Instead of lowering them to `<expr> = <expr>`, then hacking on-demand to resolve them, we lower them to `<pat> = <expr>`, and use the pattern infrastructure to handle them. It turns out, destructuring assignments are surprisingly similar to pattern bindings, and so only minor modifications are needed.
This fixes few bugs that arose because of the non-uniform handling (for example, MIR lowering not handling slice and record patterns, and closure capture calculation not handling destructuring assignments at all), and furthermore, guarantees we won't have such bugs in the future, since the programmer will always have to explicitly handle `Expr::Assignment`.
Tests don't pass yet; that's because the generated patterns do not exist in the source map. The next commit will fix that.
fix: Remove check that text of `parse_expr_from_str()` matches the produced parsed tree
This check is incorrect when we have comments and whitespace in the text.
We can strip comments, but then we still have whitespace, which we cannot strip without changing meaning for the parser. So instead I opt to remove the check, and wrap the expression in parentheses (asserting what produced is a parenthesized expression) to strengthen verification.
Fixes#18144.
This check is incorrect when we have comments and whitespace in the text.
We can strip comments, but then we still have whitespace, which we cannot strip without changing meaning for the parser. So instead I opt to remove the check, and wrap the expression in parentheses (asserting what produced is a parenthesized expression) to strengthen verification.
Use more correct handling of lint attributes
The previous analysis was top-down, and worked on a single file (expanding macros). The new analysis is bottom-up, starting from the diagnostics and climbing up the syntax and module tree.
While this is more efficient (and in fact, efficiency was the motivating reason to work on this), unfortunately the code was already fast enough. But luckily, it also fixes a correctness problem: outline parent modules' attributes were not respected for the previous analysis. Case lints specifically did their own analysis to accommodate that, but it was limited to only them. The new analysis works on all kinds of lints, present and future.
It was basically impossible to fix the old analysis without rewriting it because navigating the module hierarchy must come bottom-up, and if we already have a bottom-up analysis (including syntax analysis because modules can be nested in other syntax elements, including macros), it makes sense to use only this kind of analysis.
Few other bugs (not fundamental to the previous analysis) are also fixed, e.g. overwriting of lint levels (i.e. `#[allow(lint)] mod foo { #[warn(lint)] mod bar; }`.
After this PR is merged I intend to work on an editor command that does workspace-wide diagnostics analysis (that is, `rust-analyzer diagnostics` but from your editor and without having to spawn a new process, which will have to analyze the workspace from scratch). This can be useful to users who do not want to enable check on save because of its overhead, but want to see workspace wide diagnostics from r-a (or to maintainers of rust-analyzer).
Closes#18086.
Closes#18081.
Fixes#18056.
The previous analysis was top-down, and worked on a single file (expanding macros). The new analysis is bottom-up, starting from the diagnostics and climbing up the syntax and module tree.
While this is more efficient (and in fact, efficiency was the motivating reason to work on this), unfortunately the code was already fast enough. But luckily, it also fixes a correctness problem: outline parent modules' attributes were not respected for the previous analysis. Case lints specifically did their own analysis to accommodate that, but it was limited to only them. The new analysis works on all kinds of lints, present and future.
It was basically impossible to fix the old analysis without rewriting it because navigating the module hierarchy must come bottom-up, and if we already have a bottom-up analysis (including syntax analysis because modules can be nested in other syntax elements, including macros), it makes sense to use only this kind of analysis.
Few other bugs (not fundamental ti the previous analysis) are also fixed, e.g. overwriting of lint levels (i.e. `#[allow(lint)] mod foo { #[warn(lint)] mod bar; }`.
feat: generate names for tuple-struct in add-missing-match-arms
fix#18034.
This PR includes the following enhancement:
- Introduced a `NameGenerator` in `suggest_name`, which implements an automatic renaming algorithm to avoid name conflicts. Here are a few examples:
```rust
let mut generator = NameGenerator::new();
assert_eq!(generator.suggest_name("a"), "a");
assert_eq!(generator.suggest_name("a"), "a1");
assert_eq!(generator.suggest_name("a"), "a2");
assert_eq!(generator.suggest_name("b"), "b");
assert_eq!(generator.suggest_name("b"), "b1");
assert_eq!(generator.suggest_name("b2"), "b2");
assert_eq!(generator.suggest_name("b"), "b3");
assert_eq!(generator.suggest_name("b"), "b4");
assert_eq!(generator.suggest_name("b3"), "b5");
```
- Updated existing testcases in ide-assists for the new `NameGenerator` (only modified generated names).
- Generate names for tuple structs instead of using wildcard patterns in `add-missing-match-arms`.
internal: Add preliminary `SyntaxEditor` functionality
Related to #15710
Implements a `SyntaxEditor` interface to abstract over the details of modifying syntax trees, to both simplify creating new code fixes and code actions, as well as start on the path of getting rid of mutable syntax nodes.
`SyntaxEditor` relies on `SyntaxMappingBuilder`s to feed in the correct information to map AST nodes created by `make` constructors, as `make` constructors do not guarantee that node identity is preserved. This is to paper over the fact that `make` constructors simply re-parse text input instead of building AST nodes from the ground up and re-using the provided syntax nodes.
`SyntaxAnnotation`s are used to find where syntax elements have ended up after edits are applied. This is primarily useful for the `add_{placeholder,tabstop}` set of methods on `SourceChangeBuilder`, as that currently relies on the nodes provided being in the final syntax tree.
Eventually, the goal should be to move this into the `rowan` crate when we move away from mutable syntax nodes, but for now it'll stay in the `syntax` crate.
---
Closes#14921 as `SyntaxEditor` ensures that all replace changes are disjoint
Closes#9649 by implementing `SyntaxAnnotation`s
fix: Properly account for editions in names
This PR touches a lot of parts. But the main changes are changing `hir_expand::Name` to be raw edition-dependently and only when necessary (unrelated to how the user originally wrote the identifier), and changing `is_keyword()` and `is_raw_identifier()` to be edition-aware (this was done in #17896, but the FIXMEs were fixed here).
It is possible that I missed some cases, but most IDE parts should properly escape (or not escape) identifiers now.
The rules of thumb are:
- If we show the identifier to the user, its rawness should be determined by the edition of the edited crate. This is nice for IDE features, but really important for changes we insert to the source code.
- For tests, I chose `Edition::CURRENT` (so we only have to (maybe) update tests when an edition becomes stable, to avoid churn).
- For debugging tools (helper methods and logs), I used `Edition::LATEST`.
Reviewing notes:
This is a really big PR but most of it is mechanical translation. I changed `Name` displayers to require an edition, and followed the compiler errors. Most methods just propagate the edition requirement. The interesting cases are mostly in `ide-assists`, as sometimes the correct crate to fetch the edition from requires awareness (there may be two). `ide-completions` and `ide-diagnostics` were solved pretty easily by introducing an edition field to their context. `ide` contains many features, for most of them it was propagated to the top level function and there the edition was fetched based on the file.
I also fixed all FIXMEs from #17896. Some required introducing an edition parameter (usually not for many methods after the changes to `Name`), some were changed to a new method `is_any_identifier()` because they really want any possible keyword.
Fixes#17895.
Fixes#17774.
This PR touches a lot of parts. But the main changes are changing
`hir_expand::Name` to be raw edition-dependently and only when necessary
(unrelated to how the user originally wrote the identifier),
and changing `is_keyword()` and `is_raw_identifier()` to be edition-aware
(this was done in #17896, but the FIXMEs were fixed here).
It is possible that I missed some cases, but most IDE parts should properly
escape (or not escape) identifiers now.
The rules of thumb are:
- If we show the identifier to the user, its rawness should be determined
by the edition of the edited crate. This is nice for IDE features,
but really important for changes we insert to the source code.
- For tests, I chose `Edition::CURRENT` (so we only have to (maybe) update
tests when an edition becomes stable, to avoid churn).
- For debugging tools (helper methods and logs), I used `Edition::LATEST`.
internal: Replace once_cell with std's recently stabilized OnceCell/Lock and LazyCell/Lock
This doesn't get rid of the once_cell dependency, unfortunately, since we have dependencies that use it, but it's a nice to do cleanup. And when our deps will eventually get rid of once_cell we will get rid of it for free.
This doesn't get rid of the once_cell dependency, unfortunately, since we have dependencies that use it, but it's a nice to do cleanup. And when our deps will eventually get rid of once_cell we will get rid of it for free.
feat: add preliminary support for `+ use<..>` `precise_capturing` syntax
## Summary
This PR adds basic support for the following syntax.
```rs
fn captures<'a: 'a, 'b: 'b, T>() -> impl Sized + use<'b, T> {}
// ~~~~~~~~~~~~~~~~~~~~~~~
// This opaque type does not capture `'a`.
fn outlives<'o, T: 'o>(_: T) {}
fn caller<'o, 'a, 'b: 'o, T: 'o>() {
// ~~
// ^ Note that we don't need `'a: 'o`.
outlives::<'o>(captures::<'a, 'b, T>());
}
```
Related to #17598
Avoid ref when using format! in compiler
Clean up a few minor refs in `format!` macro, as it has a performance cost. Apparently the compiler is unable to inline `format!("{}", &variable)`, and does a run-time double-reference instead (format macro already does one level referencing). Inlining format args prevents accidental `&` misuse.
See https://github.com/rust-lang/rust-clippy/issues/10851
Clean up a few minor refs in `format!` macro, as it has a performance cost. Apparently the compiler is unable to inline `format!("{}", &variable)`, and does a run-time double-reference instead (format macro already does one level referencing). Inlining format args prevents accidental `&` misuse.