs: 62120, ??ty: 132 (0%), ?ty: 58 (0%), !ty: 11|
|webrender/webrender|exprs: 94355, ??ty: 49 (0%), ?ty: 16 (0%), !ty: 2|exprs: 94355, ??ty: 429 (0%), ?ty: 130 (0%), !ty: 7|
|diesel|exprs: 132591, ??ty: 401 (0%), ?ty: 5129 (3%), !ty: 31|exprs: 132591, ??ty: 401 (0%), ?ty: 5129 (3%), !ty: 31|
Tracking import use types for more accurate redundant import checking
fixes#117448
By tracking import use types to check whether it is scope uses or the other situations like module-relative uses, we can do more accurate redundant import checking.
For example unnecessary imports in std::prelude that can be eliminated:
```rust
use std::option::Option::Some;//~ WARNING the item `Some` is imported redundantly
use std::option::Option::None; //~ WARNING the item `None` is imported redundantly
```
fixes#117448
For example unnecessary imports in std::prelude that can be eliminated:
```rust
use std::option::Option::Some;//~ WARNING the item `Some` is imported redundantly
use std::option::Option::None; //~ WARNING the item `None` is imported redundantly
```
feat: Introduce term search to rust-analyzer
# Introduce term search to `rust-analyzer`
_I've marked this as draft as there might be some shortcomings, please point them out so I can fix them. Otherwise I think it is kind of ready as I think I'll rather introduce extra functionality in follow up PRs._
Term search (or I guess expression search for rust) is a technique to generate code by basically making the types match.
Consider the following program
```rust
fn wrap(arg: i32) -> Option<i32> {
todo!();
}
```
From the types of values in scope and constructors of `Option`, we can produce the expected result of wrapping the argument in `Option`
Dependently typed languages such as `Idris2` and `Agda` have similar tools to help with proofs, but this can be also used in everyday development as a "auto-complete".
# Demo videos
https://github.com/rust-lang/rust-analyzer/assets/19900308/7b68a1b7-7dba-4e31-9221-6c7485e77d88https://github.com/rust-lang/rust-analyzer/assets/19900308/0fae530a-aabb-4b28-af71-e19f8d3d64b2
# What does it currently do
- It works well with locals, free functions, type constructors and non-static impl methods that take items by value.
- Works with functions/methods that take shared references, but not with unique references (very conservative).
- Can handle projections to struct fields (eg. `foo.bar.baz`) but this might me more conservative than it has to be to avoid conflicting with borrow checker
- Should create only valid programs (no type / borrow checking errors). Tested with `rust-analyzer analysis-stats /path/to/ripgrep/Cargo.toml --run-term-search --validate-term-search` (basically running `cargo check` on all of the generated programs and only error seems to be due to type inference which is more of issue of testing method.
# Performace / fitness
```txt
ripgrep (latest)
Tail Expr syntactic hits: 130/1692 (7%)
Tail Exprs found: 523/1692 (30%)
Term search avg time: 9ms
Term search: 15.64s, 97ginstr, 8mb
rust-analyzer (on this branch)
Tail Expr syntactic hits: 804/13860 (5%)
Tail Exprs found: 6757/13860 (48%)
Term search avg time: 78ms
Term search: 1088.23s, 6765ginstr, 98mb
```
Highly generic code seems to blow up the search space so currently the amount of generics allowed is functions/methods is limited down to 0 (1 didn't give much improvement and 2 is already like 0.5+s search time)
# Plans for the future (not in this PR)
- ``~~Add impl methods that do not take `self` type (should be quite straight forward)~~ Done
- Be smarter (aka less restrictive) about borrow checking - this seems quite hard but since the current approach is rather naive I think some easy improvement is available.
- ``~~See if it works as a autocomplete while typing~~ Done
_Feel free to ask questions / point of shortcoming either here or on Zulip, I'll be happy to address them. I'm doing this as part of my MSc thesis so I'll be working on it till summer anyway 😄_
internal: tool discovery prefers sysroot tools
Fixes https://github.com/rust-lang/rust-analyzer/issues/15927, Fixes https://github.com/rust-lang/rust-analyzer/issues/16523
After this PR we will look for `cargo` and `rustc` in the sysroot if it was succesfully loaded instead of using the current lookup scheme. This should be more correct than the current approach as that relies on the working directory of the server binary or loade workspace, meaning it can behave a bit odd wrt overrides.
Additionally, rust-project.json projects now get the target data layout set so there should be better const eval support now.
Abstract more over ItemTreeLoc-like structs
Allows reducing some code duplication by using functions generic over said structs. The diff isn't negative due to me adding some additional impls for completeness.
feat: Add incorrect case diagnostics for traits and their associated items
Updates incorrect case diagnostic to:
- Check traits and their associated items
- Ignore trait implementations except for patterns in associated function bodies
Also cleans up `hir-ty::diagnostics::decl_check` a bit (mostly to make it a bit more DRY and easier to maintain)
Also fixes: #8675 and fixes: #8225
internal: even more `tracing`
As part of profiling completions, I added some additional spans and moved `TyBuilder::subst_for_def` closer to its usage site (the latter had a small impact on completion performance. Thanks for the tip, Lukas!)
internal: `tracing` improvements and followups
Hi folks! Building on https://github.com/rust-lang/rust-analyzer/pull/16394, I've got a few small tweaks:
- Removed the accidental `mod.rs` usage that I introduced.
- Removed a panic in `pat_analysis.rs`.
- Recorded the event kind in `handle_event` to better distinguish what _kind_ of event is being handled.
- Did a small refactor of `hprof` to have somewhat more linear control flow, and more importantly, write the recorded fields to the output.
The end result is the following:
<img width="1530" alt="A screenshot of Visual Studio Code on a Mac. `hprof.rs` is open, with " src="https://github.com/rust-lang/rust-analyzer/assets/2067774/bd11dde5-b2da-4774-bc38-bcb4772d1192">
This commit also adds `tracing` to NotificationDispatcher/RequestDispatcher,
bumps `rust-analyzer-salsa` to 0.17.0-pre.6, `always-assert` to 0.2, and
removes the homegrown `hprof` implementation in favor of a vendored
tracing-span-tree.
fix: Acknowledge `pub(crate)` imports in import suggestions
rust-analyzer has logic that discounts suggesting `use`s for private imports, but that logic is unnecessarily strict - for instance given this code:
```rust
mod foo {
pub struct Foo;
}
pub(crate) use self::foo::*;
mod bar {
fn main() {
Foo$0;
}
}
```
... RA will suggest to add `use crate::foo::Foo;`, which not only makes the code overly verbose (especially in larger code bases), but also is disjoint with what rustc itself suggests.
This commit adjusts the logic, so that `pub(crate)` imports are taken into account when generating the suggestions; considering rustc's behavior, I think this change doesn't warrant any extra configuration flag.
Note that this is my first commit to RA, so I guess the approach taken here might be suboptimal - certainly feels somewhat hacky, maybe there's some better way of finding out the optimal import path 😅
rust-analyzer has logic that discounts suggesting `use`s for private
imports, but that logic is unnecessarily strict - for instance given
this code:
```rust
mod foo {
pub struct Foo;
}
pub(crate) use self::foo::*;
mod bar {
fn main() {
Foo$0;
}
}
```
... RA will suggest to add `use crate::foo::Foo;`, which not only makes
the code overly verbose (especially in larger code bases), but also is
disjoint with what rustc itself suggests.
This commit adjusts the logic, so that `pub(crate)` imports are taken
into account when generating the suggestions; considering rustc's
behavior, I think this change doesn't warrant any extra configuration
flag.
Note that this is my first commit to RA, so I guess the approach taken
here might be suboptimal - certainly feels somewhat hacky, maybe there's
some better way of finding out the optimal import path 😅
fix: try obligation of `IndexMut` when infer
Closes#15842.
This issue arises because `K` is ambiguous if only inferred from `Index` trait, but is unique if inferred from `IndexMut`, but r-a doesn't use this info.