Auto merge of #12795 - jonas-schievink:proc-macro-abi-1.64, r=jonas-schievink

feat: Support the 1.64 nightly proc macro ABI

Should resolve https://github.com/rust-lang/rust-analyzer/issues/12600

Not sure why I thought the Rust version was the same as on beta, that's never the case (but future nightly changes can break the ABI again).
This commit is contained in:
bors 2022-07-18 12:32:46 +00:00
commit ee2d5fed30
15 changed files with 4443 additions and 1 deletions

View file

@ -0,0 +1,104 @@
//! Macro ABI for version 1.63 of rustc
#[allow(dead_code)]
#[doc(hidden)]
mod proc_macro;
#[allow(dead_code)]
#[doc(hidden)]
mod rustc_server;
use libloading::Library;
use proc_macro_api::ProcMacroKind;
use super::PanicMessage;
pub(crate) struct Abi {
exported_macros: Vec<proc_macro::bridge::client::ProcMacro>,
}
impl From<proc_macro::bridge::PanicMessage> for PanicMessage {
fn from(p: proc_macro::bridge::PanicMessage) -> Self {
Self { message: p.as_str().map(|s| s.to_string()) }
}
}
impl Abi {
pub unsafe fn from_lib(lib: &Library, symbol_name: String) -> Result<Abi, libloading::Error> {
let macros: libloading::Symbol<&&[proc_macro::bridge::client::ProcMacro]> =
lib.get(symbol_name.as_bytes())?;
Ok(Self { exported_macros: macros.to_vec() })
}
pub fn expand(
&self,
macro_name: &str,
macro_body: &tt::Subtree,
attributes: Option<&tt::Subtree>,
) -> Result<tt::Subtree, PanicMessage> {
let parsed_body = rustc_server::TokenStream::with_subtree(macro_body.clone());
let parsed_attributes = attributes.map_or(rustc_server::TokenStream::new(), |attr| {
rustc_server::TokenStream::with_subtree(attr.clone())
});
for proc_macro in &self.exported_macros {
match proc_macro {
proc_macro::bridge::client::ProcMacro::CustomDerive {
trait_name, client, ..
} if *trait_name == macro_name => {
let res = client.run(
&proc_macro::bridge::server::SameThread,
rustc_server::Rustc::default(),
parsed_body,
true,
);
return res.map(|it| it.into_subtree()).map_err(PanicMessage::from);
}
proc_macro::bridge::client::ProcMacro::Bang { name, client }
if *name == macro_name =>
{
let res = client.run(
&proc_macro::bridge::server::SameThread,
rustc_server::Rustc::default(),
parsed_body,
true,
);
return res.map(|it| it.into_subtree()).map_err(PanicMessage::from);
}
proc_macro::bridge::client::ProcMacro::Attr { name, client }
if *name == macro_name =>
{
let res = client.run(
&proc_macro::bridge::server::SameThread,
rustc_server::Rustc::default(),
parsed_attributes,
parsed_body,
true,
);
return res.map(|it| it.into_subtree()).map_err(PanicMessage::from);
}
_ => continue,
}
}
Err(proc_macro::bridge::PanicMessage::String("Nothing to expand".to_string()).into())
}
pub fn list_macros(&self) -> Vec<(String, ProcMacroKind)> {
self.exported_macros
.iter()
.map(|proc_macro| match proc_macro {
proc_macro::bridge::client::ProcMacro::CustomDerive { trait_name, .. } => {
(trait_name.to_string(), ProcMacroKind::CustomDerive)
}
proc_macro::bridge::client::ProcMacro::Bang { name, .. } => {
(name.to_string(), ProcMacroKind::FuncLike)
}
proc_macro::bridge::client::ProcMacro::Attr { name, .. } => {
(name.to_string(), ProcMacroKind::Attr)
}
})
.collect()
}
}

View file

@ -0,0 +1,156 @@
//! Buffer management for same-process client<->server communication.
use std::io::{self, Write};
use std::mem;
use std::ops::{Deref, DerefMut};
use std::slice;
#[repr(C)]
pub struct Buffer {
data: *mut u8,
len: usize,
capacity: usize,
reserve: extern "C" fn(Buffer, usize) -> Buffer,
drop: extern "C" fn(Buffer),
}
unsafe impl Sync for Buffer {}
unsafe impl Send for Buffer {}
impl Default for Buffer {
#[inline]
fn default() -> Self {
Self::from(vec![])
}
}
impl Deref for Buffer {
type Target = [u8];
#[inline]
fn deref(&self) -> &[u8] {
unsafe { slice::from_raw_parts(self.data as *const u8, self.len) }
}
}
impl DerefMut for Buffer {
#[inline]
fn deref_mut(&mut self) -> &mut [u8] {
unsafe { slice::from_raw_parts_mut(self.data, self.len) }
}
}
impl Buffer {
#[inline]
pub(super) fn new() -> Self {
Self::default()
}
#[inline]
pub(super) fn clear(&mut self) {
self.len = 0;
}
#[inline]
pub(super) fn take(&mut self) -> Self {
mem::take(self)
}
// We have the array method separate from extending from a slice. This is
// because in the case of small arrays, codegen can be more efficient
// (avoiding a memmove call). With extend_from_slice, LLVM at least
// currently is not able to make that optimization.
#[inline]
pub(super) fn extend_from_array<const N: usize>(&mut self, xs: &[u8; N]) {
if xs.len() > (self.capacity - self.len) {
let b = self.take();
*self = (b.reserve)(b, xs.len());
}
unsafe {
xs.as_ptr().copy_to_nonoverlapping(self.data.add(self.len), xs.len());
self.len += xs.len();
}
}
#[inline]
pub(super) fn extend_from_slice(&mut self, xs: &[u8]) {
if xs.len() > (self.capacity - self.len) {
let b = self.take();
*self = (b.reserve)(b, xs.len());
}
unsafe {
xs.as_ptr().copy_to_nonoverlapping(self.data.add(self.len), xs.len());
self.len += xs.len();
}
}
#[inline]
pub(super) fn push(&mut self, v: u8) {
// The code here is taken from Vec::push, and we know that reserve()
// will panic if we're exceeding isize::MAX bytes and so there's no need
// to check for overflow.
if self.len == self.capacity {
let b = self.take();
*self = (b.reserve)(b, 1);
}
unsafe {
*self.data.add(self.len) = v;
self.len += 1;
}
}
}
impl Write for Buffer {
#[inline]
fn write(&mut self, xs: &[u8]) -> io::Result<usize> {
self.extend_from_slice(xs);
Ok(xs.len())
}
#[inline]
fn write_all(&mut self, xs: &[u8]) -> io::Result<()> {
self.extend_from_slice(xs);
Ok(())
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
impl Drop for Buffer {
#[inline]
fn drop(&mut self) {
let b = self.take();
(b.drop)(b);
}
}
impl From<Vec<u8>> for Buffer {
fn from(mut v: Vec<u8>) -> Self {
let (data, len, capacity) = (v.as_mut_ptr(), v.len(), v.capacity());
mem::forget(v);
// This utility function is nested in here because it can *only*
// be safely called on `Buffer`s created by *this* `proc_macro`.
fn to_vec(b: Buffer) -> Vec<u8> {
unsafe {
let Buffer { data, len, capacity, .. } = b;
mem::forget(b);
Vec::from_raw_parts(data, len, capacity)
}
}
extern "C" fn reserve(b: Buffer, additional: usize) -> Buffer {
let mut v = to_vec(b);
v.reserve(additional);
Buffer::from(v)
}
extern "C" fn drop(b: Buffer) {
mem::drop(to_vec(b));
}
Buffer { data, len, capacity, reserve, drop }
}
}

View file

@ -0,0 +1,529 @@
//! Client-side types.
use super::*;
use std::marker::PhantomData;
macro_rules! define_handles {
(
'owned: $($oty:ident,)*
'interned: $($ity:ident,)*
) => {
#[repr(C)]
#[allow(non_snake_case)]
pub struct HandleCounters {
$($oty: AtomicUsize,)*
$($ity: AtomicUsize,)*
}
impl HandleCounters {
// FIXME(eddyb) use a reference to the `static COUNTERS`, instead of
// a wrapper `fn` pointer, once `const fn` can reference `static`s.
extern "C" fn get() -> &'static Self {
static COUNTERS: HandleCounters = HandleCounters {
$($oty: AtomicUsize::new(1),)*
$($ity: AtomicUsize::new(1),)*
};
&COUNTERS
}
}
// FIXME(eddyb) generate the definition of `HandleStore` in `server.rs`.
#[repr(C)]
#[allow(non_snake_case)]
pub(super) struct HandleStore<S: server::Types> {
$($oty: handle::OwnedStore<S::$oty>,)*
$($ity: handle::InternedStore<S::$ity>,)*
}
impl<S: server::Types> HandleStore<S> {
pub(super) fn new(handle_counters: &'static HandleCounters) -> Self {
HandleStore {
$($oty: handle::OwnedStore::new(&handle_counters.$oty),)*
$($ity: handle::InternedStore::new(&handle_counters.$ity),)*
}
}
}
$(
#[repr(C)]
pub(crate) struct $oty {
handle: handle::Handle,
// Prevent Send and Sync impls. `!Send`/`!Sync` is the usual
// way of doing this, but that requires unstable features.
// rust-analyzer uses this code and avoids unstable features.
_marker: PhantomData<*mut ()>,
}
// Forward `Drop::drop` to the inherent `drop` method.
impl Drop for $oty {
fn drop(&mut self) {
$oty {
handle: self.handle,
_marker: PhantomData,
}.drop();
}
}
impl<S> Encode<S> for $oty {
fn encode(self, w: &mut Writer, s: &mut S) {
let handle = self.handle;
mem::forget(self);
handle.encode(w, s);
}
}
impl<S: server::Types> DecodeMut<'_, '_, HandleStore<server::MarkedTypes<S>>>
for Marked<S::$oty, $oty>
{
fn decode(r: &mut Reader<'_>, s: &mut HandleStore<server::MarkedTypes<S>>) -> Self {
s.$oty.take(handle::Handle::decode(r, &mut ()))
}
}
impl<S> Encode<S> for &$oty {
fn encode(self, w: &mut Writer, s: &mut S) {
self.handle.encode(w, s);
}
}
impl<'s, S: server::Types> Decode<'_, 's, HandleStore<server::MarkedTypes<S>>>
for &'s Marked<S::$oty, $oty>
{
fn decode(r: &mut Reader<'_>, s: &'s HandleStore<server::MarkedTypes<S>>) -> Self {
&s.$oty[handle::Handle::decode(r, &mut ())]
}
}
impl<S> Encode<S> for &mut $oty {
fn encode(self, w: &mut Writer, s: &mut S) {
self.handle.encode(w, s);
}
}
impl<'s, S: server::Types> DecodeMut<'_, 's, HandleStore<server::MarkedTypes<S>>>
for &'s mut Marked<S::$oty, $oty>
{
fn decode(
r: &mut Reader<'_>,
s: &'s mut HandleStore<server::MarkedTypes<S>>
) -> Self {
&mut s.$oty[handle::Handle::decode(r, &mut ())]
}
}
impl<S: server::Types> Encode<HandleStore<server::MarkedTypes<S>>>
for Marked<S::$oty, $oty>
{
fn encode(self, w: &mut Writer, s: &mut HandleStore<server::MarkedTypes<S>>) {
s.$oty.alloc(self).encode(w, s);
}
}
impl<S> DecodeMut<'_, '_, S> for $oty {
fn decode(r: &mut Reader<'_>, s: &mut S) -> Self {
$oty {
handle: handle::Handle::decode(r, s),
_marker: PhantomData,
}
}
}
)*
$(
#[repr(C)]
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub(crate) struct $ity {
handle: handle::Handle,
// Prevent Send and Sync impls. `!Send`/`!Sync` is the usual
// way of doing this, but that requires unstable features.
// rust-analyzer uses this code and avoids unstable features.
_marker: PhantomData<*mut ()>,
}
impl<S> Encode<S> for $ity {
fn encode(self, w: &mut Writer, s: &mut S) {
self.handle.encode(w, s);
}
}
impl<S: server::Types> DecodeMut<'_, '_, HandleStore<server::MarkedTypes<S>>>
for Marked<S::$ity, $ity>
{
fn decode(r: &mut Reader<'_>, s: &mut HandleStore<server::MarkedTypes<S>>) -> Self {
s.$ity.copy(handle::Handle::decode(r, &mut ()))
}
}
impl<S: server::Types> Encode<HandleStore<server::MarkedTypes<S>>>
for Marked<S::$ity, $ity>
{
fn encode(self, w: &mut Writer, s: &mut HandleStore<server::MarkedTypes<S>>) {
s.$ity.alloc(self).encode(w, s);
}
}
impl<S> DecodeMut<'_, '_, S> for $ity {
fn decode(r: &mut Reader<'_>, s: &mut S) -> Self {
$ity {
handle: handle::Handle::decode(r, s),
_marker: PhantomData,
}
}
}
)*
}
}
define_handles! {
'owned:
FreeFunctions,
TokenStream,
Literal,
SourceFile,
MultiSpan,
Diagnostic,
'interned:
Ident,
Span,
}
// FIXME(eddyb) generate these impls by pattern-matching on the
// names of methods - also could use the presence of `fn drop`
// to distinguish between 'owned and 'interned, above.
// Alternatively, special "modes" could be listed of types in with_api
// instead of pattern matching on methods, here and in server decl.
impl Clone for TokenStream {
fn clone(&self) -> Self {
self.clone()
}
}
impl Clone for Literal {
fn clone(&self) -> Self {
self.clone()
}
}
impl fmt::Debug for Literal {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Literal")
// format the kind without quotes, as in `kind: Float`
.field("kind", &format_args!("{}", &self.debug_kind()))
.field("symbol", &self.symbol())
// format `Some("...")` on one line even in {:#?} mode
.field("suffix", &format_args!("{:?}", &self.suffix()))
.field("span", &self.span())
.finish()
}
}
impl Clone for SourceFile {
fn clone(&self) -> Self {
self.clone()
}
}
impl Span {
pub(crate) fn def_site() -> Span {
Bridge::with(|bridge| bridge.globals.def_site)
}
pub(crate) fn call_site() -> Span {
Bridge::with(|bridge| bridge.globals.call_site)
}
pub(crate) fn mixed_site() -> Span {
Bridge::with(|bridge| bridge.globals.mixed_site)
}
}
impl fmt::Debug for Span {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(&self.debug())
}
}
macro_rules! define_client_side {
($($name:ident {
$(fn $method:ident($($arg:ident: $arg_ty:ty),* $(,)?) $(-> $ret_ty:ty)*;)*
}),* $(,)?) => {
$(impl $name {
$(pub(crate) fn $method($($arg: $arg_ty),*) $(-> $ret_ty)* {
Bridge::with(|bridge| {
let mut buf = bridge.cached_buffer.take();
buf.clear();
api_tags::Method::$name(api_tags::$name::$method).encode(&mut buf, &mut ());
reverse_encode!(buf; $($arg),*);
buf = bridge.dispatch.call(buf);
let r = Result::<_, PanicMessage>::decode(&mut &buf[..], &mut ());
bridge.cached_buffer = buf;
r.unwrap_or_else(|e| panic::resume_unwind(e.into()))
})
})*
})*
}
}
with_api!(self, self, define_client_side);
struct Bridge<'a> {
/// Reusable buffer (only `clear`-ed, never shrunk), primarily
/// used for making requests.
cached_buffer: Buffer,
/// Server-side function that the client uses to make requests.
dispatch: closure::Closure<'a, Buffer, Buffer>,
/// Provided globals for this macro expansion.
globals: ExpnGlobals<Span>,
}
enum BridgeState<'a> {
/// No server is currently connected to this client.
NotConnected,
/// A server is connected and available for requests.
Connected(Bridge<'a>),
/// Access to the bridge is being exclusively acquired
/// (e.g., during `BridgeState::with`).
InUse,
}
enum BridgeStateL {}
impl<'a> scoped_cell::ApplyL<'a> for BridgeStateL {
type Out = BridgeState<'a>;
}
thread_local! {
static BRIDGE_STATE: scoped_cell::ScopedCell<BridgeStateL> =
scoped_cell::ScopedCell::new(BridgeState::NotConnected);
}
impl BridgeState<'_> {
/// Take exclusive control of the thread-local
/// `BridgeState`, and pass it to `f`, mutably.
/// The state will be restored after `f` exits, even
/// by panic, including modifications made to it by `f`.
///
/// N.B., while `f` is running, the thread-local state
/// is `BridgeState::InUse`.
fn with<R>(f: impl FnOnce(&mut BridgeState<'_>) -> R) -> R {
BRIDGE_STATE.with(|state| {
state.replace(BridgeState::InUse, |mut state| {
// FIXME(#52812) pass `f` directly to `replace` when `RefMutL` is gone
f(&mut *state)
})
})
}
}
impl Bridge<'_> {
fn with<R>(f: impl FnOnce(&mut Bridge<'_>) -> R) -> R {
BridgeState::with(|state| match state {
BridgeState::NotConnected => {
panic!("procedural macro API is used outside of a procedural macro");
}
BridgeState::InUse => {
panic!("procedural macro API is used while it's already in use");
}
BridgeState::Connected(bridge) => f(bridge),
})
}
}
pub(crate) fn is_available() -> bool {
BridgeState::with(|state| match state {
BridgeState::Connected(_) | BridgeState::InUse => true,
BridgeState::NotConnected => false,
})
}
/// A client-side RPC entry-point, which may be using a different `proc_macro`
/// from the one used by the server, but can be invoked compatibly.
///
/// Note that the (phantom) `I` ("input") and `O` ("output") type parameters
/// decorate the `Client<I, O>` with the RPC "interface" of the entry-point, but
/// do not themselves participate in ABI, at all, only facilitate type-checking.
///
/// E.g. `Client<TokenStream, TokenStream>` is the common proc macro interface,
/// used for `#[proc_macro] fn foo(input: TokenStream) -> TokenStream`,
/// indicating that the RPC input and output will be serialized token streams,
/// and forcing the use of APIs that take/return `S::TokenStream`, server-side.
#[repr(C)]
pub struct Client<I, O> {
// FIXME(eddyb) use a reference to the `static COUNTERS`, instead of
// a wrapper `fn` pointer, once `const fn` can reference `static`s.
pub(super) get_handle_counters: extern "C" fn() -> &'static HandleCounters,
pub(super) run: extern "C" fn(BridgeConfig<'_>) -> Buffer,
pub(super) _marker: PhantomData<fn(I) -> O>,
}
impl<I, O> Copy for Client<I, O> {}
impl<I, O> Clone for Client<I, O> {
fn clone(&self) -> Self {
*self
}
}
fn maybe_install_panic_hook(force_show_panics: bool) {
// Hide the default panic output within `proc_macro` expansions.
// NB. the server can't do this because it may use a different libstd.
static HIDE_PANICS_DURING_EXPANSION: Once = Once::new();
HIDE_PANICS_DURING_EXPANSION.call_once(|| {
let prev = panic::take_hook();
panic::set_hook(Box::new(move |info| {
let show = BridgeState::with(|state| match state {
BridgeState::NotConnected => true,
BridgeState::Connected(_) | BridgeState::InUse => force_show_panics,
});
if show {
prev(info)
}
}));
});
}
/// Client-side helper for handling client panics, entering the bridge,
/// deserializing input and serializing output.
// FIXME(eddyb) maybe replace `Bridge::enter` with this?
fn run_client<A: for<'a, 's> DecodeMut<'a, 's, ()>, R: Encode<()>>(
config: BridgeConfig<'_>,
f: impl FnOnce(A) -> R,
) -> Buffer {
let BridgeConfig { input: mut buf, dispatch, force_show_panics, .. } = config;
panic::catch_unwind(panic::AssertUnwindSafe(|| {
maybe_install_panic_hook(force_show_panics);
let reader = &mut &buf[..];
let (globals, input) = <(ExpnGlobals<Span>, A)>::decode(reader, &mut ());
// Put the buffer we used for input back in the `Bridge` for requests.
let new_state =
BridgeState::Connected(Bridge { cached_buffer: buf.take(), dispatch, globals });
BRIDGE_STATE.with(|state| {
state.set(new_state, || {
let output = f(input);
// Take the `cached_buffer` back out, for the output value.
buf = Bridge::with(|bridge| bridge.cached_buffer.take());
// HACK(eddyb) Separate encoding a success value (`Ok(output)`)
// from encoding a panic (`Err(e: PanicMessage)`) to avoid
// having handles outside the `bridge.enter(|| ...)` scope, and
// to catch panics that could happen while encoding the success.
//
// Note that panics should be impossible beyond this point, but
// this is defensively trying to avoid any accidental panicking
// reaching the `extern "C"` (which should `abort` but might not
// at the moment, so this is also potentially preventing UB).
buf.clear();
Ok::<_, ()>(output).encode(&mut buf, &mut ());
})
})
}))
.map_err(PanicMessage::from)
.unwrap_or_else(|e| {
buf.clear();
Err::<(), _>(e).encode(&mut buf, &mut ());
});
buf
}
impl Client<super::super::TokenStream, super::super::TokenStream> {
pub const fn expand1(
f: impl Fn(super::super::TokenStream) -> super::super::TokenStream + Copy,
) -> Self {
Client {
get_handle_counters: HandleCounters::get,
run: super::selfless_reify::reify_to_extern_c_fn_hrt_bridge(move |bridge| {
run_client(bridge, |input| f(super::super::TokenStream(input)).0)
}),
_marker: PhantomData,
}
}
}
impl Client<(super::super::TokenStream, super::super::TokenStream), super::super::TokenStream> {
pub const fn expand2(
f: impl Fn(super::super::TokenStream, super::super::TokenStream) -> super::super::TokenStream
+ Copy,
) -> Self {
Client {
get_handle_counters: HandleCounters::get,
run: super::selfless_reify::reify_to_extern_c_fn_hrt_bridge(move |bridge| {
run_client(bridge, |(input, input2)| {
f(super::super::TokenStream(input), super::super::TokenStream(input2)).0
})
}),
_marker: PhantomData,
}
}
}
#[repr(C)]
#[derive(Copy, Clone)]
pub enum ProcMacro {
CustomDerive {
trait_name: &'static str,
attributes: &'static [&'static str],
client: Client<super::super::TokenStream, super::super::TokenStream>,
},
Attr {
name: &'static str,
client: Client<
(super::super::TokenStream, super::super::TokenStream),
super::super::TokenStream,
>,
},
Bang {
name: &'static str,
client: Client<super::super::TokenStream, super::super::TokenStream>,
},
}
impl ProcMacro {
pub fn name(&self) -> &'static str {
match self {
ProcMacro::CustomDerive { trait_name, .. } => trait_name,
ProcMacro::Attr { name, .. } => name,
ProcMacro::Bang { name, .. } => name,
}
}
pub const fn custom_derive(
trait_name: &'static str,
attributes: &'static [&'static str],
expand: impl Fn(super::super::TokenStream) -> super::super::TokenStream + Copy,
) -> Self {
ProcMacro::CustomDerive { trait_name, attributes, client: Client::expand1(expand) }
}
pub const fn attr(
name: &'static str,
expand: impl Fn(super::super::TokenStream, super::super::TokenStream) -> super::super::TokenStream
+ Copy,
) -> Self {
ProcMacro::Attr { name, client: Client::expand2(expand) }
}
pub const fn bang(
name: &'static str,
expand: impl Fn(super::super::TokenStream) -> super::super::TokenStream + Copy,
) -> Self {
ProcMacro::Bang { name, client: Client::expand1(expand) }
}
}

View file

@ -0,0 +1,32 @@
//! Closure type (equivalent to `&mut dyn FnMut(A) -> R`) that's `repr(C)`.
use std::marker::PhantomData;
#[repr(C)]
pub struct Closure<'a, A, R> {
call: unsafe extern "C" fn(*mut Env, A) -> R,
env: *mut Env,
// Prevent Send and Sync impls. `!Send`/`!Sync` is the usual way of doing
// this, but that requires unstable features. rust-analyzer uses this code
// and avoids unstable features.
//
// The `'a` lifetime parameter represents the lifetime of `Env`.
_marker: PhantomData<*mut &'a mut ()>,
}
struct Env;
impl<'a, A, R, F: FnMut(A) -> R> From<&'a mut F> for Closure<'a, A, R> {
fn from(f: &'a mut F) -> Self {
unsafe extern "C" fn call<A, R, F: FnMut(A) -> R>(env: *mut Env, arg: A) -> R {
(*(env as *mut _ as *mut F))(arg)
}
Closure { call: call::<A, R, F>, env: f as *mut _ as *mut Env, _marker: PhantomData }
}
}
impl<'a, A, R> Closure<'a, A, R> {
pub fn call(&mut self, arg: A) -> R {
unsafe { (self.call)(self.env, arg) }
}
}

View file

@ -0,0 +1,89 @@
//! Server-side handles and storage for per-handle data.
use std::collections::{BTreeMap, HashMap};
use std::hash::{BuildHasher, Hash};
use std::num::NonZeroU32;
use std::ops::{Index, IndexMut};
use std::sync::atomic::{AtomicUsize, Ordering};
pub(super) type Handle = NonZeroU32;
/// A store that associates values of type `T` with numeric handles. A value can
/// be looked up using its handle.
pub(super) struct OwnedStore<T: 'static> {
counter: &'static AtomicUsize,
data: BTreeMap<Handle, T>,
}
impl<T> OwnedStore<T> {
pub(super) fn new(counter: &'static AtomicUsize) -> Self {
// Ensure the handle counter isn't 0, which would panic later,
// when `NonZeroU32::new` (aka `Handle::new`) is called in `alloc`.
assert_ne!(counter.load(Ordering::SeqCst), 0);
OwnedStore { counter, data: BTreeMap::new() }
}
}
impl<T> OwnedStore<T> {
pub(super) fn alloc(&mut self, x: T) -> Handle {
let counter = self.counter.fetch_add(1, Ordering::SeqCst);
let handle = Handle::new(counter as u32).expect("`proc_macro` handle counter overflowed");
assert!(self.data.insert(handle, x).is_none());
handle
}
pub(super) fn take(&mut self, h: Handle) -> T {
self.data.remove(&h).expect("use-after-free in `proc_macro` handle")
}
}
impl<T> Index<Handle> for OwnedStore<T> {
type Output = T;
fn index(&self, h: Handle) -> &T {
self.data.get(&h).expect("use-after-free in `proc_macro` handle")
}
}
impl<T> IndexMut<Handle> for OwnedStore<T> {
fn index_mut(&mut self, h: Handle) -> &mut T {
self.data.get_mut(&h).expect("use-after-free in `proc_macro` handle")
}
}
// HACK(eddyb) deterministic `std::collections::hash_map::RandomState` replacement
// that doesn't require adding any dependencies to `proc_macro` (like `rustc-hash`).
#[derive(Clone)]
struct NonRandomState;
impl BuildHasher for NonRandomState {
type Hasher = std::collections::hash_map::DefaultHasher;
#[inline]
fn build_hasher(&self) -> Self::Hasher {
Self::Hasher::new()
}
}
/// Like `OwnedStore`, but avoids storing any value more than once.
pub(super) struct InternedStore<T: 'static> {
owned: OwnedStore<T>,
interner: HashMap<T, Handle, NonRandomState>,
}
impl<T: Copy + Eq + Hash> InternedStore<T> {
pub(super) fn new(counter: &'static AtomicUsize) -> Self {
InternedStore {
owned: OwnedStore::new(counter),
interner: HashMap::with_hasher(NonRandomState),
}
}
pub(super) fn alloc(&mut self, x: T) -> Handle {
let owned = &mut self.owned;
*self.interner.entry(x).or_insert_with(|| owned.alloc(x))
}
pub(super) fn copy(&mut self, h: Handle) -> T {
self.owned[h]
}
}

View file

@ -0,0 +1,493 @@
//! Internal interface for communicating between a `proc_macro` client
//! (a proc macro crate) and a `proc_macro` server (a compiler front-end).
//!
//! Serialization (with C ABI buffers) and unique integer handles are employed
//! to allow safely interfacing between two copies of `proc_macro` built
//! (from the same source) by different compilers with potentially mismatching
//! Rust ABIs (e.g., stage0/bin/rustc vs stage1/bin/rustc during bootstrap).
#![deny(unsafe_code)]
pub use super::{Delimiter, Level, LineColumn, Spacing};
use std::fmt;
use std::hash::Hash;
use std::marker;
use std::mem;
use std::ops::Bound;
use std::panic;
use std::sync::atomic::AtomicUsize;
use std::sync::Once;
use std::thread;
/// Higher-order macro describing the server RPC API, allowing automatic
/// generation of type-safe Rust APIs, both client-side and server-side.
///
/// `with_api!(MySelf, my_self, my_macro)` expands to:
/// ```rust,ignore (pseudo-code)
/// my_macro! {
/// // ...
/// Literal {
/// // ...
/// fn character(ch: char) -> MySelf::Literal;
/// // ...
/// fn span(my_self: &MySelf::Literal) -> MySelf::Span;
/// fn set_span(my_self: &mut MySelf::Literal, span: MySelf::Span);
/// },
/// // ...
/// }
/// ```
///
/// The first two arguments serve to customize the arguments names
/// and argument/return types, to enable several different usecases:
///
/// If `my_self` is just `self`, then each `fn` signature can be used
/// as-is for a method. If it's anything else (`self_` in practice),
/// then the signatures don't have a special `self` argument, and
/// can, therefore, have a different one introduced.
///
/// If `MySelf` is just `Self`, then the types are only valid inside
/// a trait or a trait impl, where the trait has associated types
/// for each of the API types. If non-associated types are desired,
/// a module name (`self` in practice) can be used instead of `Self`.
macro_rules! with_api {
($S:ident, $self:ident, $m:ident) => {
$m! {
FreeFunctions {
fn drop($self: $S::FreeFunctions);
fn track_env_var(var: &str, value: Option<&str>);
fn track_path(path: &str);
},
TokenStream {
fn drop($self: $S::TokenStream);
fn clone($self: &$S::TokenStream) -> $S::TokenStream;
fn is_empty($self: &$S::TokenStream) -> bool;
fn expand_expr($self: &$S::TokenStream) -> Result<$S::TokenStream, ()>;
fn from_str(src: &str) -> $S::TokenStream;
fn to_string($self: &$S::TokenStream) -> String;
fn from_token_tree(
tree: TokenTree<$S::TokenStream, $S::Span, $S::Ident, $S::Literal>,
) -> $S::TokenStream;
fn concat_trees(
base: Option<$S::TokenStream>,
trees: Vec<TokenTree<$S::TokenStream, $S::Span, $S::Ident, $S::Literal>>,
) -> $S::TokenStream;
fn concat_streams(
base: Option<$S::TokenStream>,
streams: Vec<$S::TokenStream>,
) -> $S::TokenStream;
fn into_trees(
$self: $S::TokenStream
) -> Vec<TokenTree<$S::TokenStream, $S::Span, $S::Ident, $S::Literal>>;
},
Ident {
fn new(string: &str, span: $S::Span, is_raw: bool) -> $S::Ident;
fn span($self: $S::Ident) -> $S::Span;
fn with_span($self: $S::Ident, span: $S::Span) -> $S::Ident;
},
Literal {
fn drop($self: $S::Literal);
fn clone($self: &$S::Literal) -> $S::Literal;
fn from_str(s: &str) -> Result<$S::Literal, ()>;
fn to_string($self: &$S::Literal) -> String;
fn debug_kind($self: &$S::Literal) -> String;
fn symbol($self: &$S::Literal) -> String;
fn suffix($self: &$S::Literal) -> Option<String>;
fn integer(n: &str) -> $S::Literal;
fn typed_integer(n: &str, kind: &str) -> $S::Literal;
fn float(n: &str) -> $S::Literal;
fn f32(n: &str) -> $S::Literal;
fn f64(n: &str) -> $S::Literal;
fn string(string: &str) -> $S::Literal;
fn character(ch: char) -> $S::Literal;
fn byte_string(bytes: &[u8]) -> $S::Literal;
fn span($self: &$S::Literal) -> $S::Span;
fn set_span($self: &mut $S::Literal, span: $S::Span);
fn subspan(
$self: &$S::Literal,
start: Bound<usize>,
end: Bound<usize>,
) -> Option<$S::Span>;
},
SourceFile {
fn drop($self: $S::SourceFile);
fn clone($self: &$S::SourceFile) -> $S::SourceFile;
fn eq($self: &$S::SourceFile, other: &$S::SourceFile) -> bool;
fn path($self: &$S::SourceFile) -> String;
fn is_real($self: &$S::SourceFile) -> bool;
},
MultiSpan {
fn drop($self: $S::MultiSpan);
fn new() -> $S::MultiSpan;
fn push($self: &mut $S::MultiSpan, span: $S::Span);
},
Diagnostic {
fn drop($self: $S::Diagnostic);
fn new(level: Level, msg: &str, span: $S::MultiSpan) -> $S::Diagnostic;
fn sub(
$self: &mut $S::Diagnostic,
level: Level,
msg: &str,
span: $S::MultiSpan,
);
fn emit($self: $S::Diagnostic);
},
Span {
fn debug($self: $S::Span) -> String;
fn source_file($self: $S::Span) -> $S::SourceFile;
fn parent($self: $S::Span) -> Option<$S::Span>;
fn source($self: $S::Span) -> $S::Span;
fn start($self: $S::Span) -> LineColumn;
fn end($self: $S::Span) -> LineColumn;
fn before($self: $S::Span) -> $S::Span;
fn after($self: $S::Span) -> $S::Span;
fn join($self: $S::Span, other: $S::Span) -> Option<$S::Span>;
fn resolved_at($self: $S::Span, at: $S::Span) -> $S::Span;
fn source_text($self: $S::Span) -> Option<String>;
fn save_span($self: $S::Span) -> usize;
fn recover_proc_macro_span(id: usize) -> $S::Span;
},
}
};
}
// FIXME(eddyb) this calls `encode` for each argument, but in reverse,
// to match the ordering in `reverse_decode`.
macro_rules! reverse_encode {
($writer:ident;) => {};
($writer:ident; $first:ident $(, $rest:ident)*) => {
reverse_encode!($writer; $($rest),*);
$first.encode(&mut $writer, &mut ());
}
}
// FIXME(eddyb) this calls `decode` for each argument, but in reverse,
// to avoid borrow conflicts from borrows started by `&mut` arguments.
macro_rules! reverse_decode {
($reader:ident, $s:ident;) => {};
($reader:ident, $s:ident; $first:ident: $first_ty:ty $(, $rest:ident: $rest_ty:ty)*) => {
reverse_decode!($reader, $s; $($rest: $rest_ty),*);
let $first = <$first_ty>::decode(&mut $reader, $s);
}
}
#[allow(unsafe_code)]
mod buffer;
#[forbid(unsafe_code)]
pub mod client;
#[allow(unsafe_code)]
mod closure;
#[forbid(unsafe_code)]
mod handle;
#[macro_use]
#[forbid(unsafe_code)]
mod rpc;
#[allow(unsafe_code)]
mod scoped_cell;
#[allow(unsafe_code)]
mod selfless_reify;
#[forbid(unsafe_code)]
pub mod server;
use buffer::Buffer;
pub use rpc::PanicMessage;
use rpc::{Decode, DecodeMut, Encode, Reader, Writer};
/// Configuration for establishing an active connection between a server and a
/// client. The server creates the bridge config (`run_server` in `server.rs`),
/// then passes it to the client through the function pointer in the `run` field
/// of `client::Client`. The client constructs a local `Bridge` from the config
/// in TLS during its execution (`Bridge::{enter, with}` in `client.rs`).
#[repr(C)]
pub struct BridgeConfig<'a> {
/// Buffer used to pass initial input to the client.
input: Buffer,
/// Server-side function that the client uses to make requests.
dispatch: closure::Closure<'a, Buffer, Buffer>,
/// If 'true', always invoke the default panic hook
force_show_panics: bool,
// Prevent Send and Sync impls. `!Send`/`!Sync` is the usual way of doing
// this, but that requires unstable features. rust-analyzer uses this code
// and avoids unstable features.
_marker: marker::PhantomData<*mut ()>,
}
#[forbid(unsafe_code)]
#[allow(non_camel_case_types)]
mod api_tags {
use super::rpc::{DecodeMut, Encode, Reader, Writer};
macro_rules! declare_tags {
($($name:ident {
$(fn $method:ident($($arg:ident: $arg_ty:ty),* $(,)?) $(-> $ret_ty:ty)*;)*
}),* $(,)?) => {
$(
pub(super) enum $name {
$($method),*
}
rpc_encode_decode!(enum $name { $($method),* });
)*
pub(super) enum Method {
$($name($name)),*
}
rpc_encode_decode!(enum Method { $($name(m)),* });
}
}
with_api!(self, self, declare_tags);
}
/// Helper to wrap associated types to allow trait impl dispatch.
/// That is, normally a pair of impls for `T::Foo` and `T::Bar`
/// can overlap, but if the impls are, instead, on types like
/// `Marked<T::Foo, Foo>` and `Marked<T::Bar, Bar>`, they can't.
trait Mark {
type Unmarked;
fn mark(unmarked: Self::Unmarked) -> Self;
}
/// Unwrap types wrapped by `Mark::mark` (see `Mark` for details).
trait Unmark {
type Unmarked;
fn unmark(self) -> Self::Unmarked;
}
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
struct Marked<T, M> {
value: T,
_marker: marker::PhantomData<M>,
}
impl<T, M> Mark for Marked<T, M> {
type Unmarked = T;
fn mark(unmarked: Self::Unmarked) -> Self {
Marked { value: unmarked, _marker: marker::PhantomData }
}
}
impl<T, M> Unmark for Marked<T, M> {
type Unmarked = T;
fn unmark(self) -> Self::Unmarked {
self.value
}
}
impl<'a, T, M> Unmark for &'a Marked<T, M> {
type Unmarked = &'a T;
fn unmark(self) -> Self::Unmarked {
&self.value
}
}
impl<'a, T, M> Unmark for &'a mut Marked<T, M> {
type Unmarked = &'a mut T;
fn unmark(self) -> Self::Unmarked {
&mut self.value
}
}
impl<T: Mark> Mark for Vec<T> {
type Unmarked = Vec<T::Unmarked>;
fn mark(unmarked: Self::Unmarked) -> Self {
// Should be a no-op due to std's in-place collect optimizations.
unmarked.into_iter().map(T::mark).collect()
}
}
impl<T: Unmark> Unmark for Vec<T> {
type Unmarked = Vec<T::Unmarked>;
fn unmark(self) -> Self::Unmarked {
// Should be a no-op due to std's in-place collect optimizations.
self.into_iter().map(T::unmark).collect()
}
}
macro_rules! mark_noop {
($($ty:ty),* $(,)?) => {
$(
impl Mark for $ty {
type Unmarked = Self;
fn mark(unmarked: Self::Unmarked) -> Self {
unmarked
}
}
impl Unmark for $ty {
type Unmarked = Self;
fn unmark(self) -> Self::Unmarked {
self
}
}
)*
}
}
mark_noop! {
(),
bool,
char,
&'_ [u8],
&'_ str,
String,
u8,
usize,
Delimiter,
Level,
LineColumn,
Spacing,
}
rpc_encode_decode!(
enum Delimiter {
Parenthesis,
Brace,
Bracket,
None,
}
);
rpc_encode_decode!(
enum Level {
Error,
Warning,
Note,
Help,
}
);
rpc_encode_decode!(struct LineColumn { line, column });
rpc_encode_decode!(
enum Spacing {
Alone,
Joint,
}
);
macro_rules! mark_compound {
(struct $name:ident <$($T:ident),+> { $($field:ident),* $(,)? }) => {
impl<$($T: Mark),+> Mark for $name <$($T),+> {
type Unmarked = $name <$($T::Unmarked),+>;
fn mark(unmarked: Self::Unmarked) -> Self {
$name {
$($field: Mark::mark(unmarked.$field)),*
}
}
}
impl<$($T: Unmark),+> Unmark for $name <$($T),+> {
type Unmarked = $name <$($T::Unmarked),+>;
fn unmark(self) -> Self::Unmarked {
$name {
$($field: Unmark::unmark(self.$field)),*
}
}
}
};
(enum $name:ident <$($T:ident),+> { $($variant:ident $(($field:ident))?),* $(,)? }) => {
impl<$($T: Mark),+> Mark for $name <$($T),+> {
type Unmarked = $name <$($T::Unmarked),+>;
fn mark(unmarked: Self::Unmarked) -> Self {
match unmarked {
$($name::$variant $(($field))? => {
$name::$variant $((Mark::mark($field)))?
})*
}
}
}
impl<$($T: Unmark),+> Unmark for $name <$($T),+> {
type Unmarked = $name <$($T::Unmarked),+>;
fn unmark(self) -> Self::Unmarked {
match self {
$($name::$variant $(($field))? => {
$name::$variant $((Unmark::unmark($field)))?
})*
}
}
}
}
}
macro_rules! compound_traits {
($($t:tt)*) => {
rpc_encode_decode!($($t)*);
mark_compound!($($t)*);
};
}
compound_traits!(
enum Bound<T> {
Included(x),
Excluded(x),
Unbounded,
}
);
compound_traits!(
enum Option<T> {
Some(t),
None,
}
);
compound_traits!(
enum Result<T, E> {
Ok(t),
Err(e),
}
);
#[derive(Copy, Clone)]
pub struct DelimSpan<Span> {
pub open: Span,
pub close: Span,
pub entire: Span,
}
impl<Span: Copy> DelimSpan<Span> {
pub fn from_single(span: Span) -> Self {
DelimSpan { open: span, close: span, entire: span }
}
}
compound_traits!(struct DelimSpan<Span> { open, close, entire });
#[derive(Clone)]
pub struct Group<TokenStream, Span> {
pub delimiter: Delimiter,
pub stream: Option<TokenStream>,
pub span: DelimSpan<Span>,
}
compound_traits!(struct Group<TokenStream, Span> { delimiter, stream, span });
#[derive(Clone)]
pub struct Punct<Span> {
pub ch: u8,
pub joint: bool,
pub span: Span,
}
compound_traits!(struct Punct<Span> { ch, joint, span });
#[derive(Clone)]
pub enum TokenTree<TokenStream, Span, Ident, Literal> {
Group(Group<TokenStream, Span>),
Punct(Punct<Span>),
Ident(Ident),
Literal(Literal),
}
compound_traits!(
enum TokenTree<TokenStream, Span, Ident, Literal> {
Group(tt),
Punct(tt),
Ident(tt),
Literal(tt),
}
);
/// Globals provided alongside the initial inputs for a macro expansion.
/// Provides values such as spans which are used frequently to avoid RPC.
#[derive(Clone)]
pub struct ExpnGlobals<Span> {
pub def_site: Span,
pub call_site: Span,
pub mixed_site: Span,
}
compound_traits!(
struct ExpnGlobals<Span> { def_site, call_site, mixed_site }
);

View file

@ -0,0 +1,304 @@
//! Serialization for client-server communication.
use std::any::Any;
use std::char;
use std::io::Write;
use std::num::NonZeroU32;
use std::str;
pub(super) type Writer = super::buffer::Buffer;
pub(super) trait Encode<S>: Sized {
fn encode(self, w: &mut Writer, s: &mut S);
}
pub(super) type Reader<'a> = &'a [u8];
pub(super) trait Decode<'a, 's, S>: Sized {
fn decode(r: &mut Reader<'a>, s: &'s S) -> Self;
}
pub(super) trait DecodeMut<'a, 's, S>: Sized {
fn decode(r: &mut Reader<'a>, s: &'s mut S) -> Self;
}
macro_rules! rpc_encode_decode {
(le $ty:ty) => {
impl<S> Encode<S> for $ty {
fn encode(self, w: &mut Writer, _: &mut S) {
w.extend_from_array(&self.to_le_bytes());
}
}
impl<S> DecodeMut<'_, '_, S> for $ty {
fn decode(r: &mut Reader<'_>, _: &mut S) -> Self {
const N: usize = ::std::mem::size_of::<$ty>();
let mut bytes = [0; N];
bytes.copy_from_slice(&r[..N]);
*r = &r[N..];
Self::from_le_bytes(bytes)
}
}
};
(struct $name:ident $(<$($T:ident),+>)? { $($field:ident),* $(,)? }) => {
impl<S, $($($T: Encode<S>),+)?> Encode<S> for $name $(<$($T),+>)? {
fn encode(self, w: &mut Writer, s: &mut S) {
$(self.$field.encode(w, s);)*
}
}
impl<'a, S, $($($T: for<'s> DecodeMut<'a, 's, S>),+)?> DecodeMut<'a, '_, S>
for $name $(<$($T),+>)?
{
fn decode(r: &mut Reader<'a>, s: &mut S) -> Self {
$name {
$($field: DecodeMut::decode(r, s)),*
}
}
}
};
(enum $name:ident $(<$($T:ident),+>)? { $($variant:ident $(($field:ident))*),* $(,)? }) => {
impl<S, $($($T: Encode<S>),+)?> Encode<S> for $name $(<$($T),+>)? {
fn encode(self, w: &mut Writer, s: &mut S) {
// HACK(eddyb): `Tag` enum duplicated between the
// two impls as there's no other place to stash it.
#[allow(non_upper_case_globals)]
mod tag {
#[repr(u8)] enum Tag { $($variant),* }
$(pub const $variant: u8 = Tag::$variant as u8;)*
}
match self {
$($name::$variant $(($field))* => {
tag::$variant.encode(w, s);
$($field.encode(w, s);)*
})*
}
}
}
impl<'a, S, $($($T: for<'s> DecodeMut<'a, 's, S>),+)?> DecodeMut<'a, '_, S>
for $name $(<$($T),+>)?
{
fn decode(r: &mut Reader<'a>, s: &mut S) -> Self {
// HACK(eddyb): `Tag` enum duplicated between the
// two impls as there's no other place to stash it.
#[allow(non_upper_case_globals)]
mod tag {
#[repr(u8)] enum Tag { $($variant),* }
$(pub const $variant: u8 = Tag::$variant as u8;)*
}
match u8::decode(r, s) {
$(tag::$variant => {
$(let $field = DecodeMut::decode(r, s);)*
$name::$variant $(($field))*
})*
_ => unreachable!(),
}
}
}
}
}
impl<S> Encode<S> for () {
fn encode(self, _: &mut Writer, _: &mut S) {}
}
impl<S> DecodeMut<'_, '_, S> for () {
fn decode(_: &mut Reader<'_>, _: &mut S) -> Self {}
}
impl<S> Encode<S> for u8 {
fn encode(self, w: &mut Writer, _: &mut S) {
w.push(self);
}
}
impl<S> DecodeMut<'_, '_, S> for u8 {
fn decode(r: &mut Reader<'_>, _: &mut S) -> Self {
let x = r[0];
*r = &r[1..];
x
}
}
rpc_encode_decode!(le u32);
rpc_encode_decode!(le usize);
impl<S> Encode<S> for bool {
fn encode(self, w: &mut Writer, s: &mut S) {
(self as u8).encode(w, s);
}
}
impl<S> DecodeMut<'_, '_, S> for bool {
fn decode(r: &mut Reader<'_>, s: &mut S) -> Self {
match u8::decode(r, s) {
0 => false,
1 => true,
_ => unreachable!(),
}
}
}
impl<S> Encode<S> for char {
fn encode(self, w: &mut Writer, s: &mut S) {
(self as u32).encode(w, s);
}
}
impl<S> DecodeMut<'_, '_, S> for char {
fn decode(r: &mut Reader<'_>, s: &mut S) -> Self {
char::from_u32(u32::decode(r, s)).unwrap()
}
}
impl<S> Encode<S> for NonZeroU32 {
fn encode(self, w: &mut Writer, s: &mut S) {
self.get().encode(w, s);
}
}
impl<S> DecodeMut<'_, '_, S> for NonZeroU32 {
fn decode(r: &mut Reader<'_>, s: &mut S) -> Self {
Self::new(u32::decode(r, s)).unwrap()
}
}
impl<S, A: Encode<S>, B: Encode<S>> Encode<S> for (A, B) {
fn encode(self, w: &mut Writer, s: &mut S) {
self.0.encode(w, s);
self.1.encode(w, s);
}
}
impl<'a, S, A: for<'s> DecodeMut<'a, 's, S>, B: for<'s> DecodeMut<'a, 's, S>> DecodeMut<'a, '_, S>
for (A, B)
{
fn decode(r: &mut Reader<'a>, s: &mut S) -> Self {
(DecodeMut::decode(r, s), DecodeMut::decode(r, s))
}
}
impl<S> Encode<S> for &[u8] {
fn encode(self, w: &mut Writer, s: &mut S) {
self.len().encode(w, s);
w.write_all(self).unwrap();
}
}
impl<'a, S> DecodeMut<'a, '_, S> for &'a [u8] {
fn decode(r: &mut Reader<'a>, s: &mut S) -> Self {
let len = usize::decode(r, s);
let xs = &r[..len];
*r = &r[len..];
xs
}
}
impl<S> Encode<S> for &str {
fn encode(self, w: &mut Writer, s: &mut S) {
self.as_bytes().encode(w, s);
}
}
impl<'a, S> DecodeMut<'a, '_, S> for &'a str {
fn decode(r: &mut Reader<'a>, s: &mut S) -> Self {
str::from_utf8(<&[u8]>::decode(r, s)).unwrap()
}
}
impl<S> Encode<S> for String {
fn encode(self, w: &mut Writer, s: &mut S) {
self[..].encode(w, s);
}
}
impl<S> DecodeMut<'_, '_, S> for String {
fn decode(r: &mut Reader<'_>, s: &mut S) -> Self {
<&str>::decode(r, s).to_string()
}
}
impl<S, T: Encode<S>> Encode<S> for Vec<T> {
fn encode(self, w: &mut Writer, s: &mut S) {
self.len().encode(w, s);
for x in self {
x.encode(w, s);
}
}
}
impl<'a, S, T: for<'s> DecodeMut<'a, 's, S>> DecodeMut<'a, '_, S> for Vec<T> {
fn decode(r: &mut Reader<'a>, s: &mut S) -> Self {
let len = usize::decode(r, s);
let mut vec = Vec::with_capacity(len);
for _ in 0..len {
vec.push(T::decode(r, s));
}
vec
}
}
/// Simplified version of panic payloads, ignoring
/// types other than `&'static str` and `String`.
pub enum PanicMessage {
StaticStr(&'static str),
String(String),
Unknown,
}
impl From<Box<dyn Any + Send>> for PanicMessage {
fn from(payload: Box<dyn Any + Send + 'static>) -> Self {
if let Some(s) = payload.downcast_ref::<&'static str>() {
return PanicMessage::StaticStr(s);
}
if let Ok(s) = payload.downcast::<String>() {
return PanicMessage::String(*s);
}
PanicMessage::Unknown
}
}
impl Into<Box<dyn Any + Send>> for PanicMessage {
fn into(self) -> Box<dyn Any + Send> {
match self {
PanicMessage::StaticStr(s) => Box::new(s),
PanicMessage::String(s) => Box::new(s),
PanicMessage::Unknown => {
struct UnknownPanicMessage;
Box::new(UnknownPanicMessage)
}
}
}
}
impl PanicMessage {
pub fn as_str(&self) -> Option<&str> {
match self {
PanicMessage::StaticStr(s) => Some(s),
PanicMessage::String(s) => Some(s),
PanicMessage::Unknown => None,
}
}
}
impl<S> Encode<S> for PanicMessage {
fn encode(self, w: &mut Writer, s: &mut S) {
self.as_str().encode(w, s);
}
}
impl<S> DecodeMut<'_, '_, S> for PanicMessage {
fn decode(r: &mut Reader<'_>, s: &mut S) -> Self {
match Option::<String>::decode(r, s) {
Some(s) => PanicMessage::String(s),
None => PanicMessage::Unknown,
}
}
}

View file

@ -0,0 +1,81 @@
//! `Cell` variant for (scoped) existential lifetimes.
use std::cell::Cell;
use std::mem;
use std::ops::{Deref, DerefMut};
/// Type lambda application, with a lifetime.
#[allow(unused_lifetimes)]
pub trait ApplyL<'a> {
type Out;
}
/// Type lambda taking a lifetime, i.e., `Lifetime -> Type`.
pub trait LambdaL: for<'a> ApplyL<'a> {}
impl<T: for<'a> ApplyL<'a>> LambdaL for T {}
// HACK(eddyb) work around projection limitations with a newtype
// FIXME(#52812) replace with `&'a mut <T as ApplyL<'b>>::Out`
pub struct RefMutL<'a, 'b, T: LambdaL>(&'a mut <T as ApplyL<'b>>::Out);
impl<'a, 'b, T: LambdaL> Deref for RefMutL<'a, 'b, T> {
type Target = <T as ApplyL<'b>>::Out;
fn deref(&self) -> &Self::Target {
self.0
}
}
impl<'a, 'b, T: LambdaL> DerefMut for RefMutL<'a, 'b, T> {
fn deref_mut(&mut self) -> &mut Self::Target {
self.0
}
}
pub struct ScopedCell<T: LambdaL>(Cell<<T as ApplyL<'static>>::Out>);
impl<T: LambdaL> ScopedCell<T> {
pub const fn new(value: <T as ApplyL<'static>>::Out) -> Self {
ScopedCell(Cell::new(value))
}
/// Sets the value in `self` to `replacement` while
/// running `f`, which gets the old value, mutably.
/// The old value will be restored after `f` exits, even
/// by panic, including modifications made to it by `f`.
pub fn replace<'a, R>(
&self,
replacement: <T as ApplyL<'a>>::Out,
f: impl for<'b, 'c> FnOnce(RefMutL<'b, 'c, T>) -> R,
) -> R {
/// Wrapper that ensures that the cell always gets filled
/// (with the original state, optionally changed by `f`),
/// even if `f` had panicked.
struct PutBackOnDrop<'a, T: LambdaL> {
cell: &'a ScopedCell<T>,
value: Option<<T as ApplyL<'static>>::Out>,
}
impl<'a, T: LambdaL> Drop for PutBackOnDrop<'a, T> {
fn drop(&mut self) {
self.cell.0.set(self.value.take().unwrap());
}
}
let mut put_back_on_drop = PutBackOnDrop {
cell: self,
value: Some(self.0.replace(unsafe {
let erased = mem::transmute_copy(&replacement);
mem::forget(replacement);
erased
})),
};
f(RefMutL(put_back_on_drop.value.as_mut().unwrap()))
}
/// Sets the value in `self` to `value` while running `f`.
pub fn set<R>(&self, value: <T as ApplyL<'_>>::Out, f: impl FnOnce() -> R) -> R {
self.replace(value, |_| f())
}
}

View file

@ -0,0 +1,84 @@
//! Abstraction for creating `fn` pointers from any callable that *effectively*
//! has the equivalent of implementing `Default`, even if the compiler neither
//! provides `Default` nor allows reifying closures (i.e. creating `fn` pointers)
//! other than those with absolutely no captures.
//!
//! More specifically, for a closure-like type to be "effectively `Default`":
//! * it must be a ZST (zero-sized type): no information contained within, so
//! that `Default`'s return value (if it were implemented) is unambiguous
//! * it must be `Copy`: no captured "unique ZST tokens" or any other similar
//! types that would make duplicating values at will unsound
//! * combined with the ZST requirement, this confers a kind of "telecopy"
//! ability: similar to `Copy`, but without keeping the value around, and
//! instead "reconstructing" it (a noop given it's a ZST) when needed
//! * it must be *provably* inhabited: no captured uninhabited types or any
//! other types that cannot be constructed by the user of this abstraction
//! * the proof is a value of the closure-like type itself, in a sense the
//! "seed" for the "telecopy" process made possible by ZST + `Copy`
//! * this requirement is the only reason an abstraction limited to a specific
//! usecase is required: ZST + `Copy` can be checked with *at worst* a panic
//! at the "attempted `::default()` call" time, but that doesn't guarantee
//! that the value can be soundly created, and attempting to use the typical
//! "proof ZST token" approach leads yet again to having a ZST + `Copy` type
//! that is not proof of anything without a value (i.e. isomorphic to a
//! newtype of the type it's trying to prove the inhabitation of)
//!
//! A more flexible (and safer) solution to the general problem could exist once
//! `const`-generic parameters can have type parameters in their types:
//!
//! ```rust,ignore (needs future const-generics)
//! extern "C" fn ffi_wrapper<
//! A, R,
//! F: Fn(A) -> R,
//! const f: F, // <-- this `const`-generic is not yet allowed
//! >(arg: A) -> R {
//! f(arg)
//! }
//! ```
use std::mem;
// FIXME(eddyb) this could be `trait` impls except for the `const fn` requirement.
macro_rules! define_reify_functions {
($(
fn $name:ident $(<$($param:ident),*>)?
for $(extern $abi:tt)? fn($($arg:ident: $arg_ty:ty),*) -> $ret_ty:ty;
)+) => {
$(pub const fn $name<
$($($param,)*)?
F: Fn($($arg_ty),*) -> $ret_ty + Copy
>(f: F) -> $(extern $abi)? fn($($arg_ty),*) -> $ret_ty {
// FIXME(eddyb) describe the `F` type (e.g. via `type_name::<F>`) once panic
// formatting becomes possible in `const fn`.
assert!(mem::size_of::<F>() == 0, "selfless_reify: closure must be zero-sized");
$(extern $abi)? fn wrapper<
$($($param,)*)?
F: Fn($($arg_ty),*) -> $ret_ty + Copy
>($($arg: $arg_ty),*) -> $ret_ty {
let f = unsafe {
// SAFETY: `F` satisfies all criteria for "out of thin air"
// reconstructability (see module-level doc comment).
mem::MaybeUninit::<F>::uninit().assume_init()
};
f($($arg),*)
}
let _f_proof = f;
wrapper::<
$($($param,)*)?
F
>
})+
}
}
define_reify_functions! {
fn _reify_to_extern_c_fn_unary<A, R> for extern "C" fn(arg: A) -> R;
// HACK(eddyb) this abstraction is used with `for<'a> fn(BridgeConfig<'a>)
// -> T` but that doesn't work with just `reify_to_extern_c_fn_unary`
// because of the `fn` pointer type being "higher-ranked" (i.e. the
// `for<'a>` binder).
// FIXME(eddyb) try to remove the lifetime from `BridgeConfig`, that'd help.
fn reify_to_extern_c_fn_hrt_bridge<R> for extern "C" fn(bridge: super::BridgeConfig<'_>) -> R;
}

View file

@ -0,0 +1,339 @@
//! Server-side traits.
use super::*;
// FIXME(eddyb) generate the definition of `HandleStore` in `server.rs`.
use super::client::HandleStore;
pub trait Types {
type FreeFunctions: 'static;
type TokenStream: 'static + Clone;
type Ident: 'static + Copy + Eq + Hash;
type Literal: 'static + Clone;
type SourceFile: 'static + Clone;
type MultiSpan: 'static;
type Diagnostic: 'static;
type Span: 'static + Copy + Eq + Hash;
}
/// Declare an associated fn of one of the traits below, adding necessary
/// default bodies.
macro_rules! associated_fn {
(fn drop(&mut self, $arg:ident: $arg_ty:ty)) =>
(fn drop(&mut self, $arg: $arg_ty) { mem::drop($arg) });
(fn clone(&mut self, $arg:ident: $arg_ty:ty) -> $ret_ty:ty) =>
(fn clone(&mut self, $arg: $arg_ty) -> $ret_ty { $arg.clone() });
($($item:tt)*) => ($($item)*;)
}
macro_rules! declare_server_traits {
($($name:ident {
$(fn $method:ident($($arg:ident: $arg_ty:ty),* $(,)?) $(-> $ret_ty:ty)?;)*
}),* $(,)?) => {
$(pub trait $name: Types {
$(associated_fn!(fn $method(&mut self, $($arg: $arg_ty),*) $(-> $ret_ty)?);)*
})*
pub trait Server: Types $(+ $name)* {
fn globals(&mut self) -> ExpnGlobals<Self::Span>;
}
}
}
with_api!(Self, self_, declare_server_traits);
pub(super) struct MarkedTypes<S: Types>(S);
impl<S: Server> Server for MarkedTypes<S> {
fn globals(&mut self) -> ExpnGlobals<Self::Span> {
<_>::mark(Server::globals(&mut self.0))
}
}
macro_rules! define_mark_types_impls {
($($name:ident {
$(fn $method:ident($($arg:ident: $arg_ty:ty),* $(,)?) $(-> $ret_ty:ty)?;)*
}),* $(,)?) => {
impl<S: Types> Types for MarkedTypes<S> {
$(type $name = Marked<S::$name, client::$name>;)*
}
$(impl<S: $name> $name for MarkedTypes<S> {
$(fn $method(&mut self, $($arg: $arg_ty),*) $(-> $ret_ty)? {
<_>::mark($name::$method(&mut self.0, $($arg.unmark()),*))
})*
})*
}
}
with_api!(Self, self_, define_mark_types_impls);
struct Dispatcher<S: Types> {
handle_store: HandleStore<S>,
server: S,
}
macro_rules! define_dispatcher_impl {
($($name:ident {
$(fn $method:ident($($arg:ident: $arg_ty:ty),* $(,)?) $(-> $ret_ty:ty)?;)*
}),* $(,)?) => {
// FIXME(eddyb) `pub` only for `ExecutionStrategy` below.
pub trait DispatcherTrait {
// HACK(eddyb) these are here to allow `Self::$name` to work below.
$(type $name;)*
fn dispatch(&mut self, buf: Buffer) -> Buffer;
}
impl<S: Server> DispatcherTrait for Dispatcher<MarkedTypes<S>> {
$(type $name = <MarkedTypes<S> as Types>::$name;)*
fn dispatch(&mut self, mut buf: Buffer) -> Buffer {
let Dispatcher { handle_store, server } = self;
let mut reader = &buf[..];
match api_tags::Method::decode(&mut reader, &mut ()) {
$(api_tags::Method::$name(m) => match m {
$(api_tags::$name::$method => {
let mut call_method = || {
reverse_decode!(reader, handle_store; $($arg: $arg_ty),*);
$name::$method(server, $($arg),*)
};
// HACK(eddyb) don't use `panic::catch_unwind` in a panic.
// If client and server happen to use the same `libstd`,
// `catch_unwind` asserts that the panic counter was 0,
// even when the closure passed to it didn't panic.
let r = if thread::panicking() {
Ok(call_method())
} else {
panic::catch_unwind(panic::AssertUnwindSafe(call_method))
.map_err(PanicMessage::from)
};
buf.clear();
r.encode(&mut buf, handle_store);
})*
}),*
}
buf
}
}
}
}
with_api!(Self, self_, define_dispatcher_impl);
pub trait ExecutionStrategy {
fn run_bridge_and_client(
&self,
dispatcher: &mut impl DispatcherTrait,
input: Buffer,
run_client: extern "C" fn(BridgeConfig<'_>) -> Buffer,
force_show_panics: bool,
) -> Buffer;
}
pub struct SameThread;
impl ExecutionStrategy for SameThread {
fn run_bridge_and_client(
&self,
dispatcher: &mut impl DispatcherTrait,
input: Buffer,
run_client: extern "C" fn(BridgeConfig<'_>) -> Buffer,
force_show_panics: bool,
) -> Buffer {
let mut dispatch = |buf| dispatcher.dispatch(buf);
run_client(BridgeConfig {
input,
dispatch: (&mut dispatch).into(),
force_show_panics,
_marker: marker::PhantomData,
})
}
}
// NOTE(eddyb) Two implementations are provided, the second one is a bit
// faster but neither is anywhere near as fast as same-thread execution.
pub struct CrossThread1;
impl ExecutionStrategy for CrossThread1 {
fn run_bridge_and_client(
&self,
dispatcher: &mut impl DispatcherTrait,
input: Buffer,
run_client: extern "C" fn(BridgeConfig<'_>) -> Buffer,
force_show_panics: bool,
) -> Buffer {
use std::sync::mpsc::channel;
let (req_tx, req_rx) = channel();
let (res_tx, res_rx) = channel();
let join_handle = thread::spawn(move || {
let mut dispatch = |buf| {
req_tx.send(buf).unwrap();
res_rx.recv().unwrap()
};
run_client(BridgeConfig {
input,
dispatch: (&mut dispatch).into(),
force_show_panics,
_marker: marker::PhantomData,
})
});
for b in req_rx {
res_tx.send(dispatcher.dispatch(b)).unwrap();
}
join_handle.join().unwrap()
}
}
pub struct CrossThread2;
impl ExecutionStrategy for CrossThread2 {
fn run_bridge_and_client(
&self,
dispatcher: &mut impl DispatcherTrait,
input: Buffer,
run_client: extern "C" fn(BridgeConfig<'_>) -> Buffer,
force_show_panics: bool,
) -> Buffer {
use std::sync::{Arc, Mutex};
enum State<T> {
Req(T),
Res(T),
}
let mut state = Arc::new(Mutex::new(State::Res(Buffer::new())));
let server_thread = thread::current();
let state2 = state.clone();
let join_handle = thread::spawn(move || {
let mut dispatch = |b| {
*state2.lock().unwrap() = State::Req(b);
server_thread.unpark();
loop {
thread::park();
if let State::Res(b) = &mut *state2.lock().unwrap() {
break b.take();
}
}
};
let r = run_client(BridgeConfig {
input,
dispatch: (&mut dispatch).into(),
force_show_panics,
_marker: marker::PhantomData,
});
// Wake up the server so it can exit the dispatch loop.
drop(state2);
server_thread.unpark();
r
});
// Check whether `state2` was dropped, to know when to stop.
while Arc::get_mut(&mut state).is_none() {
thread::park();
let mut b = match &mut *state.lock().unwrap() {
State::Req(b) => b.take(),
_ => continue,
};
b = dispatcher.dispatch(b.take());
*state.lock().unwrap() = State::Res(b);
join_handle.thread().unpark();
}
join_handle.join().unwrap()
}
}
fn run_server<
S: Server,
I: Encode<HandleStore<MarkedTypes<S>>>,
O: for<'a, 's> DecodeMut<'a, 's, HandleStore<MarkedTypes<S>>>,
>(
strategy: &impl ExecutionStrategy,
handle_counters: &'static client::HandleCounters,
server: S,
input: I,
run_client: extern "C" fn(BridgeConfig<'_>) -> Buffer,
force_show_panics: bool,
) -> Result<O, PanicMessage> {
let mut dispatcher =
Dispatcher { handle_store: HandleStore::new(handle_counters), server: MarkedTypes(server) };
let globals = dispatcher.server.globals();
let mut buf = Buffer::new();
(globals, input).encode(&mut buf, &mut dispatcher.handle_store);
buf = strategy.run_bridge_and_client(&mut dispatcher, buf, run_client, force_show_panics);
Result::decode(&mut &buf[..], &mut dispatcher.handle_store)
}
impl client::Client<super::super::TokenStream, super::super::TokenStream> {
pub fn run<S>(
&self,
strategy: &impl ExecutionStrategy,
server: S,
input: S::TokenStream,
force_show_panics: bool,
) -> Result<S::TokenStream, PanicMessage>
where
S: Server,
S::TokenStream: Default,
{
let client::Client { get_handle_counters, run, _marker } = *self;
run_server(
strategy,
get_handle_counters(),
server,
<MarkedTypes<S> as Types>::TokenStream::mark(input),
run,
force_show_panics,
)
.map(|s| <Option<<MarkedTypes<S> as Types>::TokenStream>>::unmark(s).unwrap_or_default())
}
}
impl
client::Client<
(super::super::TokenStream, super::super::TokenStream),
super::super::TokenStream,
>
{
pub fn run<S>(
&self,
strategy: &impl ExecutionStrategy,
server: S,
input: S::TokenStream,
input2: S::TokenStream,
force_show_panics: bool,
) -> Result<S::TokenStream, PanicMessage>
where
S: Server,
S::TokenStream: Default,
{
let client::Client { get_handle_counters, run, _marker } = *self;
run_server(
strategy,
get_handle_counters(),
server,
(
<MarkedTypes<S> as Types>::TokenStream::mark(input),
<MarkedTypes<S> as Types>::TokenStream::mark(input2),
),
run,
force_show_panics,
)
.map(|s| <Option<<MarkedTypes<S> as Types>::TokenStream>>::unmark(s).unwrap_or_default())
}
}

View file

@ -0,0 +1,166 @@
//! lib-proc-macro diagnostic
//!
//! Copy from <https://github.com/rust-lang/rust/blob/e45d9973b2665897a768312e971b82cc62633103/src/libproc_macro/diagnostic.rs>
//! augmented with removing unstable features
use super::Span;
/// An enum representing a diagnostic level.
#[derive(Copy, Clone, Debug)]
#[non_exhaustive]
pub enum Level {
/// An error.
Error,
/// A warning.
Warning,
/// A note.
Note,
/// A help message.
Help,
}
/// Trait implemented by types that can be converted into a set of `Span`s.
pub trait MultiSpan {
/// Converts `self` into a `Vec<Span>`.
fn into_spans(self) -> Vec<Span>;
}
impl MultiSpan for Span {
fn into_spans(self) -> Vec<Span> {
vec![self]
}
}
impl MultiSpan for Vec<Span> {
fn into_spans(self) -> Vec<Span> {
self
}
}
impl<'a> MultiSpan for &'a [Span] {
fn into_spans(self) -> Vec<Span> {
self.to_vec()
}
}
/// A structure representing a diagnostic message and associated children
/// messages.
#[derive(Clone, Debug)]
pub struct Diagnostic {
level: Level,
message: String,
spans: Vec<Span>,
children: Vec<Diagnostic>,
}
macro_rules! diagnostic_child_methods {
($spanned:ident, $regular:ident, $level:expr) => {
#[doc = concat!("Adds a new child diagnostics message to `self` with the [`",
stringify!($level), "`] level, and the given `spans` and `message`.")]
pub fn $spanned<S, T>(mut self, spans: S, message: T) -> Diagnostic
where
S: MultiSpan,
T: Into<String>,
{
self.children.push(Diagnostic::spanned(spans, $level, message));
self
}
#[doc = concat!("Adds a new child diagnostic message to `self` with the [`",
stringify!($level), "`] level, and the given `message`.")]
pub fn $regular<T: Into<String>>(mut self, message: T) -> Diagnostic {
self.children.push(Diagnostic::new($level, message));
self
}
};
}
/// Iterator over the children diagnostics of a `Diagnostic`.
#[derive(Debug, Clone)]
pub struct Children<'a>(std::slice::Iter<'a, Diagnostic>);
impl<'a> Iterator for Children<'a> {
type Item = &'a Diagnostic;
fn next(&mut self) -> Option<Self::Item> {
self.0.next()
}
}
impl Diagnostic {
/// Creates a new diagnostic with the given `level` and `message`.
pub fn new<T: Into<String>>(level: Level, message: T) -> Diagnostic {
Diagnostic { level, message: message.into(), spans: vec![], children: vec![] }
}
/// Creates a new diagnostic with the given `level` and `message` pointing to
/// the given set of `spans`.
pub fn spanned<S, T>(spans: S, level: Level, message: T) -> Diagnostic
where
S: MultiSpan,
T: Into<String>,
{
Diagnostic { level, message: message.into(), spans: spans.into_spans(), children: vec![] }
}
diagnostic_child_methods!(span_error, error, Level::Error);
diagnostic_child_methods!(span_warning, warning, Level::Warning);
diagnostic_child_methods!(span_note, note, Level::Note);
diagnostic_child_methods!(span_help, help, Level::Help);
/// Returns the diagnostic `level` for `self`.
pub fn level(&self) -> Level {
self.level
}
/// Sets the level in `self` to `level`.
pub fn set_level(&mut self, level: Level) {
self.level = level;
}
/// Returns the message in `self`.
pub fn message(&self) -> &str {
&self.message
}
/// Sets the message in `self` to `message`.
pub fn set_message<T: Into<String>>(&mut self, message: T) {
self.message = message.into();
}
/// Returns the `Span`s in `self`.
pub fn spans(&self) -> &[Span] {
&self.spans
}
/// Sets the `Span`s in `self` to `spans`.
pub fn set_spans<S: MultiSpan>(&mut self, spans: S) {
self.spans = spans.into_spans();
}
/// Returns an iterator over the children diagnostics of `self`.
pub fn children(&self) -> Children<'_> {
Children(self.children.iter())
}
/// Emit the diagnostic.
pub fn emit(self) {
fn to_internal(spans: Vec<Span>) -> super::bridge::client::MultiSpan {
let mut multi_span = super::bridge::client::MultiSpan::new();
for span in spans {
multi_span.push(span.0);
}
multi_span
}
let mut diag = super::bridge::client::Diagnostic::new(
self.level,
&self.message[..],
to_internal(self.spans),
);
for c in self.children {
diag.sub(c.level, &c.message[..], to_internal(c.spans));
}
diag.emit();
}
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,139 @@
//! # Quasiquoter
//! This file contains the implementation internals of the quasiquoter provided by `quote!`.
//! This quasiquoter uses macros 2.0 hygiene to reliably access
//! items from `proc_macro`, to build a `proc_macro::TokenStream`.
use super::{Delimiter, Group, Ident, Literal, Punct, Spacing, Span, TokenStream, TokenTree};
macro_rules! quote_tt {
(($($t:tt)*)) => { Group::new(Delimiter::Parenthesis, quote!($($t)*)) };
([$($t:tt)*]) => { Group::new(Delimiter::Bracket, quote!($($t)*)) };
({$($t:tt)*}) => { Group::new(Delimiter::Brace, quote!($($t)*)) };
(,) => { Punct::new(',', Spacing::Alone) };
(.) => { Punct::new('.', Spacing::Alone) };
(;) => { Punct::new(';', Spacing::Alone) };
(!) => { Punct::new('!', Spacing::Alone) };
(<) => { Punct::new('<', Spacing::Alone) };
(>) => { Punct::new('>', Spacing::Alone) };
(&) => { Punct::new('&', Spacing::Alone) };
(=) => { Punct::new('=', Spacing::Alone) };
($i:ident) => { Ident::new(stringify!($i), Span::def_site()) };
}
macro_rules! quote_ts {
((@ $($t:tt)*)) => { $($t)* };
(::) => {
[
TokenTree::from(Punct::new(':', Spacing::Joint)),
TokenTree::from(Punct::new(':', Spacing::Alone)),
].iter()
.cloned()
.map(|mut x| {
x.set_span(Span::def_site());
x
})
.collect::<TokenStream>()
};
($t:tt) => { TokenTree::from(quote_tt!($t)) };
}
/// Simpler version of the real `quote!` macro, implemented solely
/// through `macro_rules`, for bootstrapping the real implementation
/// (see the `quote` function), which does not have access to the
/// real `quote!` macro due to the `proc_macro` crate not being
/// able to depend on itself.
///
/// Note: supported tokens are a subset of the real `quote!`, but
/// unquoting is different: instead of `$x`, this uses `(@ expr)`.
macro_rules! quote {
() => { TokenStream::new() };
($($t:tt)*) => {
[
$(TokenStream::from(quote_ts!($t)),)*
].iter().cloned().collect::<TokenStream>()
};
}
/// Quote a `TokenStream` into a `TokenStream`.
/// This is the actual implementation of the `quote!()` proc macro.
///
/// It is loaded by the compiler in `register_builtin_macros`.
pub fn quote(stream: TokenStream) -> TokenStream {
if stream.is_empty() {
return quote!(super::TokenStream::new());
}
let proc_macro_crate = quote!(crate);
let mut after_dollar = false;
let tokens = stream
.into_iter()
.filter_map(|tree| {
if after_dollar {
after_dollar = false;
match tree {
TokenTree::Ident(_) => {
return Some(quote!(Into::<super::TokenStream>::into(
Clone::clone(&(@ tree))),));
}
TokenTree::Punct(ref tt) if tt.as_char() == '$' => {}
_ => panic!("`$` must be followed by an ident or `$` in `quote!`"),
}
} else if let TokenTree::Punct(ref tt) = tree {
if tt.as_char() == '$' {
after_dollar = true;
return None;
}
}
Some(quote!(super::TokenStream::from((@ match tree {
TokenTree::Punct(tt) => quote!(super::TokenTree::Punct(super::Punct::new(
(@ TokenTree::from(Literal::character(tt.as_char()))),
(@ match tt.spacing() {
Spacing::Alone => quote!(super::Spacing::Alone),
Spacing::Joint => quote!(super::Spacing::Joint),
}),
))),
TokenTree::Group(tt) => quote!(super::TokenTree::Group(super::Group::new(
(@ match tt.delimiter() {
Delimiter::Parenthesis => quote!(super::Delimiter::Parenthesis),
Delimiter::Brace => quote!(super::Delimiter::Brace),
Delimiter::Bracket => quote!(super::Delimiter::Bracket),
Delimiter::None => quote!(super::Delimiter::None),
}),
(@ quote(tt.stream())),
))),
TokenTree::Ident(tt) => quote!(super::TokenTree::Ident(super::Ident::new(
(@ TokenTree::from(Literal::string(&tt.to_string()))),
(@ quote_span(proc_macro_crate.clone(), tt.span())),
))),
TokenTree::Literal(tt) => quote!(super::TokenTree::Literal({
let mut iter = (@ TokenTree::from(Literal::string(&tt.to_string())))
.parse::<super::TokenStream>()
.unwrap()
.into_iter();
if let (Some(super::TokenTree::Literal(mut lit)), None) =
(iter.next(), iter.next())
{
lit.set_span((@ quote_span(proc_macro_crate.clone(), tt.span())));
lit
} else {
unreachable!()
}
}))
})),))
})
.collect::<TokenStream>();
if after_dollar {
panic!("unexpected trailing `$` in `quote!`");
}
quote!([(@ tokens)].iter().cloned().collect::<super::TokenStream>())
}
/// Quote a `Span` into a `TokenStream`.
/// This is needed to implement a custom quoter.
pub fn quote_span(proc_macro_crate: TokenStream, span: Span) -> TokenStream {
let id = span.save_span();
quote!((@ proc_macro_crate ) ::Span::recover_proc_macro_span((@ TokenTree::from(Literal::usize_unsuffixed(id)))))
}

View file

@ -0,0 +1,792 @@
//! Rustc proc-macro server implementation with tt
//!
//! Based on idea from <https://github.com/fedochet/rust-proc-macro-expander>
//! The lib-proc-macro server backend is `TokenStream`-agnostic, such that
//! we could provide any TokenStream implementation.
//! The original idea from fedochet is using proc-macro2 as backend,
//! we use tt instead for better integration with RA.
//!
//! FIXME: No span and source file information is implemented yet
use super::proc_macro::bridge::{self, server};
use std::collections::HashMap;
use std::hash::Hash;
use std::iter::FromIterator;
use std::ops::Bound;
use std::{ascii, vec::IntoIter};
type Group = tt::Subtree;
type TokenTree = tt::TokenTree;
type Punct = tt::Punct;
type Spacing = tt::Spacing;
type Literal = tt::Literal;
type Span = tt::TokenId;
#[derive(Debug, Default, Clone)]
pub struct TokenStream {
pub token_trees: Vec<TokenTree>,
}
impl TokenStream {
pub fn new() -> Self {
TokenStream::default()
}
pub fn with_subtree(subtree: tt::Subtree) -> Self {
if subtree.delimiter.is_some() {
TokenStream { token_trees: vec![TokenTree::Subtree(subtree)] }
} else {
TokenStream { token_trees: subtree.token_trees }
}
}
pub fn into_subtree(self) -> tt::Subtree {
tt::Subtree { delimiter: None, token_trees: self.token_trees }
}
pub fn is_empty(&self) -> bool {
self.token_trees.is_empty()
}
}
/// Creates a token stream containing a single token tree.
impl From<TokenTree> for TokenStream {
fn from(tree: TokenTree) -> TokenStream {
TokenStream { token_trees: vec![tree] }
}
}
/// Collects a number of token trees into a single stream.
impl FromIterator<TokenTree> for TokenStream {
fn from_iter<I: IntoIterator<Item = TokenTree>>(trees: I) -> Self {
trees.into_iter().map(TokenStream::from).collect()
}
}
/// A "flattening" operation on token streams, collects token trees
/// from multiple token streams into a single stream.
impl FromIterator<TokenStream> for TokenStream {
fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self {
let mut builder = TokenStreamBuilder::new();
streams.into_iter().for_each(|stream| builder.push(stream));
builder.build()
}
}
impl Extend<TokenTree> for TokenStream {
fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, trees: I) {
self.extend(trees.into_iter().map(TokenStream::from));
}
}
impl Extend<TokenStream> for TokenStream {
fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) {
for item in streams {
for tkn in item {
match tkn {
tt::TokenTree::Subtree(subtree) if subtree.delimiter.is_none() => {
self.token_trees.extend(subtree.token_trees);
}
_ => {
self.token_trees.push(tkn);
}
}
}
}
}
}
#[derive(Clone)]
pub struct SourceFile {
// FIXME stub
}
type Level = super::proc_macro::Level;
type LineColumn = super::proc_macro::LineColumn;
/// A structure representing a diagnostic message and associated children
/// messages.
#[derive(Clone, Debug)]
pub struct Diagnostic {
level: Level,
message: String,
spans: Vec<Span>,
children: Vec<Diagnostic>,
}
impl Diagnostic {
/// Creates a new diagnostic with the given `level` and `message`.
pub fn new<T: Into<String>>(level: Level, message: T) -> Diagnostic {
Diagnostic { level, message: message.into(), spans: vec![], children: vec![] }
}
}
// Rustc Server Ident has to be `Copyable`
// We use a stub here for bypassing
#[derive(Hash, Eq, PartialEq, Copy, Clone)]
pub struct IdentId(u32);
#[derive(Clone, Hash, Eq, PartialEq)]
struct IdentData(tt::Ident);
#[derive(Default)]
struct IdentInterner {
idents: HashMap<IdentData, u32>,
ident_data: Vec<IdentData>,
}
impl IdentInterner {
fn intern(&mut self, data: &IdentData) -> u32 {
if let Some(index) = self.idents.get(data) {
return *index;
}
let index = self.idents.len() as u32;
self.ident_data.push(data.clone());
self.idents.insert(data.clone(), index);
index
}
fn get(&self, index: u32) -> &IdentData {
&self.ident_data[index as usize]
}
#[allow(unused)]
fn get_mut(&mut self, index: u32) -> &mut IdentData {
self.ident_data.get_mut(index as usize).expect("Should be consistent")
}
}
pub struct TokenStreamBuilder {
acc: TokenStream,
}
/// Public implementation details for the `TokenStream` type, such as iterators.
pub mod token_stream {
use std::str::FromStr;
use super::{TokenStream, TokenTree};
/// An iterator over `TokenStream`'s `TokenTree`s.
/// The iteration is "shallow", e.g., the iterator doesn't recurse into delimited groups,
/// and returns whole groups as token trees.
impl IntoIterator for TokenStream {
type Item = TokenTree;
type IntoIter = super::IntoIter<TokenTree>;
fn into_iter(self) -> Self::IntoIter {
self.token_trees.into_iter()
}
}
type LexError = String;
/// Attempts to break the string into tokens and parse those tokens into a token stream.
/// May fail for a number of reasons, for example, if the string contains unbalanced delimiters
/// or characters not existing in the language.
/// All tokens in the parsed stream get `Span::call_site()` spans.
///
/// NOTE: some errors may cause panics instead of returning `LexError`. We reserve the right to
/// change these errors into `LexError`s later.
impl FromStr for TokenStream {
type Err = LexError;
fn from_str(src: &str) -> Result<TokenStream, LexError> {
let (subtree, _token_map) =
mbe::parse_to_token_tree(src).ok_or("Failed to parse from mbe")?;
let subtree = subtree_replace_token_ids_with_unspecified(subtree);
Ok(TokenStream::with_subtree(subtree))
}
}
impl ToString for TokenStream {
fn to_string(&self) -> String {
tt::pretty(&self.token_trees)
}
}
fn subtree_replace_token_ids_with_unspecified(subtree: tt::Subtree) -> tt::Subtree {
tt::Subtree {
delimiter: subtree
.delimiter
.map(|d| tt::Delimiter { id: tt::TokenId::unspecified(), ..d }),
token_trees: subtree
.token_trees
.into_iter()
.map(token_tree_replace_token_ids_with_unspecified)
.collect(),
}
}
fn token_tree_replace_token_ids_with_unspecified(tt: tt::TokenTree) -> tt::TokenTree {
match tt {
tt::TokenTree::Leaf(leaf) => {
tt::TokenTree::Leaf(leaf_replace_token_ids_with_unspecified(leaf))
}
tt::TokenTree::Subtree(subtree) => {
tt::TokenTree::Subtree(subtree_replace_token_ids_with_unspecified(subtree))
}
}
}
fn leaf_replace_token_ids_with_unspecified(leaf: tt::Leaf) -> tt::Leaf {
match leaf {
tt::Leaf::Literal(lit) => {
tt::Leaf::Literal(tt::Literal { id: tt::TokenId::unspecified(), ..lit })
}
tt::Leaf::Punct(punct) => {
tt::Leaf::Punct(tt::Punct { id: tt::TokenId::unspecified(), ..punct })
}
tt::Leaf::Ident(ident) => {
tt::Leaf::Ident(tt::Ident { id: tt::TokenId::unspecified(), ..ident })
}
}
}
}
impl TokenStreamBuilder {
fn new() -> TokenStreamBuilder {
TokenStreamBuilder { acc: TokenStream::new() }
}
fn push(&mut self, stream: TokenStream) {
self.acc.extend(stream.into_iter())
}
fn build(self) -> TokenStream {
self.acc
}
}
pub struct FreeFunctions;
#[derive(Clone)]
pub struct TokenStreamIter {
trees: IntoIter<TokenTree>,
}
#[derive(Default)]
pub struct Rustc {
ident_interner: IdentInterner,
// FIXME: store span information here.
}
impl server::Types for Rustc {
type FreeFunctions = FreeFunctions;
type TokenStream = TokenStream;
type Ident = IdentId;
type Literal = Literal;
type SourceFile = SourceFile;
type Diagnostic = Diagnostic;
type Span = Span;
type MultiSpan = Vec<Span>;
}
impl server::FreeFunctions for Rustc {
fn track_env_var(&mut self, _var: &str, _value: Option<&str>) {
// FIXME: track env var accesses
// https://github.com/rust-lang/rust/pull/71858
}
fn track_path(&mut self, _path: &str) {}
}
impl server::TokenStream for Rustc {
fn is_empty(&mut self, stream: &Self::TokenStream) -> bool {
stream.is_empty()
}
fn from_str(&mut self, src: &str) -> Self::TokenStream {
use std::str::FromStr;
Self::TokenStream::from_str(src).expect("cannot parse string")
}
fn to_string(&mut self, stream: &Self::TokenStream) -> String {
stream.to_string()
}
fn from_token_tree(
&mut self,
tree: bridge::TokenTree<Self::TokenStream, Self::Span, Self::Ident, Self::Literal>,
) -> Self::TokenStream {
match tree {
bridge::TokenTree::Group(group) => {
let group = Group {
delimiter: delim_to_internal(group.delimiter),
token_trees: match group.stream {
Some(stream) => stream.into_iter().collect(),
None => Vec::new(),
},
};
let tree = TokenTree::from(group);
Self::TokenStream::from_iter(vec![tree])
}
bridge::TokenTree::Ident(IdentId(index)) => {
let IdentData(ident) = self.ident_interner.get(index).clone();
let ident: tt::Ident = ident;
let leaf = tt::Leaf::from(ident);
let tree = TokenTree::from(leaf);
Self::TokenStream::from_iter(vec![tree])
}
bridge::TokenTree::Literal(literal) => {
let leaf = tt::Leaf::from(literal);
let tree = TokenTree::from(leaf);
Self::TokenStream::from_iter(vec![tree])
}
bridge::TokenTree::Punct(p) => {
let punct = tt::Punct {
char: p.ch as char,
spacing: if p.joint { Spacing::Joint } else { Spacing::Alone },
id: p.span,
};
let leaf = tt::Leaf::from(punct);
let tree = TokenTree::from(leaf);
Self::TokenStream::from_iter(vec![tree])
}
}
}
fn expand_expr(&mut self, self_: &Self::TokenStream) -> Result<Self::TokenStream, ()> {
Ok(self_.clone())
}
fn concat_trees(
&mut self,
base: Option<Self::TokenStream>,
trees: Vec<bridge::TokenTree<Self::TokenStream, Self::Span, Self::Ident, Self::Literal>>,
) -> Self::TokenStream {
let mut builder = TokenStreamBuilder::new();
if let Some(base) = base {
builder.push(base);
}
for tree in trees {
builder.push(self.from_token_tree(tree));
}
builder.build()
}
fn concat_streams(
&mut self,
base: Option<Self::TokenStream>,
streams: Vec<Self::TokenStream>,
) -> Self::TokenStream {
let mut builder = TokenStreamBuilder::new();
if let Some(base) = base {
builder.push(base);
}
for stream in streams {
builder.push(stream);
}
builder.build()
}
fn into_trees(
&mut self,
stream: Self::TokenStream,
) -> Vec<bridge::TokenTree<Self::TokenStream, Self::Span, Self::Ident, Self::Literal>> {
stream
.into_iter()
.map(|tree| match tree {
tt::TokenTree::Leaf(tt::Leaf::Ident(ident)) => {
bridge::TokenTree::Ident(IdentId(self.ident_interner.intern(&IdentData(ident))))
}
tt::TokenTree::Leaf(tt::Leaf::Literal(lit)) => bridge::TokenTree::Literal(lit),
tt::TokenTree::Leaf(tt::Leaf::Punct(punct)) => {
bridge::TokenTree::Punct(bridge::Punct {
ch: punct.char as u8,
joint: punct.spacing == Spacing::Joint,
span: punct.id,
})
}
tt::TokenTree::Subtree(subtree) => bridge::TokenTree::Group(bridge::Group {
delimiter: delim_to_external(subtree.delimiter),
stream: if subtree.token_trees.is_empty() {
None
} else {
Some(subtree.token_trees.into_iter().collect())
},
span: bridge::DelimSpan::from_single(
subtree.delimiter.map_or(Span::unspecified(), |del| del.id),
),
}),
})
.collect()
}
}
fn delim_to_internal(d: bridge::Delimiter) -> Option<tt::Delimiter> {
let kind = match d {
bridge::Delimiter::Parenthesis => tt::DelimiterKind::Parenthesis,
bridge::Delimiter::Brace => tt::DelimiterKind::Brace,
bridge::Delimiter::Bracket => tt::DelimiterKind::Bracket,
bridge::Delimiter::None => return None,
};
Some(tt::Delimiter { id: tt::TokenId::unspecified(), kind })
}
fn delim_to_external(d: Option<tt::Delimiter>) -> bridge::Delimiter {
match d.map(|it| it.kind) {
Some(tt::DelimiterKind::Parenthesis) => bridge::Delimiter::Parenthesis,
Some(tt::DelimiterKind::Brace) => bridge::Delimiter::Brace,
Some(tt::DelimiterKind::Bracket) => bridge::Delimiter::Bracket,
None => bridge::Delimiter::None,
}
}
fn spacing_to_internal(spacing: bridge::Spacing) -> Spacing {
match spacing {
bridge::Spacing::Alone => Spacing::Alone,
bridge::Spacing::Joint => Spacing::Joint,
}
}
fn spacing_to_external(spacing: Spacing) -> bridge::Spacing {
match spacing {
Spacing::Alone => bridge::Spacing::Alone,
Spacing::Joint => bridge::Spacing::Joint,
}
}
impl server::Ident for Rustc {
fn new(&mut self, string: &str, span: Self::Span, _is_raw: bool) -> Self::Ident {
IdentId(self.ident_interner.intern(&IdentData(tt::Ident { text: string.into(), id: span })))
}
fn span(&mut self, ident: Self::Ident) -> Self::Span {
self.ident_interner.get(ident.0).0.id
}
fn with_span(&mut self, ident: Self::Ident, span: Self::Span) -> Self::Ident {
let data = self.ident_interner.get(ident.0);
let new = IdentData(tt::Ident { id: span, ..data.0.clone() });
IdentId(self.ident_interner.intern(&new))
}
}
impl server::Literal for Rustc {
fn debug_kind(&mut self, _literal: &Self::Literal) -> String {
// r-a: debug_kind and suffix are unsupported; corresponding client code has been changed to not call these.
// They must still be present to be ABI-compatible and work with upstream proc_macro.
"".to_owned()
}
fn from_str(&mut self, s: &str) -> Result<Self::Literal, ()> {
Ok(Literal { text: s.into(), id: tt::TokenId::unspecified() })
}
fn symbol(&mut self, literal: &Self::Literal) -> String {
literal.text.to_string()
}
fn suffix(&mut self, _literal: &Self::Literal) -> Option<String> {
None
}
fn to_string(&mut self, literal: &Self::Literal) -> String {
literal.to_string()
}
fn integer(&mut self, n: &str) -> Self::Literal {
let n = match n.parse::<i128>() {
Ok(n) => n.to_string(),
Err(_) => n.parse::<u128>().unwrap().to_string(),
};
Literal { text: n.into(), id: tt::TokenId::unspecified() }
}
fn typed_integer(&mut self, n: &str, kind: &str) -> Self::Literal {
macro_rules! def_suffixed_integer {
($kind:ident, $($ty:ty),*) => {
match $kind {
$(
stringify!($ty) => {
let n: $ty = n.parse().unwrap();
format!(concat!("{}", stringify!($ty)), n)
}
)*
_ => unimplemented!("unknown args for typed_integer: n {}, kind {}", n, $kind),
}
}
}
let text = def_suffixed_integer! {kind, u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize};
Literal { text: text.into(), id: tt::TokenId::unspecified() }
}
fn float(&mut self, n: &str) -> Self::Literal {
let n: f64 = n.parse().unwrap();
let mut text = f64::to_string(&n);
if !text.contains('.') {
text += ".0"
}
Literal { text: text.into(), id: tt::TokenId::unspecified() }
}
fn f32(&mut self, n: &str) -> Self::Literal {
let n: f32 = n.parse().unwrap();
let text = format!("{}f32", n);
Literal { text: text.into(), id: tt::TokenId::unspecified() }
}
fn f64(&mut self, n: &str) -> Self::Literal {
let n: f64 = n.parse().unwrap();
let text = format!("{}f64", n);
Literal { text: text.into(), id: tt::TokenId::unspecified() }
}
fn string(&mut self, string: &str) -> Self::Literal {
let mut escaped = String::new();
for ch in string.chars() {
escaped.extend(ch.escape_debug());
}
Literal { text: format!("\"{}\"", escaped).into(), id: tt::TokenId::unspecified() }
}
fn character(&mut self, ch: char) -> Self::Literal {
Literal { text: format!("'{}'", ch).into(), id: tt::TokenId::unspecified() }
}
fn byte_string(&mut self, bytes: &[u8]) -> Self::Literal {
let string = bytes
.iter()
.cloned()
.flat_map(ascii::escape_default)
.map(Into::<char>::into)
.collect::<String>();
Literal { text: format!("b\"{}\"", string).into(), id: tt::TokenId::unspecified() }
}
fn span(&mut self, literal: &Self::Literal) -> Self::Span {
literal.id
}
fn set_span(&mut self, literal: &mut Self::Literal, span: Self::Span) {
literal.id = span;
}
fn subspan(
&mut self,
_literal: &Self::Literal,
_start: Bound<usize>,
_end: Bound<usize>,
) -> Option<Self::Span> {
// FIXME handle span
None
}
}
impl server::SourceFile for Rustc {
// FIXME these are all stubs
fn eq(&mut self, _file1: &Self::SourceFile, _file2: &Self::SourceFile) -> bool {
true
}
fn path(&mut self, _file: &Self::SourceFile) -> String {
String::new()
}
fn is_real(&mut self, _file: &Self::SourceFile) -> bool {
true
}
}
impl server::Diagnostic for Rustc {
fn new(&mut self, level: Level, msg: &str, spans: Self::MultiSpan) -> Self::Diagnostic {
let mut diag = Diagnostic::new(level, msg);
diag.spans = spans;
diag
}
fn sub(
&mut self,
_diag: &mut Self::Diagnostic,
_level: Level,
_msg: &str,
_spans: Self::MultiSpan,
) {
// FIXME handle diagnostic
//
}
fn emit(&mut self, _diag: Self::Diagnostic) {
// FIXME handle diagnostic
// diag.emit()
}
}
impl server::Span for Rustc {
fn debug(&mut self, span: Self::Span) -> String {
format!("{:?}", span.0)
}
fn source_file(&mut self, _span: Self::Span) -> Self::SourceFile {
SourceFile {}
}
fn save_span(&mut self, _span: Self::Span) -> usize {
// FIXME stub
0
}
fn recover_proc_macro_span(&mut self, _id: usize) -> Self::Span {
// FIXME stub
tt::TokenId::unspecified()
}
/// Recent feature, not yet in the proc_macro
///
/// See PR:
/// https://github.com/rust-lang/rust/pull/55780
fn source_text(&mut self, _span: Self::Span) -> Option<String> {
None
}
fn parent(&mut self, _span: Self::Span) -> Option<Self::Span> {
// FIXME handle span
None
}
fn source(&mut self, span: Self::Span) -> Self::Span {
// FIXME handle span
span
}
fn start(&mut self, _span: Self::Span) -> LineColumn {
// FIXME handle span
LineColumn { line: 0, column: 0 }
}
fn end(&mut self, _span: Self::Span) -> LineColumn {
// FIXME handle span
LineColumn { line: 0, column: 0 }
}
fn join(&mut self, first: Self::Span, _second: Self::Span) -> Option<Self::Span> {
// Just return the first span again, because some macros will unwrap the result.
Some(first)
}
fn resolved_at(&mut self, _span: Self::Span, _at: Self::Span) -> Self::Span {
// FIXME handle span
tt::TokenId::unspecified()
}
fn after(&mut self, _self_: Self::Span) -> Self::Span {
tt::TokenId::unspecified()
}
fn before(&mut self, _self_: Self::Span) -> Self::Span {
tt::TokenId::unspecified()
}
}
impl server::MultiSpan for Rustc {
fn new(&mut self) -> Self::MultiSpan {
// FIXME handle span
vec![]
}
fn push(&mut self, other: &mut Self::MultiSpan, span: Self::Span) {
//TODP
other.push(span)
}
}
impl server::Server for Rustc {
fn globals(&mut self) -> bridge::ExpnGlobals<Self::Span> {
bridge::ExpnGlobals {
def_site: Span::unspecified(),
call_site: Span::unspecified(),
mixed_site: Span::unspecified(),
}
}
}
#[cfg(test)]
mod tests {
use super::super::proc_macro::bridge::server::Literal;
use super::*;
#[test]
fn test_rustc_server_literals() {
let mut srv = Rustc { ident_interner: IdentInterner::default() };
assert_eq!(srv.integer("1234").text, "1234");
assert_eq!(srv.typed_integer("12", "u8").text, "12u8");
assert_eq!(srv.typed_integer("255", "u16").text, "255u16");
assert_eq!(srv.typed_integer("1234", "u32").text, "1234u32");
assert_eq!(srv.typed_integer("15846685", "u64").text, "15846685u64");
assert_eq!(srv.typed_integer("15846685258", "u128").text, "15846685258u128");
assert_eq!(srv.typed_integer("156788984", "usize").text, "156788984usize");
assert_eq!(srv.typed_integer("127", "i8").text, "127i8");
assert_eq!(srv.typed_integer("255", "i16").text, "255i16");
assert_eq!(srv.typed_integer("1234", "i32").text, "1234i32");
assert_eq!(srv.typed_integer("15846685", "i64").text, "15846685i64");
assert_eq!(srv.typed_integer("15846685258", "i128").text, "15846685258i128");
assert_eq!(srv.float("0").text, "0.0");
assert_eq!(srv.float("15684.5867").text, "15684.5867");
assert_eq!(srv.f32("15684.58").text, "15684.58f32");
assert_eq!(srv.f64("15684.58").text, "15684.58f64");
assert_eq!(srv.string("hello_world").text, "\"hello_world\"");
assert_eq!(srv.character('c').text, "'c'");
assert_eq!(srv.byte_string(b"1234586\x88").text, "b\"1234586\\x88\"");
// u128::max
assert_eq!(
srv.integer("340282366920938463463374607431768211455").text,
"340282366920938463463374607431768211455"
);
// i128::min
assert_eq!(
srv.integer("-170141183460469231731687303715884105728").text,
"-170141183460469231731687303715884105728"
);
}
#[test]
fn test_rustc_server_to_string() {
let s = TokenStream {
token_trees: vec![
tt::TokenTree::Leaf(tt::Leaf::Ident(tt::Ident {
text: "struct".into(),
id: tt::TokenId::unspecified(),
})),
tt::TokenTree::Leaf(tt::Leaf::Ident(tt::Ident {
text: "T".into(),
id: tt::TokenId::unspecified(),
})),
tt::TokenTree::Subtree(tt::Subtree {
delimiter: Some(tt::Delimiter {
id: tt::TokenId::unspecified(),
kind: tt::DelimiterKind::Brace,
}),
token_trees: vec![],
}),
],
};
assert_eq!(s.to_string(), "struct T {}");
}
#[test]
fn test_rustc_server_from_str() {
use std::str::FromStr;
let subtree_paren_a = tt::TokenTree::Subtree(tt::Subtree {
delimiter: Some(tt::Delimiter {
id: tt::TokenId::unspecified(),
kind: tt::DelimiterKind::Parenthesis,
}),
token_trees: vec![tt::TokenTree::Leaf(tt::Leaf::Ident(tt::Ident {
text: "a".into(),
id: tt::TokenId::unspecified(),
}))],
});
let t1 = TokenStream::from_str("(a)").unwrap();
assert_eq!(t1.token_trees.len(), 1);
assert_eq!(t1.token_trees[0], subtree_paren_a);
let t2 = TokenStream::from_str("(a);").unwrap();
assert_eq!(t2.token_trees.len(), 2);
assert_eq!(t2.token_trees[0], subtree_paren_a);
let underscore = TokenStream::from_str("_").unwrap();
assert_eq!(
underscore.token_trees[0],
tt::TokenTree::Leaf(tt::Leaf::Ident(tt::Ident {
text: "_".into(),
id: tt::TokenId::unspecified(),
}))
);
}
}

View file

@ -30,6 +30,7 @@ mod abi_1_56;
mod abi_1_57;
mod abi_1_58;
mod abi_1_63;
mod abi_1_64;
use super::dylib::LoadProcMacroDylibError;
pub(crate) use abi_1_48::Abi as Abi_1_48;
@ -38,6 +39,7 @@ pub(crate) use abi_1_56::Abi as Abi_1_56;
pub(crate) use abi_1_57::Abi as Abi_1_57;
pub(crate) use abi_1_58::Abi as Abi_1_58;
pub(crate) use abi_1_63::Abi as Abi_1_63;
pub(crate) use abi_1_64::Abi as Abi_1_64;
use libloading::Library;
use proc_macro_api::{ProcMacroKind, RustCInfo};
@ -58,6 +60,7 @@ pub(crate) enum Abi {
Abi1_57(Abi_1_57),
Abi1_58(Abi_1_58),
Abi1_63(Abi_1_63),
Abi1_64(Abi_1_64),
}
impl Abi {
@ -98,10 +101,14 @@ impl Abi {
let inner = unsafe { Abi_1_58::from_lib(lib, symbol_name) }?;
Ok(Abi::Abi1_58(inner))
}
(1, 63..) => {
(1, 63) => {
let inner = unsafe { Abi_1_63::from_lib(lib, symbol_name) }?;
Ok(Abi::Abi1_63(inner))
}
(1, 64..) => {
let inner = unsafe { Abi_1_64::from_lib(lib, symbol_name) }?;
Ok(Abi::Abi1_64(inner))
}
_ => Err(LoadProcMacroDylibError::UnsupportedABI),
}
}
@ -119,6 +126,7 @@ impl Abi {
Self::Abi1_57(abi) => abi.expand(macro_name, macro_body, attributes),
Self::Abi1_58(abi) => abi.expand(macro_name, macro_body, attributes),
Self::Abi1_63(abi) => abi.expand(macro_name, macro_body, attributes),
Self::Abi1_64(abi) => abi.expand(macro_name, macro_body, attributes),
}
}
@ -130,6 +138,7 @@ impl Abi {
Self::Abi1_57(abi) => abi.list_macros(),
Self::Abi1_58(abi) => abi.list_macros(),
Self::Abi1_63(abi) => abi.list_macros(),
Self::Abi1_64(abi) => abi.list_macros(),
}
}
}