Fix path resolution for child mods of those expanded by `include!`
Child modules wouldn't use the correct candidate paths due to a branch that doesn't seem to be doing what it's intended to do. Removing the branch fixes the problem and all existing test cases pass.
Having no knowledge of how any of this works, I believe this fixes#17645. Using another test that writes the included mod directly into `lib.rs` instead, I found the difference can be traced to the candidate files we use to look up mods. A separate branch for if the file comes from an `include!` macro doesn't take into account the original mod we're contained within:
```rust
None if file_id.macro_file().map_or(false, |it| it.is_include_macro(db.upcast())) => {
candidate_files.push(format!("{}.rs", name.display(db.upcast())));
candidate_files.push(format!("{}/mod.rs", name.display(db.upcast())));
}
```
I'm not sure why this branch exists. Tracing the branch back takes us to 3bb9efb but it doesn't say *why* the branch was added. The test case that was added in this commit passes with the branch removed, so I think it's just superfluous at this point.
Forbid borrows and unsized types from being used as the type of a const generic under `adt_const_params`
Fixes#112219Fixes#112124Fixes#112125
### Motivation
Currently the `adt_const_params` feature allows writing `Foo<const N: [u8]>` this is entirely useless as it is not possible to write an expression which evaluates to a type that is not `Sized`. In order to actually use unsized types in const generics they are typically written as `const N: &[u8]` which *is* possible to provide a value of.
Unfortunately allowing the types of const parameters to contain references is non trivial (#120961) as it introduces a number of difficult questions about how equality of references in the type system should behave. References in the types of const generics is largely only useful for using unsized types in const generics.
This PR introduces a new feature gate `unsized_const_parameters` and moves support for `const N: [u8]` and `const N: &...` from `adt_const_params` into it. The goal here hopefully is to experiment with allowing `const N: [u8]` to work without references and then eventually completely forbid references in const generics.
Splitting this out into a new feature gate means that stabilization of `adt_const_params` does not have to resolve#120961 which is the only remaining "big" blocker for the feature. Remaining issues after this are a few ICEs and naming bikeshed for `ConstParamTy`.
### Implementation
The implementation is slightly subtle here as we would like to ensure that a stabilization of `adt_const_params` is forwards compatible with any outcome of `unsized_const_parameters`. This is inherently tricky as we do not support unstable trait implementations and we determine whether a type is valid as the type of a const parameter via a trait bound.
There are a few constraints here:
- We would like to *allow for the possibility* of adding a `Sized` supertrait to `ConstParamTy` in the event that we wind up opting to not support unsized types and instead requiring people to write the 'sized version', e.g. `const N: [u8; M]` instead of `const N: [u8]`.
- Crates should be able to enable `unsized_const_parameters` and write trait implementations of `ConstParamTy` for `!Sized` types without downstream crates that only enable `adt_const_params` being able to observe this (required for std to be able to `impl<T> ConstParamTy for [T]`
Ultimately the way this is accomplished is via having two traits (sad), `ConstParamTy` and `UnsizedConstParamTy`. Depending on whether `unsized_const_parameters` is enabled or not we change which trait is used to check whether a type is allowed to be a const parameter.
Long term (when stabilizing `UnsizedConstParamTy`) it should be possible to completely merge these traits (and derive macros), only having a single `trait ConstParamTy` and `macro ConstParamTy`.
Under `adt_const_params` it is now illegal to directly refer to `ConstParamTy` it is only used as an internal impl detail by `derive(ConstParamTy)` and checking const parameters are well formed. This is necessary in order to ensure forwards compatibility with all possible future directions for `feature(unsized_const_parameters)`.
Generally the intuition here should be that `ConstParamTy` is the stable trait that everything uses, and `UnsizedConstParamTy` is that plus unstable implementations (well, I suppose `ConstParamTy` isn't stable yet :P).
reenable some windows tests
Locally passing on `x86_64-pc-windows-msvc`, fingers crossed for `*-pc-windows-gnu`.
try-job: x86_64-msvc
try-job: x86_64-mingw
Child modules wouldn't use the correct candidate paths due to a branch that doesn't seem to be doing what it's intended to do. Removing the branch fixes the problem and all existing test cases pass.
fix: Panic in debug profile for tuple deconstruct with arity mismatch
Fixes#17585, which doesn't affect daily use cases but quite annoying in development of r-a itself like writing tests.
This PR applies similar approach as in #17534, skipping match usefulness check for patterns containing errors
Ignore allocation bytes in one more mir-opt test
Following on PR #126502, add `rustc -Zdump-mir-exclude-alloc-bytes` to tests/mir-opt/dataflow-const-prop/aggregate_copy.rs as well to skip writing allocation bytes in MIR dumps.
Fixes#126261
Windows: move BSD socket shims to netc
On Windows we need to alter a few types so that they can be used in the cross-platform socket code. Currently these alterations are spread throughout the `c` module with some more in the `netc` module.
Let's gather all our BSD compatibility shims in the `netc` module so it's all in one place and easier to discover.
The commands `editor.action.triggerParameterHints` and
`editor.action.rename` are now renamed to
`rust-analyzer.triggerParameterHints` and `rust-analyzer.rename`
This change helps make it clear that these commands are specific to
rust-analyzer and not part of the default set of commands provided by
VSCode.
Fixes: https://github.com/rust-lang/rust-analyzer/issues/17644
Avoid ref when using format! in compiler
Clean up a few minor refs in `format!` macro, as it has a performance cost. Apparently the compiler is unable to inline `format!("{}", &variable)`, and does a run-time double-reference instead (format macro already does one level referencing). Inlining format args prevents accidental `&` misuse.
See https://github.com/rust-lang/rust-clippy/issues/10851
Some more small salsa memory improvements
This does limit our lru limits to 2^16 but if you want to set them higher than that you might as well not set them at all. Also makes `LRU` opt-in per query now, allowing us to drop all the unnecessary LRU stuff for most queries
Clean up a few minor refs in `format!` macro, as it has a performance cost. Apparently the compiler is unable to inline `format!("{}", &variable)`, and does a run-time double-reference instead (format macro already does one level referencing). Inlining format args prevents accidental `&` misuse.