mirror of
https://github.com/rust-lang/rust-analyzer
synced 2024-12-26 04:53:34 +00:00
Let's try testing for "is not quadratic" condition
This commit is contained in:
parent
00cdbceb9d
commit
e012efca27
3 changed files with 100 additions and 1 deletions
2
.github/workflows/ci.yaml
vendored
2
.github/workflows/ci.yaml
vendored
|
@ -76,7 +76,7 @@ jobs:
|
||||||
run: cargo test --no-run --locked
|
run: cargo test --no-run --locked
|
||||||
|
|
||||||
- name: Test
|
- name: Test
|
||||||
run: cargo test
|
run: cargo test -- --nocapture
|
||||||
|
|
||||||
- name: Prepare cache
|
- name: Prepare cache
|
||||||
run: cargo xtask pre-cache
|
run: cargo xtask pre-cache
|
||||||
|
|
|
@ -1,5 +1,8 @@
|
||||||
|
use std::time::Instant;
|
||||||
|
|
||||||
use expect_test::{expect_file, ExpectFile};
|
use expect_test::{expect_file, ExpectFile};
|
||||||
use ide_db::SymbolKind;
|
use ide_db::SymbolKind;
|
||||||
|
use stdx::format_to;
|
||||||
use test_utils::{bench, bench_fixture, skip_slow_tests};
|
use test_utils::{bench, bench_fixture, skip_slow_tests};
|
||||||
|
|
||||||
use crate::{fixture, FileRange, HlTag, TextRange};
|
use crate::{fixture, FileRange, HlTag, TextRange};
|
||||||
|
@ -257,6 +260,99 @@ fn benchmark_syntax_highlighting_long_struct() {
|
||||||
assert_eq!(hash, 2001);
|
assert_eq!(hash, 2001);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn syntax_highlighting_not_quadratic() {
|
||||||
|
if skip_slow_tests() {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut measures = Vec::new();
|
||||||
|
for i in 6..=10 {
|
||||||
|
let n = 1 << i;
|
||||||
|
let fixture = bench_fixture::big_struct_n(n);
|
||||||
|
let (analysis, file_id) = fixture::file(&fixture);
|
||||||
|
|
||||||
|
let time = Instant::now();
|
||||||
|
|
||||||
|
let hash = analysis
|
||||||
|
.highlight(file_id)
|
||||||
|
.unwrap()
|
||||||
|
.iter()
|
||||||
|
.filter(|it| it.highlight.tag == HlTag::Symbol(SymbolKind::Struct))
|
||||||
|
.count();
|
||||||
|
assert!(hash > n as usize);
|
||||||
|
|
||||||
|
let elapsed = time.elapsed();
|
||||||
|
measures.push((n as f64, elapsed.as_millis() as f64))
|
||||||
|
}
|
||||||
|
|
||||||
|
assert_linear(&measures)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Checks that a set of measurements looks like a liner function rather than
|
||||||
|
/// like a quadratic function. Algorithm:
|
||||||
|
///
|
||||||
|
/// 1. Linearly scale input to be in [0; 1)
|
||||||
|
/// 2. Using linear regression, compute the best linear function approximating
|
||||||
|
/// the input.
|
||||||
|
/// 3. Compute RMSE and maximal absolute error.
|
||||||
|
/// 4. Check that errors are within tolerances and that the constant term is not
|
||||||
|
/// too negative.
|
||||||
|
///
|
||||||
|
/// Ideally, we should use a proper "model selection" to directly compare
|
||||||
|
/// quadratic and linear models, but that sounds rather complicated:
|
||||||
|
///
|
||||||
|
/// https://stats.stackexchange.com/questions/21844/selecting-best-model-based-on-linear-quadratic-and-cubic-fit-of-data
|
||||||
|
fn assert_linear(xy: &[(f64, f64)]) {
|
||||||
|
let (mut xs, mut ys): (Vec<_>, Vec<_>) = xy.iter().copied().unzip();
|
||||||
|
normalize(&mut xs);
|
||||||
|
normalize(&mut ys);
|
||||||
|
let xy = xs.iter().copied().zip(ys.iter().copied());
|
||||||
|
|
||||||
|
// Linear regression: finding a and b to fit y = a + b*x.
|
||||||
|
|
||||||
|
let mean_x = mean(&xs);
|
||||||
|
let mean_y = mean(&ys);
|
||||||
|
|
||||||
|
let b = {
|
||||||
|
let mut num = 0.0;
|
||||||
|
let mut denom = 0.0;
|
||||||
|
for (x, y) in xy.clone() {
|
||||||
|
num += (x - mean_x) * (y - mean_y);
|
||||||
|
denom += (x - mean_x).powi(2);
|
||||||
|
}
|
||||||
|
num / denom
|
||||||
|
};
|
||||||
|
|
||||||
|
let a = mean_y - b * mean_x;
|
||||||
|
|
||||||
|
let mut plot = format!("y_pred = {:.3} + {:.3} * x\n\nx y y_pred\n", a, b);
|
||||||
|
|
||||||
|
let mut se = 0.0;
|
||||||
|
let mut max_error = 0.0f64;
|
||||||
|
for (x, y) in xy {
|
||||||
|
let y_pred = a + b * x;
|
||||||
|
se += (y - y_pred).powi(2);
|
||||||
|
max_error = max_error.max((y_pred - y).abs());
|
||||||
|
|
||||||
|
format_to!(plot, "{:.3} {:.3} {:.3}\n", x, y, y_pred);
|
||||||
|
}
|
||||||
|
|
||||||
|
let rmse = (se / xs.len() as f64).sqrt();
|
||||||
|
format_to!(plot, "\nrmse = {:.3} max error = {:.3}", rmse, max_error);
|
||||||
|
|
||||||
|
assert!(rmse < 0.05 && max_error < 0.1 && a > -0.1, "\nLooks quadratic\n{}", plot);
|
||||||
|
|
||||||
|
fn normalize(xs: &mut Vec<f64>) {
|
||||||
|
let max = xs.iter().copied().max_by(|a, b| a.partial_cmp(b).unwrap()).unwrap();
|
||||||
|
xs.iter_mut().for_each(|it| *it /= max);
|
||||||
|
}
|
||||||
|
|
||||||
|
fn mean(xs: &[f64]) -> f64 {
|
||||||
|
xs.iter().copied().sum::<f64>() / (xs.len() as f64)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn benchmark_syntax_highlighting_parser() {
|
fn benchmark_syntax_highlighting_parser() {
|
||||||
if skip_slow_tests() {
|
if skip_slow_tests() {
|
||||||
|
|
|
@ -8,7 +8,10 @@ use crate::project_root;
|
||||||
|
|
||||||
pub fn big_struct() -> String {
|
pub fn big_struct() -> String {
|
||||||
let n = 1_000;
|
let n = 1_000;
|
||||||
|
big_struct_n(n)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn big_struct_n(n: u32) -> String {
|
||||||
let mut buf = "pub struct RegisterBlock {".to_string();
|
let mut buf = "pub struct RegisterBlock {".to_string();
|
||||||
for i in 0..n {
|
for i in 0..n {
|
||||||
format_to!(buf, " /// Doc comment for {}.\n", i);
|
format_to!(buf, " /// Doc comment for {}.\n", i);
|
||||||
|
|
Loading…
Reference in a new issue