Move async closure parameters into the resultant closure's future eagerly
Move async closure parameters into the closure's resultant future eagerly.
Before, we used to desugar `async |p1, p2, ..| { body }` as `|p1, p2, ..| { || async { body } }`. Now, we desugar the above like `|p1, p2, ..| { async move { let p1 = p1; let p2 = p2; ... body } }`. This mirrors the same desugaring that `async fn` does with its parameter types, and the compiler literally uses the same code via a shared helper function.
This removes the necessity for E0708, since now expressions like `async |x: i32| { x }` will not give you confusing borrow errors.
This does *not* fix the case where async closures have self-borrows. This will come with a general implementation of async closures, which is still in the works.
r? oli-obk
Make tcx optional from StableMIR run macro and extend it to accept closures
Change `run` macro to avoid sometimes unnecessary dependency on `TyCtxt`, and introduce `run_with_tcx` to capture use cases where `tcx` is required. Additionally, extend both macros to accept closures that may capture variables.
I've also modified the `internal()` method to make it safer, by accepting the type context to force the `'tcx` lifetime to match the context lifetime.
These are non-backward compatible changes, but they only affect internal APIs which are provided today as helper functions until we have a stable API to start the compiler.
Detect `NulInCStr` error earlier.
By making it an `EscapeError` instead of a `LitError`. This makes it like the other errors produced when checking string literals contents, e.g. for invalid escape sequences or bare CR chars.
NOTE: this means these errors are issued earlier, before expansion, which changes behaviour. It will be possible to move the check back to the later point if desired. If that happens, it's likely that all the string literal contents checks will be delayed together.
One nice thing about this: the old approach had some code in `report_lit_error` to calculate the span of the nul char from a range. This code used a hardwired `+2` to account for the `c"` at the start of a C string literal, but this should have changed to a `+3` for raw C string literals to account for the `cr"`, which meant that the caret in `cr"` nul error messages was one short of where it should have been. The new approach doesn't need any of this and avoids the off-by-one error.
r? ```@fee1-dead```
With #15656 we started disallowing renaming of non-local items.
Although this makes sense there are some false positives that
impacted users' workflows. So this config aims to mitigate this
by giving users the liberty to disable this feature.
Add way to express that no values are expected with check-cfg
This PR adds way to express no-values (no values expected) with `--check-cfg` by making empty `values()` no longer mean `values(none())` (internal: `&[None]`) and now be an empty list (internal: `&[]`).
### Context
Currently `--check-cfg` has a way to express that _any value is expected_ with `values(any())`, but has no way to do the inverse and say that _no value is expected_.
This would be particularly useful for build systems that control a config name and it's values as they could always declare a config name as expected and if in the current state they have values pass them and if not pass an empty list.
To give a more concrete example, Cargo `--check-cfg` currently needs to generate:
- `--check-cfg=cfg(feature, values(...))` for the case with declared features
- and `--check-cfg=cfg()` for the case without any features declared
This means that when there are no features declared, users will get an `unexpected config name` but from the point of view of Cargo the config name `feature` is expected, it's just that for now there aren't any values for it.
See [Cargo `check_cfg_args` function](92395d9010/src/cargo/core/compiler/mod.rs (L1263-L1281)) for more details.
### De-specializing *empty* `values()`
To solve this issue I propose that we "de-specialize" empty `values()` to no longer mean `values(none())` but to actually mean empty set/list. This is one of the last source of confusion for my-self and others with the `--check-cfg` syntax.
> The confusing part here is that an empty `values()` currently means the same as `values(none())`, i.e. an expected list of values with the _none_ variant (as in `#[cfg(name)]` where the value is none) instead of meaning an empty set.
Before the new `cfg()` syntax, defining the _none_ variant was only possible under certain circumstances, so in https://github.com/rust-lang/rust/pull/111068 I decided to make `values()` to mean the _none_ variant, but it is no longer necessary since https://github.com/rust-lang/rust/pull/119473 which introduced the `none()` syntax.
A simplified representation of the proposed "de-specialization" would be:
| Syntax | List/set of expected values |
|-----------------------------------------|-----------------------------|
| `cfg(name)`/`cfg(name, values(none()))` | `&[None]` |
| `cfg(name, values())` | `&[]` |
Note that I have my-self made the mistake of using an empty `values()` as meaning empty set, see https://github.com/rust-lang/cargo/pull/13011.
`@rustbot` label +F-check-cfg
r? `@petrochenkov`
cc `@epage`
`macro_rules` as macro name
This PR makes RA parse `macro_rules! {}` (note the missing identifier) as a `MACRO_CALL` instead of `MACRO_RULES`.
Fixes#15969.
fix: better handling of SelfParam in assist 'inline_call'
fix#15470.
The current `inline_call` directly translates `&self` into `let ref this = ...;` and `&mut self` into `let ref mut this = ...;`. However, it does not handle some complex scenarios.
This PR addresses the following transformations (assuming the receiving object is `obj`):
- `self`: `let this = obj`
- `mut self`: `let mut this = obj`
- `&self`: `let this = &obj`
- `&mut self`
+ If `obj` is `let mut obj = ...`, use a mutable reference: `let this = &mut obj`
+ If `obj` is `let obj = &mut ...;`, perform a reborrow: `let this = &mut *obj`
Rework how diagnostic lints are stored.
`Diagnostic::code` has the type `DiagnosticId`, which has `Error` and
`Lint` variants. Plus `Diagnostic::is_lint` is a bool, which should be
redundant w.r.t. `Diagnostic::code`.
Seems simple. Except it's possible for a lint to have an error code, in
which case its `code` field is recorded as `Error`, and `is_lint` is
required to indicate that it's a lint. This is what happens with
`derive(LintDiagnostic)` lints. Which means those lints don't have a
lint name or a `has_future_breakage` field because those are stored in
the `DiagnosticId::Lint`.
It's all a bit messy and confused and seems unintentional.
This commit:
- removes `DiagnosticId`;
- changes `Diagnostic::code` to `Option<String>`, which means both
errors and lints can straightforwardly have an error code;
- changes `Diagnostic::is_lint` to `Option<IsLint>`, where `IsLint` is a
new type containing a lint name and a `has_future_breakage` bool, so
all lints can have those, error code or not.
r? `@oli-obk`
Cache local DefId-keyed queries without hashing
This caches local DefId-keyed queries using just an IndexVec. This costs ~5% extra max-rss at most but brings significant runtime improvement, up to 13% cycle counts (mean: 4%) on primary benchmarks. It's possible that further tweaks could reduce the memory overhead further but this win seems worth landing despite the increased memory, particularly with regards to eliminating the present set in non-incr or storing it inline (skip list?) with the main data.
We tried applying this scheme to all keys in the [first perf run] but found that it carried a significant memory hit (50%). instructions/cycle counts were also much more mixed, though that may have been due to the lack of the present set optimization (needed for fast iter() calls in incremental scenarios).
Closes https://github.com/rust-lang/rust/issues/45275
[first perf run]: https://perf.rust-lang.org/compare.html?start=30dfb9e046aeb878db04332c74de76e52fb7db10&end=6235575300d8e6e2cc6f449cb9048722ef43f9c7&stat=instructions:u
Make sure to instantiate placeholders correctly in old solver
When creating the query substitution guess for an input placeholder type like `!1_T` (in universe 1), we were guessing the response substitution with something like `!0_T`. This failed to unify with `!1_T`, causing an ICE.
This PR reworks the query substitution guess code to work a bit more like the new solver. I'm *pretty* sure this is correct, though I'd really appreciate some scrutiny from someone (*cough* lcnr) who knows a bit more about query instantiation :)
Fixes#119941
r? lcnr
Sandwich MIR optimizations between DSE.
This PR reorders MIR optimization passes in an attempt to increase their efficiency.
- Stop running CopyProp before GVN, it's useless as GVN will do the same thing anyway. Instead, we perform CopyProp at the end of the pipeline, to ensure we do not emit copy/move chains.
- Run DSE before GVN, as it increases the probability to have single-assignment locals.
- Run DSE after the final CopyProp to turn copies into moves.
r? `@ghost`
internal: Follow rustfmt's algorithm for ordering imports when ordering and merging use trees
Updates use tree ordering and merging utilities to follow rustfmt's algorithm for ordering imports.
The [rustfmt implementation](6356fca675/src/imports.rs) was used as reference.