3842: Add lib-proc-macro mod in ra_proc_macro_srv r=matklad a=edwin0cheng

This PR add a module in ra_proc_macro_srv, which is just copy & paste from rustc lib_proc_macro and remove all unstable features in it. 

The main idea here is by doing that, we could build the `ra_proc_macro_srv` without nightly compiler and remain ABI compatibility. 

Co-authored-by: Edwin Cheng <edwin0cheng@gmail.com>
This commit is contained in:
bors[bot] 2020-04-06 15:08:26 +00:00 committed by GitHub
commit f6d688d130
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
13 changed files with 2950 additions and 9 deletions

10
Cargo.lock generated
View file

@ -1082,9 +1082,7 @@ dependencies = [
"difference",
"ra_proc_macro",
"ra_tt",
"serde",
"serde_derive",
"serde_json",
]
[[package]]
@ -1414,18 +1412,18 @@ checksum = "388a1df253eca08550bef6c72392cfe7c30914bf41df5269b68cbd6ff8f570a3"
[[package]]
name = "serde"
version = "1.0.106"
version = "1.0.104"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "36df6ac6412072f67cf767ebbde4133a5b2e88e76dc6187fa7104cd16f783399"
checksum = "414115f25f818d7dfccec8ee535d76949ae78584fc4f79a6f45a904bf8ab4449"
dependencies = [
"serde_derive",
]
[[package]]
name = "serde_derive"
version = "1.0.106"
version = "1.0.104"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9e549e3abf4fb8621bd1609f11dfc9f5e50320802273b12f3811a67e6716ea6c"
checksum = "128f9e303a5a29922045a830221b8f78ec74a5f544944f3d5984f8ec3895ef64"
dependencies = [
"proc-macro2",
"quote",

View file

@ -12,10 +12,9 @@ doctest = false
ra_tt = { path = "../ra_tt" }
ra_proc_macro = { path = "../ra_proc_macro" }
serde_derive = "1.0.104"
serde = "1.0.104"
serde_json = "1.0.48"
[dev-dependencies]
cargo_metadata = "0.9.1"
difference = "2.0.0"
# used as proc macro test target
serde_derive = "=1.0.104"

View file

@ -10,6 +10,11 @@
//! * By **copying** the whole rustc `lib_proc_macro` code, we are able to build this with `stable`
//! rustc rather than `unstable`. (Although in gerenal ABI compatibility is still an issue)
#[allow(dead_code)]
#[doc(hidden)]
mod proc_macro;
use proc_macro::bridge::client::TokenStream;
use ra_proc_macro::{ExpansionResult, ExpansionTask, ListMacrosResult, ListMacrosTask};
pub fn expand_task(_task: &ExpansionTask) -> Result<ExpansionResult, String> {

View file

@ -0,0 +1,149 @@
//! lib-proc-macro Buffer management for same-process client<->server communication.
//!
//! Copy from https://github.com/rust-lang/rust/blob/6050e523bae6de61de4e060facc43dc512adaccd/src/libproc_macro/bridge/buffer.rs
//! augmented with removing unstable features
use std::io::{self, Write};
use std::mem;
use std::ops::{Deref, DerefMut};
use std::slice;
#[repr(C)]
struct Slice<'a, T> {
data: &'a [T; 0],
len: usize,
}
unsafe impl<'a, T: Sync> Sync for Slice<'a, T> {}
unsafe impl<'a, T: Sync> Send for Slice<'a, T> {}
impl<'a, T> Copy for Slice<'a, T> {}
impl<'a, T> Clone for Slice<'a, T> {
fn clone(&self) -> Self {
*self
}
}
impl<'a, T> From<&'a [T]> for Slice<'a, T> {
fn from(xs: &'a [T]) -> Self {
Slice { data: unsafe { &*(xs.as_ptr() as *const [T; 0]) }, len: xs.len() }
}
}
impl<'a, T> Deref for Slice<'a, T> {
type Target = [T];
fn deref(&self) -> &[T] {
unsafe { slice::from_raw_parts(self.data.as_ptr(), self.len) }
}
}
#[repr(C)]
pub struct Buffer<T: Copy> {
data: *mut T,
len: usize,
capacity: usize,
extend_from_slice: extern "C" fn(Buffer<T>, Slice<'_, T>) -> Buffer<T>,
drop: extern "C" fn(Buffer<T>),
}
unsafe impl<T: Copy + Sync> Sync for Buffer<T> {}
unsafe impl<T: Copy + Send> Send for Buffer<T> {}
impl<T: Copy> Default for Buffer<T> {
fn default() -> Self {
Self::from(vec![])
}
}
impl<T: Copy> Deref for Buffer<T> {
type Target = [T];
fn deref(&self) -> &[T] {
unsafe { slice::from_raw_parts(self.data as *const T, self.len) }
}
}
impl<T: Copy> DerefMut for Buffer<T> {
fn deref_mut(&mut self) -> &mut [T] {
unsafe { slice::from_raw_parts_mut(self.data, self.len) }
}
}
impl<T: Copy> Buffer<T> {
pub(super) fn new() -> Self {
Self::default()
}
pub(super) fn clear(&mut self) {
self.len = 0;
}
pub(super) fn take(&mut self) -> Self {
mem::take(self)
}
pub(super) fn extend_from_slice(&mut self, xs: &[T]) {
// Fast path to avoid going through an FFI call.
if let Some(final_len) = self.len.checked_add(xs.len()) {
if final_len <= self.capacity {
let dst = unsafe { slice::from_raw_parts_mut(self.data, self.capacity) };
dst[self.len..][..xs.len()].copy_from_slice(xs);
self.len = final_len;
return;
}
}
let b = self.take();
*self = (b.extend_from_slice)(b, Slice::from(xs));
}
}
impl Write for Buffer<u8> {
fn write(&mut self, xs: &[u8]) -> io::Result<usize> {
self.extend_from_slice(xs);
Ok(xs.len())
}
fn write_all(&mut self, xs: &[u8]) -> io::Result<()> {
self.extend_from_slice(xs);
Ok(())
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
impl<T: Copy> Drop for Buffer<T> {
fn drop(&mut self) {
let b = self.take();
(b.drop)(b);
}
}
impl<T: Copy> From<Vec<T>> for Buffer<T> {
fn from(mut v: Vec<T>) -> Self {
let (data, len, capacity) = (v.as_mut_ptr(), v.len(), v.capacity());
mem::forget(v);
// This utility function is nested in here because it can *only*
// be safely called on `Buffer`s created by *this* `proc_macro`.
fn to_vec<T: Copy>(b: Buffer<T>) -> Vec<T> {
unsafe {
let Buffer { data, len, capacity, .. } = b;
mem::forget(b);
Vec::from_raw_parts(data, len, capacity)
}
}
extern "C" fn extend_from_slice<T: Copy>(b: Buffer<T>, xs: Slice<'_, T>) -> Buffer<T> {
let mut v = to_vec(b);
v.extend_from_slice(&xs);
Buffer::from(v)
}
extern "C" fn drop<T: Copy>(b: Buffer<T>) {
mem::drop(to_vec(b));
}
Buffer { data, len, capacity, extend_from_slice, drop }
}
}

View file

@ -0,0 +1,472 @@
//! lib-proc-macro Client-side types.
//!
//! Copy from https://github.com/rust-lang/rust/blob/6050e523bae6de61de4e060facc43dc512adaccd/src/libproc_macro/bridge/client.rs
//! augmented with removing unstable features
use super::*;
macro_rules! define_handles {
(
'owned: $($oty:ident,)*
'interned: $($ity:ident,)*
) => {
#[repr(C)]
#[allow(non_snake_case)]
pub struct HandleCounters {
$($oty: AtomicUsize,)*
$($ity: AtomicUsize,)*
}
impl HandleCounters {
// FIXME(eddyb) use a reference to the `static COUNTERS`, intead of
// a wrapper `fn` pointer, once `const fn` can reference `static`s.
extern "C" fn get() -> &'static Self {
static COUNTERS: HandleCounters = HandleCounters {
$($oty: AtomicUsize::new(1),)*
$($ity: AtomicUsize::new(1),)*
};
&COUNTERS
}
}
// FIXME(eddyb) generate the definition of `HandleStore` in `server.rs`.
#[repr(C)]
#[allow(non_snake_case)]
pub(super) struct HandleStore<S: server::Types> {
$($oty: handle::OwnedStore<S::$oty>,)*
$($ity: handle::InternedStore<S::$ity>,)*
}
impl<S: server::Types> HandleStore<S> {
pub(super) fn new(handle_counters: &'static HandleCounters) -> Self {
HandleStore {
$($oty: handle::OwnedStore::new(&handle_counters.$oty),)*
$($ity: handle::InternedStore::new(&handle_counters.$ity),)*
}
}
}
$(
#[repr(C)]
pub struct $oty(pub(crate) handle::Handle);
// impl !Send for $oty {}
// impl !Sync for $oty {}
// Forward `Drop::drop` to the inherent `drop` method.
impl Drop for $oty {
fn drop(&mut self) {
$oty(self.0).drop();
}
}
impl<S> Encode<S> for $oty {
fn encode(self, w: &mut Writer, s: &mut S) {
let handle = self.0;
mem::forget(self);
handle.encode(w, s);
}
}
impl<S: server::Types> DecodeMut<'_, '_, HandleStore<server::MarkedTypes<S>>>
for Marked<S::$oty, $oty>
{
fn decode(r: &mut Reader<'_>, s: &mut HandleStore<server::MarkedTypes<S>>) -> Self {
s.$oty.take(handle::Handle::decode(r, &mut ()))
}
}
impl<S> Encode<S> for &$oty {
fn encode(self, w: &mut Writer, s: &mut S) {
self.0.encode(w, s);
}
}
impl<'s, S: server::Types,> Decode<'_, 's, HandleStore<server::MarkedTypes<S>>>
for &'s Marked<S::$oty, $oty>
{
fn decode(r: &mut Reader<'_>, s: &'s HandleStore<server::MarkedTypes<S>>) -> Self {
&s.$oty[handle::Handle::decode(r, &mut ())]
}
}
impl<S> Encode<S> for &mut $oty {
fn encode(self, w: &mut Writer, s: &mut S) {
self.0.encode(w, s);
}
}
impl<'s, S: server::Types> DecodeMut<'_, 's, HandleStore<server::MarkedTypes<S>>>
for &'s mut Marked<S::$oty, $oty>
{
fn decode(
r: &mut Reader<'_>,
s: &'s mut HandleStore<server::MarkedTypes<S>>
) -> Self {
&mut s.$oty[handle::Handle::decode(r, &mut ())]
}
}
impl<S: server::Types> Encode<HandleStore<server::MarkedTypes<S>>>
for Marked<S::$oty, $oty>
{
fn encode(self, w: &mut Writer, s: &mut HandleStore<server::MarkedTypes<S>>) {
s.$oty.alloc(self).encode(w, s);
}
}
impl<S> DecodeMut<'_, '_, S> for $oty {
fn decode(r: &mut Reader<'_>, s: &mut S) -> Self {
$oty(handle::Handle::decode(r, s))
}
}
)*
$(
#[repr(C)]
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub(crate) struct $ity(handle::Handle);
// impl !Send for $ity {}
// impl !Sync for $ity {}
impl<S> Encode<S> for $ity {
fn encode(self, w: &mut Writer, s: &mut S) {
self.0.encode(w, s);
}
}
impl<S: server::Types> DecodeMut<'_, '_, HandleStore<server::MarkedTypes<S>>>
for Marked<S::$ity, $ity>
{
fn decode(r: &mut Reader<'_>, s: &mut HandleStore<server::MarkedTypes<S>>) -> Self {
s.$ity.copy(handle::Handle::decode(r, &mut ()))
}
}
impl<S: server::Types> Encode<HandleStore<server::MarkedTypes<S>>>
for Marked<S::$ity, $ity>
{
fn encode(self, w: &mut Writer, s: &mut HandleStore<server::MarkedTypes<S>>) {
s.$ity.alloc(self).encode(w, s);
}
}
impl<S> DecodeMut<'_, '_, S> for $ity {
fn decode(r: &mut Reader<'_>, s: &mut S) -> Self {
$ity(handle::Handle::decode(r, s))
}
}
)*
}
}
define_handles! {
'owned:
TokenStream,
TokenStreamBuilder,
TokenStreamIter,
Group,
Literal,
SourceFile,
MultiSpan,
Diagnostic,
'interned:
Punct,
Ident,
Span,
}
// FIXME(eddyb) generate these impls by pattern-matching on the
// names of methods - also could use the presence of `fn drop`
// to distinguish between 'owned and 'interned, above.
// Alternatively, special 'modes" could be listed of types in with_api
// instead of pattern matching on methods, here and in server decl.
impl Clone for TokenStream {
fn clone(&self) -> Self {
self.clone()
}
}
impl Clone for TokenStreamIter {
fn clone(&self) -> Self {
self.clone()
}
}
impl Clone for Group {
fn clone(&self) -> Self {
self.clone()
}
}
impl Clone for Literal {
fn clone(&self) -> Self {
self.clone()
}
}
// FIXME(eddyb) `Literal` should not expose internal `Debug` impls.
impl fmt::Debug for Literal {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(&self.debug())
}
}
impl Clone for SourceFile {
fn clone(&self) -> Self {
self.clone()
}
}
impl fmt::Debug for Span {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(&self.debug())
}
}
macro_rules! define_client_side {
($($name:ident {
$(fn $method:ident($($arg:ident: $arg_ty:ty),* $(,)?) $(-> $ret_ty:ty)*;)*
}),* $(,)?) => {
$(impl $name {
#[allow(unused)]
$(pub(crate) fn $method($($arg: $arg_ty),*) $(-> $ret_ty)* {
panic!("hello");
// Bridge::with(|bridge| {
// let mut b = bridge.cached_buffer.take();
// b.clear();
// api_tags::Method::$name(api_tags::$name::$method).encode(&mut b, &mut ());
// reverse_encode!(b; $($arg),*);
// b = bridge.dispatch.call(b);
// let r = Result::<_, PanicMessage>::decode(&mut &b[..], &mut ());
// bridge.cached_buffer = b;
// r.unwrap_or_else(|e| panic::resume_unwind(e.into()))
// })
})*
})*
}
}
with_api!(self, self, define_client_side);
enum BridgeState<'a> {
/// No server is currently connected to this client.
NotConnected,
/// A server is connected and available for requests.
Connected(Bridge<'a>),
/// Access to the bridge is being exclusively acquired
/// (e.g., during `BridgeState::with`).
InUse,
}
enum BridgeStateL {}
impl<'a> scoped_cell::ApplyL<'a> for BridgeStateL {
type Out = BridgeState<'a>;
}
thread_local! {
static BRIDGE_STATE: scoped_cell::ScopedCell<BridgeStateL> =
scoped_cell::ScopedCell::new(BridgeState::NotConnected);
}
impl BridgeState<'_> {
/// Take exclusive control of the thread-local
/// `BridgeState`, and pass it to `f`, mutably.
/// The state will be restored after `f` exits, even
/// by panic, including modifications made to it by `f`.
///
/// N.B., while `f` is running, the thread-local state
/// is `BridgeState::InUse`.
fn with<R>(f: impl FnOnce(&mut BridgeState<'_>) -> R) -> R {
BRIDGE_STATE.with(|state| {
state.replace(BridgeState::InUse, |mut state| {
// FIXME(#52812) pass `f` directly to `replace` when `RefMutL` is gone
f(&mut *state)
})
})
}
}
impl Bridge<'_> {
fn enter<R>(self, f: impl FnOnce() -> R) -> R {
// Hide the default panic output within `proc_macro` expansions.
// NB. the server can't do this because it may use a different libstd.
static HIDE_PANICS_DURING_EXPANSION: Once = Once::new();
HIDE_PANICS_DURING_EXPANSION.call_once(|| {
let prev = panic::take_hook();
panic::set_hook(Box::new(move |info| {
let hide = BridgeState::with(|state| match state {
BridgeState::NotConnected => false,
BridgeState::Connected(_) | BridgeState::InUse => true,
});
if !hide {
prev(info)
}
}));
});
BRIDGE_STATE.with(|state| state.set(BridgeState::Connected(self), f))
}
fn with<R>(f: impl FnOnce(&mut Bridge<'_>) -> R) -> R {
BridgeState::with(|state| match state {
BridgeState::NotConnected => {
panic!("procedural macro API is used outside of a procedural macro");
}
BridgeState::InUse => {
panic!("procedural macro API is used while it's already in use");
}
BridgeState::Connected(bridge) => f(bridge),
})
}
}
/// A client-side "global object" (usually a function pointer),
/// which may be using a different `proc_macro` from the one
/// used by the server, but can be interacted with compatibly.
///
/// N.B., `F` must have FFI-friendly memory layout (e.g., a pointer).
/// The call ABI of function pointers used for `F` doesn't
/// need to match between server and client, since it's only
/// passed between them and (eventually) called by the client.
#[repr(C)]
#[derive(Copy, Clone)]
pub struct Client<F> {
// FIXME(eddyb) use a reference to the `static COUNTERS`, intead of
// a wrapper `fn` pointer, once `const fn` can reference `static`s.
pub(super) get_handle_counters: extern "C" fn() -> &'static HandleCounters,
pub(super) run: extern "C" fn(Bridge<'_>, F) -> Buffer<u8>,
pub(super) f: F,
}
/// Client-side helper for handling client panics, entering the bridge,
/// deserializing input and serializing output.
// FIXME(eddyb) maybe replace `Bridge::enter` with this?
fn run_client<A: for<'a, 's> DecodeMut<'a, 's, ()>, R: Encode<()>>(
mut bridge: Bridge<'_>,
f: impl FnOnce(A) -> R,
) -> Buffer<u8> {
// The initial `cached_buffer` contains the input.
let mut b = bridge.cached_buffer.take();
panic::catch_unwind(panic::AssertUnwindSafe(|| {
bridge.enter(|| {
let reader = &mut &b[..];
let input = A::decode(reader, &mut ());
// Put the `cached_buffer` back in the `Bridge`, for requests.
Bridge::with(|bridge| bridge.cached_buffer = b.take());
let output = f(input);
// Take the `cached_buffer` back out, for the output value.
b = Bridge::with(|bridge| bridge.cached_buffer.take());
// HACK(eddyb) Separate encoding a success value (`Ok(output)`)
// from encoding a panic (`Err(e: PanicMessage)`) to avoid
// having handles outside the `bridge.enter(|| ...)` scope, and
// to catch panics that could happen while encoding the success.
//
// Note that panics should be impossible beyond this point, but
// this is defensively trying to avoid any accidental panicking
// reaching the `extern "C"` (which should `abort` but may not
// at the moment, so this is also potentially preventing UB).
b.clear();
Ok::<_, ()>(output).encode(&mut b, &mut ());
})
}))
.map_err(PanicMessage::from)
.unwrap_or_else(|e| {
b.clear();
Err::<(), _>(e).encode(&mut b, &mut ());
});
b
}
impl Client<fn(crate::TokenStream) -> crate::TokenStream> {
pub fn expand1(f: fn(crate::TokenStream) -> crate::TokenStream) -> Self {
extern "C" fn run(
bridge: Bridge<'_>,
f: impl FnOnce(crate::TokenStream) -> crate::TokenStream,
) -> Buffer<u8> {
run_client(bridge, |input| f(crate::TokenStream(input)).0)
}
Client { get_handle_counters: HandleCounters::get, run, f }
}
}
impl Client<fn(crate::TokenStream, crate::TokenStream) -> crate::TokenStream> {
pub fn expand2(f: fn(crate::TokenStream, crate::TokenStream) -> crate::TokenStream) -> Self {
extern "C" fn run(
bridge: Bridge<'_>,
f: impl FnOnce(crate::TokenStream, crate::TokenStream) -> crate::TokenStream,
) -> Buffer<u8> {
run_client(bridge, |(input, input2)| {
f(crate::TokenStream(input), crate::TokenStream(input2)).0
})
}
Client { get_handle_counters: HandleCounters::get, run, f }
}
}
#[repr(C)]
#[derive(Copy, Clone)]
pub enum ProcMacro {
CustomDerive {
trait_name: &'static str,
attributes: &'static [&'static str],
client: Client<fn(crate::TokenStream) -> crate::TokenStream>,
},
Attr {
name: &'static str,
client: Client<fn(crate::TokenStream, crate::TokenStream) -> crate::TokenStream>,
},
Bang {
name: &'static str,
client: Client<fn(crate::TokenStream) -> crate::TokenStream>,
},
}
impl std::fmt::Debug for ProcMacro {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "ProcMacro {{ name: {} }}", self.name())
}
}
impl ProcMacro {
pub fn name(&self) -> &'static str {
match self {
ProcMacro::CustomDerive { trait_name, .. } => trait_name,
ProcMacro::Attr { name, .. } => name,
ProcMacro::Bang { name, .. } => name,
}
}
pub fn custom_derive(
trait_name: &'static str,
attributes: &'static [&'static str],
expand: fn(crate::TokenStream) -> crate::TokenStream,
) -> Self {
ProcMacro::CustomDerive { trait_name, attributes, client: Client::expand1(expand) }
}
pub fn attr(
name: &'static str,
expand: fn(crate::TokenStream, crate::TokenStream) -> crate::TokenStream,
) -> Self {
ProcMacro::Attr { name, client: Client::expand2(expand) }
}
pub fn bang(name: &'static str, expand: fn(crate::TokenStream) -> crate::TokenStream) -> Self {
ProcMacro::Bang { name, client: Client::expand1(expand) }
}
}

View file

@ -0,0 +1,27 @@
//! lib-proc-macro Closure type (equivalent to `&mut dyn FnMut(A) -> R`) that's `repr(C)`.
//!
//! Copy from https://github.com/rust-lang/rust/blob/6050e523bae6de61de4e060facc43dc512adaccd/src/libproc_macro/bridge/closure.rs#
//! augmented with removing unstable features
#[repr(C)]
pub struct Closure<'a, A, R> {
call: unsafe extern "C" fn(&mut Env, A) -> R,
env: &'a mut Env,
}
struct Env;
impl<'a, A, R, F: FnMut(A) -> R> From<&'a mut F> for Closure<'a, A, R> {
fn from(f: &'a mut F) -> Self {
unsafe extern "C" fn call<A, R, F: FnMut(A) -> R>(env: &mut Env, arg: A) -> R {
(*(env as *mut _ as *mut F))(arg)
}
Closure { call: call::<A, R, F>, env: unsafe { &mut *(f as *mut _ as *mut Env) } }
}
}
impl<'a, A, R> Closure<'a, A, R> {
pub fn call(&mut self, arg: A) -> R {
unsafe { (self.call)(self.env, arg) }
}
}

View file

@ -0,0 +1,73 @@
//! lib-proc-macro Server-side handles and storage for per-handle data.
//!
//! Copy from https://github.com/rust-lang/rust/blob/6050e523bae6de61de4e060facc43dc512adaccd/src/libproc_macro/bridge/handle.rs
//! augmented with removing unstable features
use std::collections::{BTreeMap, HashMap};
use std::hash::Hash;
use std::num::NonZeroU32;
use std::ops::{Index, IndexMut};
use std::sync::atomic::{AtomicUsize, Ordering};
pub(super) type Handle = NonZeroU32;
pub(super) struct OwnedStore<T: 'static> {
counter: &'static AtomicUsize,
data: BTreeMap<Handle, T>,
}
impl<T> OwnedStore<T> {
pub(super) fn new(counter: &'static AtomicUsize) -> Self {
// Ensure the handle counter isn't 0, which would panic later,
// when `NonZeroU32::new` (aka `Handle::new`) is called in `alloc`.
assert_ne!(counter.load(Ordering::SeqCst), 0);
OwnedStore { counter, data: BTreeMap::new() }
}
}
impl<T> OwnedStore<T> {
pub(super) fn alloc(&mut self, x: T) -> Handle {
let counter = self.counter.fetch_add(1, Ordering::SeqCst);
let handle = Handle::new(counter as u32).expect("`proc_macro` handle counter overflowed");
assert!(self.data.insert(handle, x).is_none());
handle
}
pub(super) fn take(&mut self, h: Handle) -> T {
self.data.remove(&h).expect("use-after-free in `proc_macro` handle")
}
}
impl<T> Index<Handle> for OwnedStore<T> {
type Output = T;
fn index(&self, h: Handle) -> &T {
self.data.get(&h).expect("use-after-free in `proc_macro` handle")
}
}
impl<T> IndexMut<Handle> for OwnedStore<T> {
fn index_mut(&mut self, h: Handle) -> &mut T {
self.data.get_mut(&h).expect("use-after-free in `proc_macro` handle")
}
}
pub(super) struct InternedStore<T: 'static> {
owned: OwnedStore<T>,
interner: HashMap<T, Handle>,
}
impl<T: Copy + Eq + Hash> InternedStore<T> {
pub(super) fn new(counter: &'static AtomicUsize) -> Self {
InternedStore { owned: OwnedStore::new(counter), interner: HashMap::new() }
}
pub(super) fn alloc(&mut self, x: T) -> Handle {
let owned = &mut self.owned;
*self.interner.entry(x).or_insert_with(|| owned.alloc(x))
}
pub(super) fn copy(&mut self, h: Handle) -> T {
self.owned[h]
}
}

View file

@ -0,0 +1,404 @@
//! lib-proc-macro Internal interface for communicating between a `proc_macro` client
//!
//! Copy from https://github.com/rust-lang/rust/blob/6050e523bae6de61de4e060facc43dc512adaccd/src/libproc_macro/bridge/mod.rs
//! augmented with removing unstable features
//!
//! Internal interface for communicating between a `proc_macro` client
//! (a proc macro crate) and a `proc_macro` server (a compiler front-end).
//!
//! Serialization (with C ABI buffers) and unique integer handles are employed
//! to allow safely interfacing between two copies of `proc_macro` built
//! (from the same source) by different compilers with potentially mismatching
//! Rust ABIs (e.g., stage0/bin/rustc vs stage1/bin/rustc during bootstrap).
#![deny(unsafe_code)]
pub use crate::proc_macro::{Delimiter, Level, LineColumn, Spacing};
use std::fmt;
use std::hash::Hash;
use std::marker;
use std::mem;
use std::ops::Bound;
use std::panic;
use std::sync::atomic::AtomicUsize;
use std::sync::Once;
use std::thread;
/// Higher-order macro describing the server RPC API, allowing automatic
/// generation of type-safe Rust APIs, both client-side and server-side.
///
/// `with_api!(MySelf, my_self, my_macro)` expands to:
/// ```rust,ignore (pseudo-code)
/// my_macro! {
/// // ...
/// Literal {
/// // ...
/// fn character(ch: char) -> MySelf::Literal;
/// // ...
/// fn span(my_self: &MySelf::Literal) -> MySelf::Span;
/// fn set_span(my_self: &mut MySelf::Literal, span: MySelf::Span);
/// },
/// // ...
/// }
/// ```
///
/// The first two arguments serve to customize the arguments names
/// and argument/return types, to enable several different usecases:
///
/// If `my_self` is just `self`, then each `fn` signature can be used
/// as-is for a method. If it's anything else (`self_` in practice),
/// then the signatures don't have a special `self` argument, and
/// can, therefore, have a different one introduced.
///
/// If `MySelf` is just `Self`, then the types are only valid inside
/// a trait or a trait impl, where the trait has associated types
/// for each of the API types. If non-associated types are desired,
/// a module name (`self` in practice) can be used instead of `Self`.
macro_rules! with_api {
($S:ident, $self:ident, $m:ident) => {
$m! {
TokenStream {
fn drop($self: $S::TokenStream);
fn clone($self: &$S::TokenStream) -> $S::TokenStream;
fn new() -> $S::TokenStream;
fn is_empty($self: &$S::TokenStream) -> bool;
fn from_str(src: &str) -> $S::TokenStream;
fn to_string($self: &$S::TokenStream) -> String;
fn from_token_tree(
tree: TokenTree<$S::Group, $S::Punct, $S::Ident, $S::Literal>,
) -> $S::TokenStream;
fn into_iter($self: $S::TokenStream) -> $S::TokenStreamIter;
},
TokenStreamBuilder {
fn drop($self: $S::TokenStreamBuilder);
fn new() -> $S::TokenStreamBuilder;
fn push($self: &mut $S::TokenStreamBuilder, stream: $S::TokenStream);
fn build($self: $S::TokenStreamBuilder) -> $S::TokenStream;
},
TokenStreamIter {
fn drop($self: $S::TokenStreamIter);
fn clone($self: &$S::TokenStreamIter) -> $S::TokenStreamIter;
fn next(
$self: &mut $S::TokenStreamIter,
) -> Option<TokenTree<$S::Group, $S::Punct, $S::Ident, $S::Literal>>;
},
Group {
fn drop($self: $S::Group);
fn clone($self: &$S::Group) -> $S::Group;
fn new(delimiter: Delimiter, stream: $S::TokenStream) -> $S::Group;
fn delimiter($self: &$S::Group) -> Delimiter;
fn stream($self: &$S::Group) -> $S::TokenStream;
fn span($self: &$S::Group) -> $S::Span;
fn span_open($self: &$S::Group) -> $S::Span;
fn span_close($self: &$S::Group) -> $S::Span;
fn set_span($self: &mut $S::Group, span: $S::Span);
},
Punct {
fn new(ch: char, spacing: Spacing) -> $S::Punct;
fn as_char($self: $S::Punct) -> char;
fn spacing($self: $S::Punct) -> Spacing;
fn span($self: $S::Punct) -> $S::Span;
fn with_span($self: $S::Punct, span: $S::Span) -> $S::Punct;
},
Ident {
fn new(string: &str, span: $S::Span, is_raw: bool) -> $S::Ident;
fn span($self: $S::Ident) -> $S::Span;
fn with_span($self: $S::Ident, span: $S::Span) -> $S::Ident;
},
Literal {
fn drop($self: $S::Literal);
fn clone($self: &$S::Literal) -> $S::Literal;
// FIXME(eddyb) `Literal` should not expose internal `Debug` impls.
fn debug($self: &$S::Literal) -> String;
fn integer(n: &str) -> $S::Literal;
fn typed_integer(n: &str, kind: &str) -> $S::Literal;
fn float(n: &str) -> $S::Literal;
fn f32(n: &str) -> $S::Literal;
fn f64(n: &str) -> $S::Literal;
fn string(string: &str) -> $S::Literal;
fn character(ch: char) -> $S::Literal;
fn byte_string(bytes: &[u8]) -> $S::Literal;
fn span($self: &$S::Literal) -> $S::Span;
fn set_span($self: &mut $S::Literal, span: $S::Span);
fn subspan(
$self: &$S::Literal,
start: Bound<usize>,
end: Bound<usize>,
) -> Option<$S::Span>;
},
SourceFile {
fn drop($self: $S::SourceFile);
fn clone($self: &$S::SourceFile) -> $S::SourceFile;
fn eq($self: &$S::SourceFile, other: &$S::SourceFile) -> bool;
fn path($self: &$S::SourceFile) -> String;
fn is_real($self: &$S::SourceFile) -> bool;
},
MultiSpan {
fn drop($self: $S::MultiSpan);
fn new() -> $S::MultiSpan;
fn push($self: &mut $S::MultiSpan, span: $S::Span);
},
Diagnostic {
fn drop($self: $S::Diagnostic);
fn new(level: Level, msg: &str, span: $S::MultiSpan) -> $S::Diagnostic;
fn sub(
$self: &mut $S::Diagnostic,
level: Level,
msg: &str,
span: $S::MultiSpan,
);
fn emit($self: $S::Diagnostic);
},
Span {
fn debug($self: $S::Span) -> String;
fn def_site() -> $S::Span;
fn call_site() -> $S::Span;
fn mixed_site() -> $S::Span;
fn source_file($self: $S::Span) -> $S::SourceFile;
fn parent($self: $S::Span) -> Option<$S::Span>;
fn source($self: $S::Span) -> $S::Span;
fn start($self: $S::Span) -> LineColumn;
fn end($self: $S::Span) -> LineColumn;
fn join($self: $S::Span, other: $S::Span) -> Option<$S::Span>;
fn resolved_at($self: $S::Span, at: $S::Span) -> $S::Span;
fn source_text($self: $S::Span) -> Option<String>;
},
}
};
}
// FIXME(eddyb) this calls `encode` for each argument, but in reverse,
// to avoid borrow conflicts from borrows started by `&mut` arguments.
macro_rules! reverse_encode {
($writer:ident;) => {};
($writer:ident; $first:ident $(, $rest:ident)*) => {
reverse_encode!($writer; $($rest),*);
$first.encode(&mut $writer, &mut ());
}
}
// FIXME(eddyb) this calls `decode` for each argument, but in reverse,
// to avoid borrow conflicts from borrows started by `&mut` arguments.
macro_rules! reverse_decode {
($reader:ident, $s:ident;) => {};
($reader:ident, $s:ident; $first:ident: $first_ty:ty $(, $rest:ident: $rest_ty:ty)*) => {
reverse_decode!($reader, $s; $($rest: $rest_ty),*);
let $first = <$first_ty>::decode(&mut $reader, $s);
}
}
#[allow(unsafe_code)]
mod buffer;
#[forbid(unsafe_code)]
pub mod client;
#[allow(unsafe_code)]
mod closure;
#[forbid(unsafe_code)]
mod handle;
#[macro_use]
#[forbid(unsafe_code)]
mod rpc;
#[allow(unsafe_code)]
mod scoped_cell;
#[forbid(unsafe_code)]
pub mod server;
use buffer::Buffer;
pub use rpc::PanicMessage;
use rpc::{Decode, DecodeMut, Encode, Reader, Writer};
/// An active connection between a server and a client.
/// The server creates the bridge (`Bridge::run_server` in `server.rs`),
/// then passes it to the client through the function pointer in the `run`
/// field of `client::Client`. The client holds its copy of the `Bridge`
/// in TLS during its execution (`Bridge::{enter, with}` in `client.rs`).
#[repr(C)]
pub struct Bridge<'a> {
/// Reusable buffer (only `clear`-ed, never shrunk), primarily
/// used for making requests, but also for passing input to client.
cached_buffer: Buffer<u8>,
/// Server-side function that the client uses to make requests.
dispatch: closure::Closure<'a, Buffer<u8>, Buffer<u8>>,
}
#[forbid(unsafe_code)]
#[allow(non_camel_case_types)]
mod api_tags {
use super::rpc::{DecodeMut, Encode, Reader, Writer};
macro_rules! declare_tags {
($($name:ident {
$(fn $method:ident($($arg:ident: $arg_ty:ty),* $(,)?) $(-> $ret_ty:ty)*;)*
}),* $(,)?) => {
$(
pub(super) enum $name {
$($method),*
}
rpc_encode_decode!(enum $name { $($method),* });
)*
pub(super) enum Method {
$($name($name)),*
}
rpc_encode_decode!(enum Method { $($name(m)),* });
}
}
with_api!(self, self, declare_tags);
}
/// Helper to wrap associated types to allow trait impl dispatch.
/// That is, normally a pair of impls for `T::Foo` and `T::Bar`
/// can overlap, but if the impls are, instead, on types like
/// `Marked<T::Foo, Foo>` and `Marked<T::Bar, Bar>`, they can't.
trait Mark {
type Unmarked;
fn mark(unmarked: Self::Unmarked) -> Self;
}
/// Unwrap types wrapped by `Mark::mark` (see `Mark` for details).
trait Unmark {
type Unmarked;
fn unmark(self) -> Self::Unmarked;
}
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
struct Marked<T, M> {
value: T,
_marker: marker::PhantomData<M>,
}
impl<T, M> Mark for Marked<T, M> {
type Unmarked = T;
fn mark(unmarked: Self::Unmarked) -> Self {
Marked { value: unmarked, _marker: marker::PhantomData }
}
}
impl<T, M> Unmark for Marked<T, M> {
type Unmarked = T;
fn unmark(self) -> Self::Unmarked {
self.value
}
}
impl<'a, T, M> Unmark for &'a Marked<T, M> {
type Unmarked = &'a T;
fn unmark(self) -> Self::Unmarked {
&self.value
}
}
impl<'a, T, M> Unmark for &'a mut Marked<T, M> {
type Unmarked = &'a mut T;
fn unmark(self) -> Self::Unmarked {
&mut self.value
}
}
impl<T: Mark> Mark for Option<T> {
type Unmarked = Option<T::Unmarked>;
fn mark(unmarked: Self::Unmarked) -> Self {
unmarked.map(T::mark)
}
}
impl<T: Unmark> Unmark for Option<T> {
type Unmarked = Option<T::Unmarked>;
fn unmark(self) -> Self::Unmarked {
self.map(T::unmark)
}
}
macro_rules! mark_noop {
($($ty:ty),* $(,)?) => {
$(
impl Mark for $ty {
type Unmarked = Self;
fn mark(unmarked: Self::Unmarked) -> Self {
unmarked
}
}
impl Unmark for $ty {
type Unmarked = Self;
fn unmark(self) -> Self::Unmarked {
self
}
}
)*
}
}
mark_noop! {
(),
bool,
char,
&'_ [u8],
&'_ str,
String,
Delimiter,
Level,
LineColumn,
Spacing,
Bound<usize>,
}
rpc_encode_decode!(
enum Delimiter {
Parenthesis,
Brace,
Bracket,
None,
}
);
rpc_encode_decode!(
enum Level {
Error,
Warning,
Note,
Help,
}
);
rpc_encode_decode!(struct LineColumn { line, column });
rpc_encode_decode!(
enum Spacing {
Alone,
Joint,
}
);
#[derive(Clone)]
pub enum TokenTree<G, P, I, L> {
Group(G),
Punct(P),
Ident(I),
Literal(L),
}
impl<G: Mark, P: Mark, I: Mark, L: Mark> Mark for TokenTree<G, P, I, L> {
type Unmarked = TokenTree<G::Unmarked, P::Unmarked, I::Unmarked, L::Unmarked>;
fn mark(unmarked: Self::Unmarked) -> Self {
match unmarked {
TokenTree::Group(tt) => TokenTree::Group(G::mark(tt)),
TokenTree::Punct(tt) => TokenTree::Punct(P::mark(tt)),
TokenTree::Ident(tt) => TokenTree::Ident(I::mark(tt)),
TokenTree::Literal(tt) => TokenTree::Literal(L::mark(tt)),
}
}
}
impl<G: Unmark, P: Unmark, I: Unmark, L: Unmark> Unmark for TokenTree<G, P, I, L> {
type Unmarked = TokenTree<G::Unmarked, P::Unmarked, I::Unmarked, L::Unmarked>;
fn unmark(self) -> Self::Unmarked {
match self {
TokenTree::Group(tt) => TokenTree::Group(tt.unmark()),
TokenTree::Punct(tt) => TokenTree::Punct(tt.unmark()),
TokenTree::Ident(tt) => TokenTree::Ident(tt.unmark()),
TokenTree::Literal(tt) => TokenTree::Literal(tt.unmark()),
}
}
}
rpc_encode_decode!(
enum TokenTree<G, P, I, L> {
Group(tt),
Punct(tt),
Ident(tt),
Literal(tt),
}
);

View file

@ -0,0 +1,311 @@
//! lib-proc-macro Serialization for client-server communication.
//!
//! Copy from https://github.com/rust-lang/rust/blob/6050e523bae6de61de4e060facc43dc512adaccd/src/libproc_macro/bridge/rpc.rs
//! augmented with removing unstable features
//!
//! Serialization for client-server communication.
use std::any::Any;
use std::char;
use std::io::Write;
use std::num::NonZeroU32;
use std::ops::Bound;
use std::str;
pub(super) type Writer = super::buffer::Buffer<u8>;
pub(super) trait Encode<S>: Sized {
fn encode(self, w: &mut Writer, s: &mut S);
}
pub(super) type Reader<'a> = &'a [u8];
pub(super) trait Decode<'a, 's, S>: Sized {
fn decode(r: &mut Reader<'a>, s: &'s S) -> Self;
}
pub(super) trait DecodeMut<'a, 's, S>: Sized {
fn decode(r: &mut Reader<'a>, s: &'s mut S) -> Self;
}
macro_rules! rpc_encode_decode {
(le $ty:ty) => {
impl<S> Encode<S> for $ty {
fn encode(self, w: &mut Writer, _: &mut S) {
w.write_all(&self.to_le_bytes()).unwrap();
}
}
impl<S> DecodeMut<'_, '_, S> for $ty {
fn decode(r: &mut Reader<'_>, _: &mut S) -> Self {
const N: usize = ::std::mem::size_of::<$ty>();
let mut bytes = [0; N];
bytes.copy_from_slice(&r[..N]);
*r = &r[N..];
Self::from_le_bytes(bytes)
}
}
};
(struct $name:ident { $($field:ident),* $(,)? }) => {
impl<S> Encode<S> for $name {
fn encode(self, w: &mut Writer, s: &mut S) {
$(self.$field.encode(w, s);)*
}
}
impl<S> DecodeMut<'_, '_, S> for $name {
fn decode(r: &mut Reader<'_>, s: &mut S) -> Self {
$name {
$($field: DecodeMut::decode(r, s)),*
}
}
}
};
(enum $name:ident $(<$($T:ident),+>)? { $($variant:ident $(($field:ident))*),* $(,)? }) => {
impl<S, $($($T: Encode<S>),+)?> Encode<S> for $name $(<$($T),+>)? {
fn encode(self, w: &mut Writer, s: &mut S) {
// HACK(eddyb): `Tag` enum duplicated between the
// two impls as there's no other place to stash it.
#[allow(non_upper_case_globals)]
mod tag {
#[repr(u8)] enum Tag { $($variant),* }
$(pub const $variant: u8 = Tag::$variant as u8;)*
}
match self {
$($name::$variant $(($field))* => {
tag::$variant.encode(w, s);
$($field.encode(w, s);)*
})*
}
}
}
impl<'a, S, $($($T: for<'s> DecodeMut<'a, 's, S>),+)?> DecodeMut<'a, '_, S>
for $name $(<$($T),+>)?
{
fn decode(r: &mut Reader<'a>, s: &mut S) -> Self {
// HACK(eddyb): `Tag` enum duplicated between the
// two impls as there's no other place to stash it.
#[allow(non_upper_case_globals)]
mod tag {
#[repr(u8)] enum Tag { $($variant),* }
$(pub const $variant: u8 = Tag::$variant as u8;)*
}
match u8::decode(r, s) {
$(tag::$variant => {
$(let $field = DecodeMut::decode(r, s);)*
$name::$variant $(($field))*
})*
_ => unreachable!(),
}
}
}
}
}
impl<S> Encode<S> for () {
fn encode(self, _: &mut Writer, _: &mut S) {}
}
impl<S> DecodeMut<'_, '_, S> for () {
fn decode(_: &mut Reader<'_>, _: &mut S) -> Self {}
}
impl<S> Encode<S> for u8 {
fn encode(self, w: &mut Writer, _: &mut S) {
w.write_all(&[self]).unwrap();
}
}
impl<S> DecodeMut<'_, '_, S> for u8 {
fn decode(r: &mut Reader<'_>, _: &mut S) -> Self {
let x = r[0];
*r = &r[1..];
x
}
}
rpc_encode_decode!(le u32);
rpc_encode_decode!(le usize);
impl<S> Encode<S> for bool {
fn encode(self, w: &mut Writer, s: &mut S) {
(self as u8).encode(w, s);
}
}
impl<S> DecodeMut<'_, '_, S> for bool {
fn decode(r: &mut Reader<'_>, s: &mut S) -> Self {
match u8::decode(r, s) {
0 => false,
1 => true,
_ => unreachable!(),
}
}
}
impl<S> Encode<S> for char {
fn encode(self, w: &mut Writer, s: &mut S) {
(self as u32).encode(w, s);
}
}
impl<S> DecodeMut<'_, '_, S> for char {
fn decode(r: &mut Reader<'_>, s: &mut S) -> Self {
char::from_u32(u32::decode(r, s)).unwrap()
}
}
impl<S> Encode<S> for NonZeroU32 {
fn encode(self, w: &mut Writer, s: &mut S) {
self.get().encode(w, s);
}
}
impl<S> DecodeMut<'_, '_, S> for NonZeroU32 {
fn decode(r: &mut Reader<'_>, s: &mut S) -> Self {
Self::new(u32::decode(r, s)).unwrap()
}
}
impl<S, A: Encode<S>, B: Encode<S>> Encode<S> for (A, B) {
fn encode(self, w: &mut Writer, s: &mut S) {
self.0.encode(w, s);
self.1.encode(w, s);
}
}
impl<'a, S, A: for<'s> DecodeMut<'a, 's, S>, B: for<'s> DecodeMut<'a, 's, S>> DecodeMut<'a, '_, S>
for (A, B)
{
fn decode(r: &mut Reader<'a>, s: &mut S) -> Self {
(DecodeMut::decode(r, s), DecodeMut::decode(r, s))
}
}
rpc_encode_decode!(
enum Bound<T> {
Included(x),
Excluded(x),
Unbounded,
}
);
rpc_encode_decode!(
enum Option<T> {
None,
Some(x),
}
);
rpc_encode_decode!(
enum Result<T, E> {
Ok(x),
Err(e),
}
);
impl<S> Encode<S> for &[u8] {
fn encode(self, w: &mut Writer, s: &mut S) {
self.len().encode(w, s);
w.write_all(self).unwrap();
}
}
impl<'a, S> DecodeMut<'a, '_, S> for &'a [u8] {
fn decode(r: &mut Reader<'a>, s: &mut S) -> Self {
let len = usize::decode(r, s);
let xs = &r[..len];
*r = &r[len..];
xs
}
}
impl<S> Encode<S> for &str {
fn encode(self, w: &mut Writer, s: &mut S) {
self.as_bytes().encode(w, s);
}
}
impl<'a, S> DecodeMut<'a, '_, S> for &'a str {
fn decode(r: &mut Reader<'a>, s: &mut S) -> Self {
str::from_utf8(<&[u8]>::decode(r, s)).unwrap()
}
}
impl<S> Encode<S> for String {
fn encode(self, w: &mut Writer, s: &mut S) {
self[..].encode(w, s);
}
}
impl<S> DecodeMut<'_, '_, S> for String {
fn decode(r: &mut Reader<'_>, s: &mut S) -> Self {
<&str>::decode(r, s).to_string()
}
}
/// Simplied version of panic payloads, ignoring
/// types other than `&'static str` and `String`.
#[derive(Debug)]
pub enum PanicMessage {
StaticStr(&'static str),
String(String),
Unknown,
}
impl From<Box<dyn Any + Send>> for PanicMessage {
fn from(payload: Box<dyn Any + Send + 'static>) -> Self {
if let Some(s) = payload.downcast_ref::<&'static str>() {
return PanicMessage::StaticStr(s);
}
if let Ok(s) = payload.downcast::<String>() {
return PanicMessage::String(*s);
}
PanicMessage::Unknown
}
}
impl Into<Box<dyn Any + Send>> for PanicMessage {
fn into(self) -> Box<dyn Any + Send> {
match self {
PanicMessage::StaticStr(s) => Box::new(s),
PanicMessage::String(s) => Box::new(s),
PanicMessage::Unknown => {
struct UnknownPanicMessage;
Box::new(UnknownPanicMessage)
}
}
}
}
impl PanicMessage {
pub fn as_str(&self) -> Option<&str> {
match self {
PanicMessage::StaticStr(s) => Some(s),
PanicMessage::String(s) => Some(s),
PanicMessage::Unknown => None,
}
}
}
impl<S> Encode<S> for PanicMessage {
fn encode(self, w: &mut Writer, s: &mut S) {
self.as_str().encode(w, s);
}
}
impl<S> DecodeMut<'_, '_, S> for PanicMessage {
fn decode(r: &mut Reader<'_>, s: &mut S) -> Self {
match Option::<String>::decode(r, s) {
Some(s) => PanicMessage::String(s),
None => PanicMessage::Unknown,
}
}
}

View file

@ -0,0 +1,84 @@
//! lib-proc-macro `Cell` variant for (scoped) existential lifetimes.
//!
//! Copy from https://github.com/rust-lang/rust/blob/6050e523bae6de61de4e060facc43dc512adaccd/src/libproc_macro/bridge/scoped_cell.rs#L1
//! augmented with removing unstable features
use std::cell::Cell;
use std::mem;
use std::ops::{Deref, DerefMut};
/// Type lambda application, with a lifetime.
#[allow(unused_lifetimes)]
pub trait ApplyL<'a> {
type Out;
}
/// Type lambda taking a lifetime, i.e., `Lifetime -> Type`.
pub trait LambdaL: for<'a> ApplyL<'a> {}
impl<T: for<'a> ApplyL<'a>> LambdaL for T {}
// HACK(eddyb) work around projection limitations with a newtype
// FIXME(#52812) replace with `&'a mut <T as ApplyL<'b>>::Out`
pub struct RefMutL<'a, 'b, T: LambdaL>(&'a mut <T as ApplyL<'b>>::Out);
impl<'a, 'b, T: LambdaL> Deref for RefMutL<'a, 'b, T> {
type Target = <T as ApplyL<'b>>::Out;
fn deref(&self) -> &Self::Target {
self.0
}
}
impl<'a, 'b, T: LambdaL> DerefMut for RefMutL<'a, 'b, T> {
fn deref_mut(&mut self) -> &mut Self::Target {
self.0
}
}
pub struct ScopedCell<T: LambdaL>(Cell<<T as ApplyL<'static>>::Out>);
impl<T: LambdaL> ScopedCell<T> {
pub fn new(value: <T as ApplyL<'static>>::Out) -> Self {
ScopedCell(Cell::new(value))
}
/// Sets the value in `self` to `replacement` while
/// running `f`, which gets the old value, mutably.
/// The old value will be restored after `f` exits, even
/// by panic, including modifications made to it by `f`.
pub fn replace<'a, R>(
&self,
replacement: <T as ApplyL<'a>>::Out,
f: impl for<'b, 'c> FnOnce(RefMutL<'b, 'c, T>) -> R,
) -> R {
/// Wrapper that ensures that the cell always gets filled
/// (with the original state, optionally changed by `f`),
/// even if `f` had panicked.
struct PutBackOnDrop<'a, T: LambdaL> {
cell: &'a ScopedCell<T>,
value: Option<<T as ApplyL<'static>>::Out>,
}
impl<'a, T: LambdaL> Drop for PutBackOnDrop<'a, T> {
fn drop(&mut self) {
self.cell.0.set(self.value.take().unwrap());
}
}
let mut put_back_on_drop = PutBackOnDrop {
cell: self,
value: Some(self.0.replace(unsafe {
let erased = mem::transmute_copy(&replacement);
mem::forget(replacement);
erased
})),
};
f(RefMutL(put_back_on_drop.value.as_mut().unwrap()))
}
/// Sets the value in `self` to `value` while running `f`.
pub fn set<R>(&self, value: <T as ApplyL<'_>>::Out, f: impl FnOnce() -> R) -> R {
self.replace(value, |_| f())
}
}

View file

@ -0,0 +1,323 @@
//! lib-proc-macro server-side traits
//!
//! Copy from https://github.com/rust-lang/rust/blob/6050e523bae6de61de4e060facc43dc512adaccd/src/libproc_macro/bridge/server.rs
//! augmented with removing unstable features
use super::*;
// FIXME(eddyb) generate the definition of `HandleStore` in `server.rs`.
use super::client::HandleStore;
/// Declare an associated item of one of the traits below, optionally
/// adjusting it (i.e., adding bounds to types and default bodies to methods).
macro_rules! associated_item {
(type TokenStream) =>
(type TokenStream: 'static + Clone;);
(type TokenStreamBuilder) =>
(type TokenStreamBuilder: 'static;);
(type TokenStreamIter) =>
(type TokenStreamIter: 'static + Clone;);
(type Group) =>
(type Group: 'static + Clone;);
(type Punct) =>
(type Punct: 'static + Copy + Eq + Hash;);
(type Ident) =>
(type Ident: 'static + Copy + Eq + Hash;);
(type Literal) =>
(type Literal: 'static + Clone;);
(type SourceFile) =>
(type SourceFile: 'static + Clone;);
(type MultiSpan) =>
(type MultiSpan: 'static;);
(type Diagnostic) =>
(type Diagnostic: 'static;);
(type Span) =>
(type Span: 'static + Copy + Eq + Hash;);
(fn drop(&mut self, $arg:ident: $arg_ty:ty)) =>
(fn drop(&mut self, $arg: $arg_ty) { mem::drop($arg) });
(fn clone(&mut self, $arg:ident: $arg_ty:ty) -> $ret_ty:ty) =>
(fn clone(&mut self, $arg: $arg_ty) -> $ret_ty { $arg.clone() });
($($item:tt)*) => ($($item)*;)
}
macro_rules! declare_server_traits {
($($name:ident {
$(fn $method:ident($($arg:ident: $arg_ty:ty),* $(,)?) $(-> $ret_ty:ty)?;)*
}),* $(,)?) => {
pub trait Types {
$(associated_item!(type $name);)*
}
$(pub trait $name: Types {
$(associated_item!(fn $method(&mut self, $($arg: $arg_ty),*) $(-> $ret_ty)?);)*
})*
pub trait Server: Types $(+ $name)* {}
impl<S: Types $(+ $name)*> Server for S {}
}
}
with_api!(Self, self_, declare_server_traits);
pub(super) struct MarkedTypes<S: Types>(S);
macro_rules! define_mark_types_impls {
($($name:ident {
$(fn $method:ident($($arg:ident: $arg_ty:ty),* $(,)?) $(-> $ret_ty:ty)?;)*
}),* $(,)?) => {
impl<S: Types> Types for MarkedTypes<S> {
$(type $name = Marked<S::$name, client::$name>;)*
}
$(impl<S: $name> $name for MarkedTypes<S> {
$(fn $method(&mut self, $($arg: $arg_ty),*) $(-> $ret_ty)? {
<_>::mark($name::$method(&mut self.0, $($arg.unmark()),*))
})*
})*
}
}
with_api!(Self, self_, define_mark_types_impls);
struct Dispatcher<S: Types> {
handle_store: HandleStore<S>,
server: S,
}
macro_rules! define_dispatcher_impl {
($($name:ident {
$(fn $method:ident($($arg:ident: $arg_ty:ty),* $(,)?) $(-> $ret_ty:ty)?;)*
}),* $(,)?) => {
// FIXME(eddyb) `pub` only for `ExecutionStrategy` below.
pub trait DispatcherTrait {
// HACK(eddyb) these are here to allow `Self::$name` to work below.
$(type $name;)*
fn dispatch(&mut self, b: Buffer<u8>) -> Buffer<u8>;
}
impl<S: Server> DispatcherTrait for Dispatcher<MarkedTypes<S>> {
$(type $name = <MarkedTypes<S> as Types>::$name;)*
fn dispatch(&mut self, mut b: Buffer<u8>) -> Buffer<u8> {
let Dispatcher { handle_store, server } = self;
let mut reader = &b[..];
match api_tags::Method::decode(&mut reader, &mut ()) {
$(api_tags::Method::$name(m) => match m {
$(api_tags::$name::$method => {
let mut call_method = || {
reverse_decode!(reader, handle_store; $($arg: $arg_ty),*);
$name::$method(server, $($arg),*)
};
// HACK(eddyb) don't use `panic::catch_unwind` in a panic.
// If client and server happen to use the same `libstd`,
// `catch_unwind` asserts that the panic counter was 0,
// even when the closure passed to it didn't panic.
let r = if thread::panicking() {
Ok(call_method())
} else {
panic::catch_unwind(panic::AssertUnwindSafe(call_method))
.map_err(PanicMessage::from)
};
b.clear();
r.encode(&mut b, handle_store);
})*
}),*
}
b
}
}
}
}
with_api!(Self, self_, define_dispatcher_impl);
pub trait ExecutionStrategy {
fn run_bridge_and_client<D: Copy + Send + 'static>(
&self,
dispatcher: &mut impl DispatcherTrait,
input: Buffer<u8>,
run_client: extern "C" fn(Bridge<'_>, D) -> Buffer<u8>,
client_data: D,
) -> Buffer<u8>;
}
pub struct SameThread;
impl ExecutionStrategy for SameThread {
fn run_bridge_and_client<D: Copy + Send + 'static>(
&self,
dispatcher: &mut impl DispatcherTrait,
input: Buffer<u8>,
run_client: extern "C" fn(Bridge<'_>, D) -> Buffer<u8>,
client_data: D,
) -> Buffer<u8> {
let mut dispatch = |b| dispatcher.dispatch(b);
run_client(Bridge { cached_buffer: input, dispatch: (&mut dispatch).into() }, client_data)
}
}
// NOTE(eddyb) Two implementations are provided, the second one is a bit
// faster but neither is anywhere near as fast as same-thread execution.
pub struct CrossThread1;
impl ExecutionStrategy for CrossThread1 {
fn run_bridge_and_client<D: Copy + Send + 'static>(
&self,
dispatcher: &mut impl DispatcherTrait,
input: Buffer<u8>,
run_client: extern "C" fn(Bridge<'_>, D) -> Buffer<u8>,
client_data: D,
) -> Buffer<u8> {
use std::sync::mpsc::channel;
let (req_tx, req_rx) = channel();
let (res_tx, res_rx) = channel();
let join_handle = thread::spawn(move || {
let mut dispatch = |b| {
req_tx.send(b).unwrap();
res_rx.recv().unwrap()
};
run_client(
Bridge { cached_buffer: input, dispatch: (&mut dispatch).into() },
client_data,
)
});
for b in req_rx {
res_tx.send(dispatcher.dispatch(b)).unwrap();
}
join_handle.join().unwrap()
}
}
pub struct CrossThread2;
impl ExecutionStrategy for CrossThread2 {
fn run_bridge_and_client<D: Copy + Send + 'static>(
&self,
dispatcher: &mut impl DispatcherTrait,
input: Buffer<u8>,
run_client: extern "C" fn(Bridge<'_>, D) -> Buffer<u8>,
client_data: D,
) -> Buffer<u8> {
use std::sync::{Arc, Mutex};
enum State<T> {
Req(T),
Res(T),
}
let mut state = Arc::new(Mutex::new(State::Res(Buffer::new())));
let server_thread = thread::current();
let state2 = state.clone();
let join_handle = thread::spawn(move || {
let mut dispatch = |b| {
*state2.lock().unwrap() = State::Req(b);
server_thread.unpark();
loop {
thread::park();
if let State::Res(b) = &mut *state2.lock().unwrap() {
break b.take();
}
}
};
let r = run_client(
Bridge { cached_buffer: input, dispatch: (&mut dispatch).into() },
client_data,
);
// Wake up the server so it can exit the dispatch loop.
drop(state2);
server_thread.unpark();
r
});
// Check whether `state2` was dropped, to know when to stop.
while Arc::get_mut(&mut state).is_none() {
thread::park();
let mut b = match &mut *state.lock().unwrap() {
State::Req(b) => b.take(),
_ => continue,
};
b = dispatcher.dispatch(b.take());
*state.lock().unwrap() = State::Res(b);
join_handle.thread().unpark();
}
join_handle.join().unwrap()
}
}
fn run_server<
S: Server,
I: Encode<HandleStore<MarkedTypes<S>>>,
O: for<'a, 's> DecodeMut<'a, 's, HandleStore<MarkedTypes<S>>>,
D: Copy + Send + 'static,
>(
strategy: &impl ExecutionStrategy,
handle_counters: &'static client::HandleCounters,
server: S,
input: I,
run_client: extern "C" fn(Bridge<'_>, D) -> Buffer<u8>,
client_data: D,
) -> Result<O, PanicMessage> {
let mut dispatcher =
Dispatcher { handle_store: HandleStore::new(handle_counters), server: MarkedTypes(server) };
let mut b = Buffer::new();
input.encode(&mut b, &mut dispatcher.handle_store);
b = strategy.run_bridge_and_client(&mut dispatcher, b, run_client, client_data);
Result::decode(&mut &b[..], &mut dispatcher.handle_store)
}
impl client::Client<fn(crate::TokenStream) -> crate::TokenStream> {
pub fn run<S: Server>(
&self,
strategy: &impl ExecutionStrategy,
server: S,
input: S::TokenStream,
) -> Result<S::TokenStream, PanicMessage> {
let client::Client { get_handle_counters, run, f } = *self;
run_server(
strategy,
get_handle_counters(),
server,
<MarkedTypes<S> as Types>::TokenStream::mark(input),
run,
f,
)
.map(<MarkedTypes<S> as Types>::TokenStream::unmark)
}
}
impl client::Client<fn(crate::TokenStream, crate::TokenStream) -> crate::TokenStream> {
pub fn run<S: Server>(
&self,
strategy: &impl ExecutionStrategy,
server: S,
input: S::TokenStream,
input2: S::TokenStream,
) -> Result<S::TokenStream, PanicMessage> {
let client::Client { get_handle_counters, run, f } = *self;
run_server(
strategy,
get_handle_counters(),
server,
(
<MarkedTypes<S> as Types>::TokenStream::mark(input),
<MarkedTypes<S> as Types>::TokenStream::mark(input2),
),
run,
f,
)
.map(<MarkedTypes<S> as Types>::TokenStream::unmark)
}
}

View file

@ -0,0 +1,170 @@
//! lib-proc-macro diagnostic
//!
//! Copy from https://github.com/rust-lang/rust/blob/6050e523bae6de61de4e060facc43dc512adaccd/src/libproc_macro/diagnostic.rs
//! augmented with removing unstable features
use crate::proc_macro::Span;
/// An enum representing a diagnostic level.
#[derive(Copy, Clone, Debug)]
#[non_exhaustive]
pub enum Level {
/// An error.
Error,
/// A warning.
Warning,
/// A note.
Note,
/// A help message.
Help,
}
/// Trait implemented by types that can be converted into a set of `Span`s.
pub trait MultiSpan {
/// Converts `self` into a `Vec<Span>`.
fn into_spans(self) -> Vec<Span>;
}
impl MultiSpan for Span {
fn into_spans(self) -> Vec<Span> {
vec![self]
}
}
impl MultiSpan for Vec<Span> {
fn into_spans(self) -> Vec<Span> {
self
}
}
impl<'a> MultiSpan for &'a [Span] {
fn into_spans(self) -> Vec<Span> {
self.to_vec()
}
}
/// A structure representing a diagnostic message and associated children
/// messages.
#[derive(Clone, Debug)]
pub struct Diagnostic {
level: Level,
message: String,
spans: Vec<Span>,
children: Vec<Diagnostic>,
}
macro_rules! diagnostic_child_methods {
($spanned:ident, $regular:ident, $level:expr) => (
/// Adds a new child diagnostic message to `self` with the level
/// identified by this method's name with the given `spans` and
/// `message`.
pub fn $spanned<S, T>(mut self, spans: S, message: T) -> Diagnostic
where S: MultiSpan, T: Into<String>
{
self.children.push(Diagnostic::spanned(spans, $level, message));
self
}
/// Adds a new child diagnostic message to `self` with the level
/// identified by this method's name with the given `message`.
pub fn $regular<T: Into<String>>(mut self, message: T) -> Diagnostic {
self.children.push(Diagnostic::new($level, message));
self
}
)
}
/// Iterator over the children diagnostics of a `Diagnostic`.
#[derive(Debug, Clone)]
pub struct Children<'a>(std::slice::Iter<'a, Diagnostic>);
impl<'a> Iterator for Children<'a> {
type Item = &'a Diagnostic;
fn next(&mut self) -> Option<Self::Item> {
self.0.next()
}
}
impl Diagnostic {
/// Creates a new diagnostic with the given `level` and `message`.
pub fn new<T: Into<String>>(level: Level, message: T) -> Diagnostic {
Diagnostic { level: level, message: message.into(), spans: vec![], children: vec![] }
}
/// Creates a new diagnostic with the given `level` and `message` pointing to
/// the given set of `spans`.
pub fn spanned<S, T>(spans: S, level: Level, message: T) -> Diagnostic
where
S: MultiSpan,
T: Into<String>,
{
Diagnostic {
level: level,
message: message.into(),
spans: spans.into_spans(),
children: vec![],
}
}
diagnostic_child_methods!(span_error, error, Level::Error);
diagnostic_child_methods!(span_warning, warning, Level::Warning);
diagnostic_child_methods!(span_note, note, Level::Note);
diagnostic_child_methods!(span_help, help, Level::Help);
/// Returns the diagnostic `level` for `self`.
pub fn level(&self) -> Level {
self.level
}
/// Sets the level in `self` to `level`.
pub fn set_level(&mut self, level: Level) {
self.level = level;
}
/// Returns the message in `self`.
pub fn message(&self) -> &str {
&self.message
}
/// Sets the message in `self` to `message`.
pub fn set_message<T: Into<String>>(&mut self, message: T) {
self.message = message.into();
}
/// Returns the `Span`s in `self`.
pub fn spans(&self) -> &[Span] {
&self.spans
}
/// Sets the `Span`s in `self` to `spans`.
pub fn set_spans<S: MultiSpan>(&mut self, spans: S) {
self.spans = spans.into_spans();
}
/// Returns an iterator over the children diagnostics of `self`.
pub fn children(&self) -> Children<'_> {
Children(self.children.iter())
}
/// Emit the diagnostic.
pub fn emit(self) {
fn to_internal(spans: Vec<Span>) -> crate::proc_macro::bridge::client::MultiSpan {
let mut multi_span = crate::proc_macro::bridge::client::MultiSpan::new();
for span in spans {
multi_span.push(span.0);
}
multi_span
}
let mut diag = crate::proc_macro::bridge::client::Diagnostic::new(
self.level,
&self.message[..],
to_internal(self.spans),
);
for c in self.children {
diag.sub(c.level, &c.message[..], to_internal(c.spans));
}
diag.emit();
}
}

View file

@ -0,0 +1,926 @@
//! lib-proc-macro main module
//!
//! Copy from https://github.com/rust-lang/rust/blob/6050e523bae6de61de4e060facc43dc512adaccd/src/libproc_macro/lib.rs
//! augmented with removing unstable features
// NOTE(@edwin0cheng):
// Because we just copy the bridge module from rustc for ABI compatible
// There are some unused stuffs inside it.
// We suppress these warning here.
#[doc(hidden)]
#[allow(unused_macros)]
#[allow(unused_variables)]
pub mod bridge;
mod diagnostic;
pub use diagnostic::{Diagnostic, Level, MultiSpan};
use std::ops::{Bound, RangeBounds};
use std::path::PathBuf;
use std::str::FromStr;
use std::{fmt, iter, mem};
/// The main type provided by this crate, representing an abstract stream of
/// tokens, or, more specifically, a sequence of token trees.
/// The type provide interfaces for iterating over those token trees and, conversely,
/// collecting a number of token trees into one stream.
///
/// This is both the input and output of `#[proc_macro]`, `#[proc_macro_attribute]`
/// and `#[proc_macro_derive]` definitions.
#[derive(Clone)]
pub struct TokenStream(bridge::client::TokenStream);
/// Error returned from `TokenStream::from_str`
#[derive(Debug)]
pub struct LexError {
_inner: (),
}
impl TokenStream {
/// Returns an empty `TokenStream` containing no token trees.
pub fn new() -> TokenStream {
TokenStream(bridge::client::TokenStream::new())
}
/// Checks if this `TokenStream` is empty.
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
}
/// Attempts to break the string into tokens and parse those tokens into a token stream.
/// May fail for a number of reasons, for example, if the string contains unbalanced delimiters
/// or characters not existing in the language.
/// All tokens in the parsed stream get `Span::call_site()` spans.
///
/// NOTE: some errors may cause panics instead of returning `LexError`. We reserve the right to
/// change these errors into `LexError`s later.
impl FromStr for TokenStream {
type Err = LexError;
fn from_str(src: &str) -> Result<TokenStream, LexError> {
Ok(TokenStream(bridge::client::TokenStream::from_str(src)))
}
}
// N.B., the bridge only provides `to_string`, implement `fmt::Display`
// based on it (the reverse of the usual relationship between the two).
// impl ToString for TokenStream {
// fn to_string(&self) -> String {
// self.0.to_string()
// }
// }
/// Prints the token stream as a string that is supposed to be losslessly convertible back
/// into the same token stream (modulo spans), except for possibly `TokenTree::Group`s
/// with `Delimiter::None` delimiters and negative numeric literals.
impl fmt::Display for TokenStream {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(&self.to_string())
}
}
/// Prints token in a form convenient for debugging.
impl fmt::Debug for TokenStream {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("TokenStream ")?;
f.debug_list().entries(self.clone()).finish()
}
}
/// Creates a token stream containing a single token tree.
impl From<TokenTree> for TokenStream {
fn from(tree: TokenTree) -> TokenStream {
TokenStream(bridge::client::TokenStream::from_token_tree(match tree {
TokenTree::Group(tt) => bridge::TokenTree::Group(tt.0),
TokenTree::Punct(tt) => bridge::TokenTree::Punct(tt.0),
TokenTree::Ident(tt) => bridge::TokenTree::Ident(tt.0),
TokenTree::Literal(tt) => bridge::TokenTree::Literal(tt.0),
}))
}
}
/// Collects a number of token trees into a single stream.
impl iter::FromIterator<TokenTree> for TokenStream {
fn from_iter<I: IntoIterator<Item = TokenTree>>(trees: I) -> Self {
trees.into_iter().map(TokenStream::from).collect()
}
}
/// A "flattening" operation on token streams, collects token trees
/// from multiple token streams into a single stream.
impl iter::FromIterator<TokenStream> for TokenStream {
fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self {
let mut builder = bridge::client::TokenStreamBuilder::new();
streams.into_iter().for_each(|stream| builder.push(stream.0));
TokenStream(builder.build())
}
}
impl Extend<TokenTree> for TokenStream {
fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, trees: I) {
self.extend(trees.into_iter().map(TokenStream::from));
}
}
impl Extend<TokenStream> for TokenStream {
fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) {
// FIXME(eddyb) Use an optimized implementation if/when possible.
*self = iter::once(mem::replace(self, Self::new())).chain(streams).collect();
}
}
/// Public implementation details for the `TokenStream` type, such as iterators.
pub mod token_stream {
use crate::proc_macro::{bridge, Group, Ident, Literal, Punct, TokenStream, TokenTree};
/// An iterator over `TokenStream`'s `TokenTree`s.
/// The iteration is "shallow", e.g., the iterator doesn't recurse into delimited groups,
/// and returns whole groups as token trees.
#[derive(Clone)]
pub struct IntoIter(bridge::client::TokenStreamIter);
impl Iterator for IntoIter {
type Item = TokenTree;
fn next(&mut self) -> Option<TokenTree> {
self.0.next().map(|tree| match tree {
bridge::TokenTree::Group(tt) => TokenTree::Group(Group(tt)),
bridge::TokenTree::Punct(tt) => TokenTree::Punct(Punct(tt)),
bridge::TokenTree::Ident(tt) => TokenTree::Ident(Ident(tt)),
bridge::TokenTree::Literal(tt) => TokenTree::Literal(Literal(tt)),
})
}
}
impl IntoIterator for TokenStream {
type Item = TokenTree;
type IntoIter = IntoIter;
fn into_iter(self) -> IntoIter {
IntoIter(self.0.into_iter())
}
}
}
/// A region of source code, along with macro expansion information.
#[derive(Copy, Clone)]
pub struct Span(bridge::client::Span);
macro_rules! diagnostic_method {
($name:ident, $level:expr) => (
/// Creates a new `Diagnostic` with the given `message` at the span
/// `self`.
pub fn $name<T: Into<String>>(self, message: T) -> Diagnostic {
Diagnostic::spanned(self, $level, message)
}
)
}
impl Span {
/// A span that resolves at the macro definition site.
pub fn def_site() -> Span {
Span(bridge::client::Span::def_site())
}
/// The span of the invocation of the current procedural macro.
/// Identifiers created with this span will be resolved as if they were written
/// directly at the macro call location (call-site hygiene) and other code
/// at the macro call site will be able to refer to them as well.
pub fn call_site() -> Span {
Span(bridge::client::Span::call_site())
}
/// A span that represents `macro_rules` hygiene, and sometimes resolves at the macro
/// definition site (local variables, labels, `$crate`) and sometimes at the macro
/// call site (everything else).
/// The span location is taken from the call-site.
pub fn mixed_site() -> Span {
Span(bridge::client::Span::mixed_site())
}
/// The original source file into which this span points.
pub fn source_file(&self) -> SourceFile {
SourceFile(self.0.source_file())
}
/// The `Span` for the tokens in the previous macro expansion from which
/// `self` was generated from, if any.
pub fn parent(&self) -> Option<Span> {
self.0.parent().map(Span)
}
/// The span for the origin source code that `self` was generated from. If
/// this `Span` wasn't generated from other macro expansions then the return
/// value is the same as `*self`.
pub fn source(&self) -> Span {
Span(self.0.source())
}
/// Gets the starting line/column in the source file for this span.
pub fn start(&self) -> LineColumn {
self.0.start()
}
/// Gets the ending line/column in the source file for this span.
pub fn end(&self) -> LineColumn {
self.0.end()
}
/// Creates a new span encompassing `self` and `other`.
///
/// Returns `None` if `self` and `other` are from different files.
pub fn join(&self, other: Span) -> Option<Span> {
self.0.join(other.0).map(Span)
}
/// Creates a new span with the same line/column information as `self` but
/// that resolves symbols as though it were at `other`.
pub fn resolved_at(&self, other: Span) -> Span {
Span(self.0.resolved_at(other.0))
}
/// Creates a new span with the same name resolution behavior as `self` but
/// with the line/column information of `other`.
pub fn located_at(&self, other: Span) -> Span {
other.resolved_at(*self)
}
/// Compares to spans to see if they're equal.
pub fn eq(&self, other: &Span) -> bool {
self.0 == other.0
}
/// Returns the source text behind a span. This preserves the original source
/// code, including spaces and comments. It only returns a result if the span
/// corresponds to real source code.
///
/// Note: The observable result of a macro should only rely on the tokens and
/// not on this source text. The result of this function is a best effort to
/// be used for diagnostics only.
pub fn source_text(&self) -> Option<String> {
self.0.source_text()
}
diagnostic_method!(error, Level::Error);
diagnostic_method!(warning, Level::Warning);
diagnostic_method!(note, Level::Note);
diagnostic_method!(help, Level::Help);
}
/// Prints a span in a form convenient for debugging.
impl fmt::Debug for Span {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
/// A line-column pair representing the start or end of a `Span`.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct LineColumn {
/// The 1-indexed line in the source file on which the span starts or ends (inclusive).
pub line: usize,
/// The 0-indexed column (in UTF-8 characters) in the source file on which
/// the span starts or ends (inclusive).
pub column: usize,
}
/// The source file of a given `Span`.
#[derive(Clone)]
pub struct SourceFile(bridge::client::SourceFile);
impl SourceFile {
/// Gets the path to this source file.
///
/// ### Note
/// If the code span associated with this `SourceFile` was generated by an external macro, this
/// macro, this may not be an actual path on the filesystem. Use [`is_real`] to check.
///
/// Also note that even if `is_real` returns `true`, if `--remap-path-prefix` was passed on
/// the command line, the path as given may not actually be valid.
///
/// [`is_real`]: #method.is_real
pub fn path(&self) -> PathBuf {
PathBuf::from(self.0.path())
}
/// Returns `true` if this source file is a real source file, and not generated by an external
/// macro's expansion.
pub fn is_real(&self) -> bool {
// This is a hack until intercrate spans are implemented and we can have real source files
// for spans generated in external macros.
// https://github.com/rust-lang/rust/pull/43604#issuecomment-333334368
self.0.is_real()
}
}
impl fmt::Debug for SourceFile {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("SourceFile")
.field("path", &self.path())
.field("is_real", &self.is_real())
.finish()
}
}
impl PartialEq for SourceFile {
fn eq(&self, other: &Self) -> bool {
self.0.eq(&other.0)
}
}
impl Eq for SourceFile {}
/// A single token or a delimited sequence of token trees (e.g., `[1, (), ..]`).
#[derive(Clone)]
pub enum TokenTree {
/// A token stream surrounded by bracket delimiters.
Group(Group),
/// An identifier.
Ident(Ident),
/// A single punctuation character (`+`, `,`, `$`, etc.).
Punct(Punct),
/// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc.
Literal(Literal),
}
impl TokenTree {
/// Returns the span of this tree, delegating to the `span` method of
/// the contained token or a delimited stream.
pub fn span(&self) -> Span {
match *self {
TokenTree::Group(ref t) => t.span(),
TokenTree::Ident(ref t) => t.span(),
TokenTree::Punct(ref t) => t.span(),
TokenTree::Literal(ref t) => t.span(),
}
}
/// Configures the span for *only this token*.
///
/// Note that if this token is a `Group` then this method will not configure
/// the span of each of the internal tokens, this will simply delegate to
/// the `set_span` method of each variant.
pub fn set_span(&mut self, span: Span) {
match *self {
TokenTree::Group(ref mut t) => t.set_span(span),
TokenTree::Ident(ref mut t) => t.set_span(span),
TokenTree::Punct(ref mut t) => t.set_span(span),
TokenTree::Literal(ref mut t) => t.set_span(span),
}
}
}
/// Prints token tree in a form convenient for debugging.
impl fmt::Debug for TokenTree {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// Each of these has the name in the struct type in the derived debug,
// so don't bother with an extra layer of indirection
match *self {
TokenTree::Group(ref tt) => tt.fmt(f),
TokenTree::Ident(ref tt) => tt.fmt(f),
TokenTree::Punct(ref tt) => tt.fmt(f),
TokenTree::Literal(ref tt) => tt.fmt(f),
}
}
}
impl From<Group> for TokenTree {
fn from(g: Group) -> TokenTree {
TokenTree::Group(g)
}
}
impl From<Ident> for TokenTree {
fn from(g: Ident) -> TokenTree {
TokenTree::Ident(g)
}
}
impl From<Punct> for TokenTree {
fn from(g: Punct) -> TokenTree {
TokenTree::Punct(g)
}
}
impl From<Literal> for TokenTree {
fn from(g: Literal) -> TokenTree {
TokenTree::Literal(g)
}
}
// N.B., the bridge only provides `to_string`, implement `fmt::Display`
// based on it (the reverse of the usual relationship between the two).
// impl ToString for TokenTree {
// fn to_string(&self) -> String {
// match *self {
// TokenTree::Group(ref t) => t.to_string(),
// TokenTree::Ident(ref t) => t.to_string(),
// TokenTree::Punct(ref t) => t.to_string(),
// TokenTree::Literal(ref t) => t.to_string(),
// }
// }
// }
/// Prints the token tree as a string that is supposed to be losslessly convertible back
/// into the same token tree (modulo spans), except for possibly `TokenTree::Group`s
/// with `Delimiter::None` delimiters and negative numeric literals.
impl fmt::Display for TokenTree {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(&self.to_string())
}
}
/// A delimited token stream.
///
/// A `Group` internally contains a `TokenStream` which is surrounded by `Delimiter`s.
#[derive(Clone)]
pub struct Group(bridge::client::Group);
/// Describes how a sequence of token trees is delimited.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum Delimiter {
/// `( ... )`
Parenthesis,
/// `{ ... }`
Brace,
/// `[ ... ]`
Bracket,
/// `Ø ... Ø`
/// An implicit delimiter, that may, for example, appear around tokens coming from a
/// "macro variable" `$var`. It is important to preserve operator priorities in cases like
/// `$var * 3` where `$var` is `1 + 2`.
/// Implicit delimiters may not survive roundtrip of a token stream through a string.
None,
}
impl Group {
/// Creates a new `Group` with the given delimiter and token stream.
///
/// This constructor will set the span for this group to
/// `Span::call_site()`. To change the span you can use the `set_span`
/// method below.
pub fn new(delimiter: Delimiter, stream: TokenStream) -> Group {
Group(bridge::client::Group::new(delimiter, stream.0))
}
/// Returns the delimiter of this `Group`
pub fn delimiter(&self) -> Delimiter {
self.0.delimiter()
}
/// Returns the `TokenStream` of tokens that are delimited in this `Group`.
///
/// Note that the returned token stream does not include the delimiter
/// returned above.
pub fn stream(&self) -> TokenStream {
TokenStream(self.0.stream())
}
/// Returns the span for the delimiters of this token stream, spanning the
/// entire `Group`.
///
/// ```text
/// pub fn span(&self) -> Span {
/// ^^^^^^^
/// ```
pub fn span(&self) -> Span {
Span(self.0.span())
}
/// Returns the span pointing to the opening delimiter of this group.
///
/// ```text
/// pub fn span_open(&self) -> Span {
/// ^
/// ```
pub fn span_open(&self) -> Span {
Span(self.0.span_open())
}
/// Returns the span pointing to the closing delimiter of this group.
///
/// ```text
/// pub fn span_close(&self) -> Span {
/// ^
/// ```
pub fn span_close(&self) -> Span {
Span(self.0.span_close())
}
/// Configures the span for this `Group`'s delimiters, but not its internal
/// tokens.
///
/// This method will **not** set the span of all the internal tokens spanned
/// by this group, but rather it will only set the span of the delimiter
/// tokens at the level of the `Group`.
pub fn set_span(&mut self, span: Span) {
self.0.set_span(span.0);
}
}
// N.B., the bridge only provides `to_string`, implement `fmt::Display`
// based on it (the reverse of the usual relationship between the two).
// impl ToString for Group {
// fn to_string(&self) -> String {
// TokenStream::from(TokenTree::from(self.clone())).to_string()
// }
// }
/// Prints the group as a string that should be losslessly convertible back
/// into the same group (modulo spans), except for possibly `TokenTree::Group`s
/// with `Delimiter::None` delimiters.
impl fmt::Display for Group {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(&self.to_string())
}
}
impl fmt::Debug for Group {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Group")
.field("delimiter", &self.delimiter())
.field("stream", &self.stream())
.field("span", &self.span())
.finish()
}
}
/// An `Punct` is an single punctuation character like `+`, `-` or `#`.
///
/// Multi-character operators like `+=` are represented as two instances of `Punct` with different
/// forms of `Spacing` returned.
#[derive(Clone)]
pub struct Punct(bridge::client::Punct);
/// Whether an `Punct` is followed immediately by another `Punct` or
/// followed by another token or whitespace.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum Spacing {
/// e.g., `+` is `Alone` in `+ =`, `+ident` or `+()`.
Alone,
/// e.g., `+` is `Joint` in `+=` or `'#`.
/// Additionally, single quote `'` can join with identifiers to form lifetimes `'ident`.
Joint,
}
impl Punct {
/// Creates a new `Punct` from the given character and spacing.
/// The `ch` argument must be a valid punctuation character permitted by the language,
/// otherwise the function will panic.
///
/// The returned `Punct` will have the default span of `Span::call_site()`
/// which can be further configured with the `set_span` method below.
pub fn new(ch: char, spacing: Spacing) -> Punct {
Punct(bridge::client::Punct::new(ch, spacing))
}
/// Returns the value of this punctuation character as `char`.
pub fn as_char(&self) -> char {
self.0.as_char()
}
/// Returns the spacing of this punctuation character, indicating whether it's immediately
/// followed by another `Punct` in the token stream, so they can potentially be combined into
/// a multi-character operator (`Joint`), or it's followed by some other token or whitespace
/// (`Alone`) so the operator has certainly ended.
pub fn spacing(&self) -> Spacing {
self.0.spacing()
}
/// Returns the span for this punctuation character.
pub fn span(&self) -> Span {
Span(self.0.span())
}
/// Configure the span for this punctuation character.
pub fn set_span(&mut self, span: Span) {
self.0 = self.0.with_span(span.0);
}
}
// N.B., the bridge only provides `to_string`, implement `fmt::Display`
// based on it (the reverse of the usual relationship between the two).
// impl ToString for Punct {
// fn to_string(&self) -> String {
// TokenStream::from(TokenTree::from(self.clone())).to_string()
// }
// }
/// Prints the punctuation character as a string that should be losslessly convertible
/// back into the same character.
impl fmt::Display for Punct {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(&self.to_string())
}
}
impl fmt::Debug for Punct {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Punct")
.field("ch", &self.as_char())
.field("spacing", &self.spacing())
.field("span", &self.span())
.finish()
}
}
/// An identifier (`ident`).
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct Ident(bridge::client::Ident);
impl Ident {
/// Creates a new `Ident` with the given `string` as well as the specified
/// `span`.
/// The `string` argument must be a valid identifier permitted by the
/// language, otherwise the function will panic.
///
/// Note that `span`, currently in rustc, configures the hygiene information
/// for this identifier.
///
/// As of this time `Span::call_site()` explicitly opts-in to "call-site" hygiene
/// meaning that identifiers created with this span will be resolved as if they were written
/// directly at the location of the macro call, and other code at the macro call site will be
/// able to refer to them as well.
///
/// Later spans like `Span::def_site()` will allow to opt-in to "definition-site" hygiene
/// meaning that identifiers created with this span will be resolved at the location of the
/// macro definition and other code at the macro call site will not be able to refer to them.
///
/// Due to the current importance of hygiene this constructor, unlike other
/// tokens, requires a `Span` to be specified at construction.
pub fn new(string: &str, span: Span) -> Ident {
Ident(bridge::client::Ident::new(string, span.0, false))
}
/// Same as `Ident::new`, but creates a raw identifier (`r#ident`).
pub fn new_raw(string: &str, span: Span) -> Ident {
Ident(bridge::client::Ident::new(string, span.0, true))
}
/// Returns the span of this `Ident`, encompassing the entire string returned
/// by `as_str`.
pub fn span(&self) -> Span {
Span(self.0.span())
}
/// Configures the span of this `Ident`, possibly changing its hygiene context.
pub fn set_span(&mut self, span: Span) {
self.0 = self.0.with_span(span.0);
}
}
// N.B., the bridge only provides `to_string`, implement `fmt::Display`
// based on it (the reverse of the usual relationship between the two).
// impl ToString for Ident {
// fn to_string(&self) -> String {
// TokenStream::from(TokenTree::from(self.clone())).to_string()
// }
// }
/// Prints the identifier as a string that should be losslessly convertible
/// back into the same identifier.
impl fmt::Display for Ident {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(&self.to_string())
}
}
impl fmt::Debug for Ident {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Ident")
.field("ident", &self.to_string())
.field("span", &self.span())
.finish()
}
}
/// A literal string (`"hello"`), byte string (`b"hello"`),
/// character (`'a'`), byte character (`b'a'`), an integer or floating point number
/// with or without a suffix (`1`, `1u8`, `2.3`, `2.3f32`).
/// Boolean literals like `true` and `false` do not belong here, they are `Ident`s.
#[derive(Clone)]
pub struct Literal(bridge::client::Literal);
macro_rules! suffixed_int_literals {
($($name:ident => $kind:ident,)*) => ($(
/// Creates a new suffixed integer literal with the specified value.
///
/// This function will create an integer like `1u32` where the integer
/// value specified is the first part of the token and the integral is
/// also suffixed at the end.
/// Literals created from negative numbers may not survive round-trips through
/// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
///
/// Literals created through this method have the `Span::call_site()`
/// span by default, which can be configured with the `set_span` method
/// below.
pub fn $name(n: $kind) -> Literal {
Literal(bridge::client::Literal::typed_integer(&n.to_string(), stringify!($kind)))
}
)*)
}
macro_rules! unsuffixed_int_literals {
($($name:ident => $kind:ident,)*) => ($(
/// Creates a new unsuffixed integer literal with the specified value.
///
/// This function will create an integer like `1` where the integer
/// value specified is the first part of the token. No suffix is
/// specified on this token, meaning that invocations like
/// `Literal::i8_unsuffixed(1)` are equivalent to
/// `Literal::u32_unsuffixed(1)`.
/// Literals created from negative numbers may not survive rountrips through
/// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
///
/// Literals created through this method have the `Span::call_site()`
/// span by default, which can be configured with the `set_span` method
/// below.
pub fn $name(n: $kind) -> Literal {
Literal(bridge::client::Literal::integer(&n.to_string()))
}
)*)
}
impl Literal {
suffixed_int_literals! {
u8_suffixed => u8,
u16_suffixed => u16,
u32_suffixed => u32,
u64_suffixed => u64,
u128_suffixed => u128,
usize_suffixed => usize,
i8_suffixed => i8,
i16_suffixed => i16,
i32_suffixed => i32,
i64_suffixed => i64,
i128_suffixed => i128,
isize_suffixed => isize,
}
unsuffixed_int_literals! {
u8_unsuffixed => u8,
u16_unsuffixed => u16,
u32_unsuffixed => u32,
u64_unsuffixed => u64,
u128_unsuffixed => u128,
usize_unsuffixed => usize,
i8_unsuffixed => i8,
i16_unsuffixed => i16,
i32_unsuffixed => i32,
i64_unsuffixed => i64,
i128_unsuffixed => i128,
isize_unsuffixed => isize,
}
/// Creates a new unsuffixed floating-point literal.
///
/// This constructor is similar to those like `Literal::i8_unsuffixed` where
/// the float's value is emitted directly into the token but no suffix is
/// used, so it may be inferred to be a `f64` later in the compiler.
/// Literals created from negative numbers may not survive rountrips through
/// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
///
/// # Panics
///
/// This function requires that the specified float is finite, for
/// example if it is infinity or NaN this function will panic.
pub fn f32_unsuffixed(n: f32) -> Literal {
if !n.is_finite() {
panic!("Invalid float literal {}", n);
}
Literal(bridge::client::Literal::float(&n.to_string()))
}
/// Creates a new suffixed floating-point literal.
///
/// This constructor will create a literal like `1.0f32` where the value
/// specified is the preceding part of the token and `f32` is the suffix of
/// the token. This token will always be inferred to be an `f32` in the
/// compiler.
/// Literals created from negative numbers may not survive rountrips through
/// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
///
/// # Panics
///
/// This function requires that the specified float is finite, for
/// example if it is infinity or NaN this function will panic.
pub fn f32_suffixed(n: f32) -> Literal {
if !n.is_finite() {
panic!("Invalid float literal {}", n);
}
Literal(bridge::client::Literal::f32(&n.to_string()))
}
/// Creates a new unsuffixed floating-point literal.
///
/// This constructor is similar to those like `Literal::i8_unsuffixed` where
/// the float's value is emitted directly into the token but no suffix is
/// used, so it may be inferred to be a `f64` later in the compiler.
/// Literals created from negative numbers may not survive rountrips through
/// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
///
/// # Panics
///
/// This function requires that the specified float is finite, for
/// example if it is infinity or NaN this function will panic.
pub fn f64_unsuffixed(n: f64) -> Literal {
if !n.is_finite() {
panic!("Invalid float literal {}", n);
}
Literal(bridge::client::Literal::float(&n.to_string()))
}
/// Creates a new suffixed floating-point literal.
///
/// This constructor will create a literal like `1.0f64` where the value
/// specified is the preceding part of the token and `f64` is the suffix of
/// the token. This token will always be inferred to be an `f64` in the
/// compiler.
/// Literals created from negative numbers may not survive rountrips through
/// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
///
/// # Panics
///
/// This function requires that the specified float is finite, for
/// example if it is infinity or NaN this function will panic.
pub fn f64_suffixed(n: f64) -> Literal {
if !n.is_finite() {
panic!("Invalid float literal {}", n);
}
Literal(bridge::client::Literal::f64(&n.to_string()))
}
/// String literal.
pub fn string(string: &str) -> Literal {
Literal(bridge::client::Literal::string(string))
}
/// Character literal.
pub fn character(ch: char) -> Literal {
Literal(bridge::client::Literal::character(ch))
}
/// Byte string literal.
pub fn byte_string(bytes: &[u8]) -> Literal {
Literal(bridge::client::Literal::byte_string(bytes))
}
/// Returns the span encompassing this literal.
pub fn span(&self) -> Span {
Span(self.0.span())
}
/// Configures the span associated for this literal.
pub fn set_span(&mut self, span: Span) {
self.0.set_span(span.0);
}
/// Returns a `Span` that is a subset of `self.span()` containing only the
/// source bytes in range `range`. Returns `None` if the would-be trimmed
/// span is outside the bounds of `self`.
// FIXME(SergioBenitez): check that the byte range starts and ends at a
// UTF-8 boundary of the source. otherwise, it's likely that a panic will
// occur elsewhere when the source text is printed.
// FIXME(SergioBenitez): there is no way for the user to know what
// `self.span()` actually maps to, so this method can currently only be
// called blindly. For example, `to_string()` for the character 'c' returns
// "'\u{63}'"; there is no way for the user to know whether the source text
// was 'c' or whether it was '\u{63}'.
pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> {
// HACK(eddyb) something akin to `Option::cloned`, but for `Bound<&T>`.
fn cloned_bound<T: Clone>(bound: Bound<&T>) -> Bound<T> {
match bound {
Bound::Included(x) => Bound::Included(x.clone()),
Bound::Excluded(x) => Bound::Excluded(x.clone()),
Bound::Unbounded => Bound::Unbounded,
}
}
self.0.subspan(cloned_bound(range.start_bound()), cloned_bound(range.end_bound())).map(Span)
}
}
// N.B., the bridge only provides `to_string`, implement `fmt::Display`
// based on it (the reverse of the usual relationship between the two).
// impl ToString for Literal {
// fn to_string(&self) -> String {
// TokenStream::from(TokenTree::from(self.clone())).to_string()
// }
// }
/// Prints the literal as a string that should be losslessly convertible
/// back into the same literal (except for possible rounding for floating point literals).
impl fmt::Display for Literal {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(&self.to_string())
}
}
impl fmt::Debug for Literal {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// FIXME(eddyb) `Literal` should not expose internal `Debug` impls.
self.0.fmt(f)
}
}