mirror of
https://github.com/rust-lang/rust-analyzer
synced 2024-12-25 12:33:33 +00:00
internal: Sync match checking algorithm with rustc
Original version: rust-lang/rust 68b76a483 2021-10-01
This commit is contained in:
parent
0add6e95e5
commit
deb05930ef
7 changed files with 605 additions and 888 deletions
7
Cargo.lock
generated
7
Cargo.lock
generated
|
@ -559,6 +559,7 @@ dependencies = [
|
|||
"tracing",
|
||||
"tracing-subscriber",
|
||||
"tracing-tree",
|
||||
"typed-arena",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -1775,6 +1776,12 @@ dependencies = [
|
|||
"stdx",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "typed-arena"
|
||||
version = "2.0.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "0685c84d5d54d1c26f7d3eb96cd41550adb97baed141a761cf335d3d33bcd0ae"
|
||||
|
||||
[[package]]
|
||||
name = "ungrammar"
|
||||
version = "1.14.9"
|
||||
|
|
|
@ -23,6 +23,7 @@ chalk-ir = "0.75"
|
|||
chalk-recursive = { version = "0.75", default-features = false }
|
||||
la-arena = { version = "0.3.0", path = "../../lib/arena" }
|
||||
once_cell = { version = "1.5.0" }
|
||||
typed-arena = "2.0.1"
|
||||
|
||||
stdx = { path = "../stdx", version = "0.0.0" }
|
||||
hir_def = { path = "../hir_def", version = "0.0.0" }
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
//! through the body using inference results: mismatched arg counts, missing
|
||||
//! fields, etc.
|
||||
|
||||
use std::{cell::RefCell, sync::Arc};
|
||||
use std::sync::Arc;
|
||||
|
||||
use hir_def::{
|
||||
expr::Statement, path::path, resolver::HasResolver, type_ref::Mutability, AssocItemId,
|
||||
|
@ -11,12 +11,14 @@ use hir_def::{
|
|||
use hir_expand::name;
|
||||
use itertools::Either;
|
||||
use rustc_hash::FxHashSet;
|
||||
use typed_arena::Arena;
|
||||
|
||||
use crate::{
|
||||
db::HirDatabase,
|
||||
diagnostics::match_check::{
|
||||
self,
|
||||
usefulness::{compute_match_usefulness, expand_pattern, MatchCheckCtx, PatternArena},
|
||||
deconstruct_pat::DeconstructedPat,
|
||||
usefulness::{compute_match_usefulness, MatchCheckCtx},
|
||||
},
|
||||
AdtId, InferenceResult, Interner, Ty, TyExt, TyKind,
|
||||
};
|
||||
|
@ -275,15 +277,19 @@ impl ExprValidator {
|
|||
) {
|
||||
let body = db.body(self.owner);
|
||||
|
||||
let match_expr_ty = if infer.type_of_expr[match_expr].is_unknown() {
|
||||
let match_expr_ty = &infer[match_expr];
|
||||
if match_expr_ty.is_unknown() {
|
||||
return;
|
||||
} else {
|
||||
&infer.type_of_expr[match_expr]
|
||||
}
|
||||
|
||||
let pattern_arena = Arena::new();
|
||||
let cx = MatchCheckCtx {
|
||||
module: self.owner.module(db.upcast()),
|
||||
db,
|
||||
pattern_arena: &pattern_arena,
|
||||
};
|
||||
|
||||
let pattern_arena = RefCell::new(PatternArena::new());
|
||||
|
||||
let mut m_arms = Vec::new();
|
||||
let mut m_arms = Vec::with_capacity(arms.len());
|
||||
let mut has_lowering_errors = false;
|
||||
for arm in arms {
|
||||
if let Some(pat_ty) = infer.type_of_pat.get(arm.pat) {
|
||||
|
@ -308,13 +314,7 @@ impl ExprValidator {
|
|||
// check the usefulness of each pattern as we added it
|
||||
// to the matrix here.
|
||||
let m_arm = match_check::MatchArm {
|
||||
pat: self.lower_pattern(
|
||||
arm.pat,
|
||||
&mut pattern_arena.borrow_mut(),
|
||||
db,
|
||||
&body,
|
||||
&mut has_lowering_errors,
|
||||
),
|
||||
pat: self.lower_pattern(&cx, arm.pat, db, &body, &mut has_lowering_errors),
|
||||
has_guard: arm.guard.is_some(),
|
||||
};
|
||||
m_arms.push(m_arm);
|
||||
|
@ -332,14 +332,7 @@ impl ExprValidator {
|
|||
return;
|
||||
}
|
||||
|
||||
let cx = MatchCheckCtx {
|
||||
module: self.owner.module(db.upcast()),
|
||||
match_expr,
|
||||
infer: &infer,
|
||||
db,
|
||||
pattern_arena: &pattern_arena,
|
||||
};
|
||||
let report = compute_match_usefulness(&cx, &m_arms);
|
||||
let report = compute_match_usefulness(&cx, &m_arms, match_expr_ty);
|
||||
|
||||
// FIXME Report unreacheble arms
|
||||
// https://github.com/rust-lang/rust/blob/25c15cdbe/compiler/rustc_mir_build/src/thir/pattern/check_match.rs#L200-L201
|
||||
|
@ -352,17 +345,17 @@ impl ExprValidator {
|
|||
}
|
||||
}
|
||||
|
||||
fn lower_pattern(
|
||||
fn lower_pattern<'p>(
|
||||
&self,
|
||||
cx: &MatchCheckCtx<'_, 'p>,
|
||||
pat: PatId,
|
||||
pattern_arena: &mut PatternArena,
|
||||
db: &dyn HirDatabase,
|
||||
body: &Body,
|
||||
have_errors: &mut bool,
|
||||
) -> match_check::PatId {
|
||||
) -> &'p DeconstructedPat<'p> {
|
||||
let mut patcx = match_check::PatCtxt::new(db, &self.infer, body);
|
||||
let pattern = patcx.lower_pattern(pat);
|
||||
let pattern = pattern_arena.alloc(expand_pattern(pattern));
|
||||
let pattern = cx.pattern_arena.alloc(DeconstructedPat::from_pat(cx, &pattern));
|
||||
if !patcx.errors.is_empty() {
|
||||
*have_errors = true;
|
||||
}
|
||||
|
|
|
@ -5,13 +5,12 @@
|
|||
//!
|
||||
//! It is modeled on the rustc module `rustc_mir_build::thir::pattern`.
|
||||
|
||||
mod deconstruct_pat;
|
||||
mod pat_util;
|
||||
|
||||
pub(crate) mod deconstruct_pat;
|
||||
pub(crate) mod usefulness;
|
||||
|
||||
use hir_def::{body::Body, EnumVariantId, LocalFieldId, VariantId};
|
||||
use la_arena::Idx;
|
||||
use hir_def::{body::Body, expr::PatId, EnumVariantId, LocalFieldId, VariantId};
|
||||
|
||||
use crate::{db::HirDatabase, InferenceResult, Interner, Substitution, Ty, TyKind};
|
||||
|
||||
|
@ -19,8 +18,6 @@ use self::pat_util::EnumerateAndAdjustIterator;
|
|||
|
||||
pub(crate) use self::usefulness::MatchArm;
|
||||
|
||||
pub(crate) type PatId = Idx<Pat>;
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub(crate) enum PatternError {
|
||||
Unimplemented,
|
||||
|
@ -41,12 +38,6 @@ pub(crate) struct Pat {
|
|||
pub(crate) kind: Box<PatKind>,
|
||||
}
|
||||
|
||||
impl Pat {
|
||||
pub(crate) fn wildcard_from_ty(ty: Ty) -> Self {
|
||||
Pat { ty, kind: Box::new(PatKind::Wild) }
|
||||
}
|
||||
}
|
||||
|
||||
/// Close relative to `rustc_mir_build::thir::pattern::PatKind`
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
pub(crate) enum PatKind {
|
||||
|
@ -100,7 +91,7 @@ impl<'a> PatCtxt<'a> {
|
|||
Self { db, infer, body, errors: Vec::new() }
|
||||
}
|
||||
|
||||
pub(crate) fn lower_pattern(&mut self, pat: hir_def::expr::PatId) -> Pat {
|
||||
pub(crate) fn lower_pattern(&mut self, pat: PatId) -> Pat {
|
||||
// XXX(iDawer): Collecting pattern adjustments feels imprecise to me.
|
||||
// When lowering of & and box patterns are implemented this should be tested
|
||||
// in a manner of `match_ergonomics_issue_9095` test.
|
||||
|
@ -116,7 +107,7 @@ impl<'a> PatCtxt<'a> {
|
|||
)
|
||||
}
|
||||
|
||||
fn lower_pattern_unadjusted(&mut self, pat: hir_def::expr::PatId) -> Pat {
|
||||
fn lower_pattern_unadjusted(&mut self, pat: PatId) -> Pat {
|
||||
let mut ty = &self.infer[pat];
|
||||
let variant = self.infer.variant_resolution_for_pat(pat);
|
||||
|
||||
|
@ -189,7 +180,7 @@ impl<'a> PatCtxt<'a> {
|
|||
|
||||
fn lower_tuple_subpats(
|
||||
&mut self,
|
||||
pats: &[hir_def::expr::PatId],
|
||||
pats: &[PatId],
|
||||
expected_len: usize,
|
||||
ellipsis: Option<usize>,
|
||||
) -> Vec<FieldPat> {
|
||||
|
@ -207,17 +198,17 @@ impl<'a> PatCtxt<'a> {
|
|||
.collect()
|
||||
}
|
||||
|
||||
fn lower_patterns(&mut self, pats: &[hir_def::expr::PatId]) -> Vec<Pat> {
|
||||
fn lower_patterns(&mut self, pats: &[PatId]) -> Vec<Pat> {
|
||||
pats.iter().map(|&p| self.lower_pattern(p)).collect()
|
||||
}
|
||||
|
||||
fn lower_opt_pattern(&mut self, pat: Option<hir_def::expr::PatId>) -> Option<Pat> {
|
||||
fn lower_opt_pattern(&mut self, pat: Option<PatId>) -> Option<Pat> {
|
||||
pat.map(|p| self.lower_pattern(p))
|
||||
}
|
||||
|
||||
fn lower_variant_or_leaf(
|
||||
&mut self,
|
||||
pat: hir_def::expr::PatId,
|
||||
pat: PatId,
|
||||
ty: &Ty,
|
||||
subpatterns: Vec<FieldPat>,
|
||||
) -> PatKind {
|
||||
|
@ -244,7 +235,7 @@ impl<'a> PatCtxt<'a> {
|
|||
kind
|
||||
}
|
||||
|
||||
fn lower_path(&mut self, pat: hir_def::expr::PatId, _path: &hir_def::path::Path) -> Pat {
|
||||
fn lower_path(&mut self, pat: PatId, _path: &hir_def::path::Path) -> Pat {
|
||||
let ty = &self.infer[pat];
|
||||
|
||||
let pat_from_kind = |kind| Pat { ty: ty.clone(), kind: Box::new(kind) };
|
||||
|
|
|
@ -42,6 +42,7 @@
|
|||
//! wildcards, see [`SplitWildcard`]; for integer ranges, see [`SplitIntRange`].
|
||||
|
||||
use std::{
|
||||
cell::Cell,
|
||||
cmp::{max, min},
|
||||
iter::once,
|
||||
ops::RangeInclusive,
|
||||
|
@ -55,12 +56,29 @@ use syntax::SmolStr;
|
|||
use crate::{AdtId, Interner, Scalar, Ty, TyExt, TyKind};
|
||||
|
||||
use super::{
|
||||
usefulness::{MatchCheckCtx, PatCtxt},
|
||||
FieldPat, Pat, PatId, PatKind,
|
||||
usefulness::{helper::Captures, MatchCheckCtx, PatCtxt},
|
||||
Pat, PatKind,
|
||||
};
|
||||
|
||||
use self::Constructor::*;
|
||||
|
||||
/// Recursively expand this pattern into its subpatterns. Only useful for or-patterns.
|
||||
fn expand_or_pat(pat: &Pat) -> Vec<&Pat> {
|
||||
fn expand<'p>(pat: &'p Pat, vec: &mut Vec<&'p Pat>) {
|
||||
if let PatKind::Or { pats } = pat.kind.as_ref() {
|
||||
for pat in pats {
|
||||
expand(pat, vec);
|
||||
}
|
||||
} else {
|
||||
vec.push(pat)
|
||||
}
|
||||
}
|
||||
|
||||
let mut pats = Vec::new();
|
||||
expand(pat, &mut pats);
|
||||
pats
|
||||
}
|
||||
|
||||
/// [Constructor] uses this in umimplemented variants.
|
||||
/// It allows porting match expressions from upstream algorithm without losing semantics.
|
||||
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
|
||||
|
@ -241,6 +259,10 @@ pub(super) struct Slice {
|
|||
}
|
||||
|
||||
impl Slice {
|
||||
fn arity(self) -> usize {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
/// See `Constructor::is_covered_by`
|
||||
fn is_covered_by(self, _other: Self) -> bool {
|
||||
unimplemented!() // never called as Slice contains Void
|
||||
|
@ -278,10 +300,13 @@ pub(super) enum Constructor {
|
|||
/// for those types for which we cannot list constructors explicitly, like `f64` and `str`.
|
||||
NonExhaustive,
|
||||
/// Stands for constructors that are not seen in the matrix, as explained in the documentation
|
||||
/// for [`SplitWildcard`].
|
||||
Missing,
|
||||
/// for [`SplitWildcard`]. The carried `bool` is used for the `non_exhaustive_omitted_patterns`
|
||||
/// lint.
|
||||
Missing { nonexhaustive_enum_missing_real_variants: bool },
|
||||
/// Wildcard pattern.
|
||||
Wildcard,
|
||||
/// Or-pattern.
|
||||
Or,
|
||||
}
|
||||
|
||||
impl Constructor {
|
||||
|
@ -289,6 +314,10 @@ impl Constructor {
|
|||
matches!(self, Wildcard)
|
||||
}
|
||||
|
||||
pub(super) fn is_non_exhaustive(&self) -> bool {
|
||||
matches!(self, NonExhaustive)
|
||||
}
|
||||
|
||||
fn as_int_range(&self) -> Option<&IntRange> {
|
||||
match self {
|
||||
IntRange(range) => Some(range),
|
||||
|
@ -318,16 +347,39 @@ impl Constructor {
|
|||
}
|
||||
}
|
||||
|
||||
/// Determines the constructor that the given pattern can be specialized to.
|
||||
pub(super) fn from_pat(cx: &MatchCheckCtx<'_>, pat: PatId) -> Self {
|
||||
match cx.pattern_arena.borrow()[pat].kind.as_ref() {
|
||||
PatKind::Binding { .. } | PatKind::Wild => Wildcard,
|
||||
PatKind::Leaf { .. } | PatKind::Deref { .. } => Single,
|
||||
&PatKind::Variant { enum_variant, .. } => Variant(enum_variant),
|
||||
&PatKind::LiteralBool { value } => IntRange(IntRange::from_bool(value)),
|
||||
PatKind::Or { .. } => {
|
||||
never!("Or-pattern should have been expanded earlier on.");
|
||||
Wildcard
|
||||
/// The number of fields for this constructor. This must be kept in sync with
|
||||
/// `Fields::wildcards`.
|
||||
pub(super) fn arity(&self, pcx: PatCtxt<'_, '_>) -> usize {
|
||||
match self {
|
||||
Single | Variant(_) => match *pcx.ty.kind(Interner) {
|
||||
TyKind::Tuple(arity, ..) => arity,
|
||||
TyKind::Ref(..) => 1,
|
||||
TyKind::Adt(adt, ..) => {
|
||||
if adt_is_box(adt.0, pcx.cx) {
|
||||
// The only legal patterns of type `Box` (outside `std`) are `_` and box
|
||||
// patterns. If we're here we can assume this is a box pattern.
|
||||
1
|
||||
} else {
|
||||
let variant = self.variant_id_for_adt(adt.0);
|
||||
Fields::list_variant_nonhidden_fields(pcx.cx, pcx.ty, variant).count()
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
never!("Unexpected type for `Single` constructor: {:?}", pcx.ty);
|
||||
0
|
||||
}
|
||||
},
|
||||
Slice(slice) => slice.arity(),
|
||||
Str(..)
|
||||
| FloatRange(..)
|
||||
| IntRange(..)
|
||||
| NonExhaustive
|
||||
| Opaque
|
||||
| Missing { .. }
|
||||
| Wildcard => 0,
|
||||
Or => {
|
||||
never!("The `Or` constructor doesn't have a fixed arity");
|
||||
0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -347,7 +399,7 @@ impl Constructor {
|
|||
/// matrix, unless all of them are.
|
||||
pub(super) fn split<'a>(
|
||||
&self,
|
||||
pcx: PatCtxt<'_>,
|
||||
pcx: PatCtxt<'_, '_>,
|
||||
ctors: impl Iterator<Item = &'a Constructor> + Clone,
|
||||
) -> SmallVec<[Self; 1]> {
|
||||
match self {
|
||||
|
@ -375,13 +427,13 @@ impl Constructor {
|
|||
/// this checks for inclusion.
|
||||
// We inline because this has a single call site in `Matrix::specialize_constructor`.
|
||||
#[inline]
|
||||
pub(super) fn is_covered_by(&self, _pcx: PatCtxt<'_>, other: &Self) -> bool {
|
||||
pub(super) fn is_covered_by(&self, _pcx: PatCtxt<'_, '_>, other: &Self) -> bool {
|
||||
// This must be kept in sync with `is_covered_by_any`.
|
||||
match (self, other) {
|
||||
// Wildcards cover anything
|
||||
(_, Wildcard) => true,
|
||||
// The missing ctors are not covered by anything in the matrix except wildcards.
|
||||
(Missing | Wildcard, _) => false,
|
||||
(Missing { .. } | Wildcard, _) => false,
|
||||
|
||||
(Single, Single) => true,
|
||||
(Variant(self_id), Variant(other_id)) => self_id == other_id,
|
||||
|
@ -411,7 +463,7 @@ impl Constructor {
|
|||
/// Faster version of `is_covered_by` when applied to many constructors. `used_ctors` is
|
||||
/// assumed to be built from `matrix.head_ctors()` with wildcards filtered out, and `self` is
|
||||
/// assumed to have been split from a wildcard.
|
||||
fn is_covered_by_any(&self, _pcx: PatCtxt<'_>, used_ctors: &[Constructor]) -> bool {
|
||||
fn is_covered_by_any(&self, _pcx: PatCtxt<'_, '_>, used_ctors: &[Constructor]) -> bool {
|
||||
if used_ctors.is_empty() {
|
||||
return false;
|
||||
}
|
||||
|
@ -431,7 +483,7 @@ impl Constructor {
|
|||
.any(|other| slice.is_covered_by(other)),
|
||||
// This constructor is never covered by anything else
|
||||
NonExhaustive => false,
|
||||
Str(..) | FloatRange(..) | Opaque | Missing | Wildcard => {
|
||||
Str(..) | FloatRange(..) | Opaque | Missing { .. } | Wildcard | Or => {
|
||||
never!("found unexpected ctor in all_ctors: {:?}", self);
|
||||
true
|
||||
}
|
||||
|
@ -463,7 +515,7 @@ pub(super) struct SplitWildcard {
|
|||
}
|
||||
|
||||
impl SplitWildcard {
|
||||
pub(super) fn new(pcx: PatCtxt<'_>) -> Self {
|
||||
pub(super) fn new(pcx: PatCtxt<'_, '_>) -> Self {
|
||||
let cx = pcx.cx;
|
||||
let make_range = |start, end, scalar| IntRange(IntRange::from_range(start, end, scalar));
|
||||
|
||||
|
@ -483,7 +535,7 @@ impl SplitWildcard {
|
|||
TyKind::Scalar(Scalar::Bool) => smallvec![make_range(0, 1, Scalar::Bool)],
|
||||
// TyKind::Array(..) if ... => unhandled(),
|
||||
TyKind::Array(..) | TyKind::Slice(..) => unhandled(),
|
||||
&TyKind::Adt(AdtId(hir_def::AdtId::EnumId(enum_id)), ref _substs) => {
|
||||
&TyKind::Adt(AdtId(hir_def::AdtId::EnumId(enum_id)), ..) => {
|
||||
let enum_data = cx.db.enum_data(enum_id);
|
||||
|
||||
// If the enum is declared as `#[non_exhaustive]`, we treat it as if it had an
|
||||
|
@ -502,7 +554,7 @@ impl SplitWildcard {
|
|||
//
|
||||
// we don't want to show every possible IO error, but instead have only `_` as the
|
||||
// witness.
|
||||
let is_declared_nonexhaustive = cx.is_foreign_non_exhaustive_enum(enum_id);
|
||||
let is_declared_nonexhaustive = cx.is_foreign_non_exhaustive_enum(pcx.ty);
|
||||
|
||||
// If `exhaustive_patterns` is disabled and our scrutinee is an empty enum, we treat it
|
||||
// as though it had an "unknown" constructor to avoid exposing its emptiness. The
|
||||
|
@ -512,8 +564,15 @@ impl SplitWildcard {
|
|||
&& !cx.feature_exhaustive_patterns()
|
||||
&& !pcx.is_top_level;
|
||||
|
||||
if is_secretly_empty || is_declared_nonexhaustive {
|
||||
if is_secretly_empty {
|
||||
smallvec![NonExhaustive]
|
||||
} else if is_declared_nonexhaustive {
|
||||
enum_data
|
||||
.variants
|
||||
.iter()
|
||||
.map(|(local_id, ..)| Variant(EnumVariantId { parent: enum_id, local_id }))
|
||||
.chain(Some(NonExhaustive))
|
||||
.collect()
|
||||
} else if cx.feature_exhaustive_patterns() {
|
||||
unimplemented!() // see MatchCheckCtx.feature_exhaustive_patterns()
|
||||
} else {
|
||||
|
@ -535,6 +594,7 @@ impl SplitWildcard {
|
|||
// This type is one for which we cannot list constructors, like `str` or `f64`.
|
||||
_ => smallvec![NonExhaustive],
|
||||
};
|
||||
|
||||
SplitWildcard { matrix_ctors: Vec::new(), all_ctors }
|
||||
}
|
||||
|
||||
|
@ -542,7 +602,7 @@ impl SplitWildcard {
|
|||
/// do what you want.
|
||||
pub(super) fn split<'a>(
|
||||
&mut self,
|
||||
pcx: PatCtxt<'_>,
|
||||
pcx: PatCtxt<'_, '_>,
|
||||
ctors: impl Iterator<Item = &'a Constructor> + Clone,
|
||||
) {
|
||||
// Since `all_ctors` never contains wildcards, this won't recurse further.
|
||||
|
@ -552,21 +612,21 @@ impl SplitWildcard {
|
|||
}
|
||||
|
||||
/// Whether there are any value constructors for this type that are not present in the matrix.
|
||||
fn any_missing(&self, pcx: PatCtxt<'_>) -> bool {
|
||||
fn any_missing(&self, pcx: PatCtxt<'_, '_>) -> bool {
|
||||
self.iter_missing(pcx).next().is_some()
|
||||
}
|
||||
|
||||
/// Iterate over the constructors for this type that are not present in the matrix.
|
||||
pub(super) fn iter_missing<'a>(
|
||||
pub(super) fn iter_missing<'a, 'p>(
|
||||
&'a self,
|
||||
pcx: PatCtxt<'a>,
|
||||
) -> impl Iterator<Item = &'a Constructor> {
|
||||
pcx: PatCtxt<'a, 'p>,
|
||||
) -> impl Iterator<Item = &'a Constructor> + Captures<'p> {
|
||||
self.all_ctors.iter().filter(move |ctor| !ctor.is_covered_by_any(pcx, &self.matrix_ctors))
|
||||
}
|
||||
|
||||
/// Return the set of constructors resulting from splitting the wildcard. As explained at the
|
||||
/// top of the file, if any constructors are missing we can ignore the present ones.
|
||||
fn into_ctors(self, pcx: PatCtxt<'_>) -> SmallVec<[Constructor; 1]> {
|
||||
fn into_ctors(self, pcx: PatCtxt<'_, '_>) -> SmallVec<[Constructor; 1]> {
|
||||
if self.any_missing(pcx) {
|
||||
// Some constructors are missing, thus we can specialize with the special `Missing`
|
||||
// constructor, which stands for those constructors that are not seen in the matrix,
|
||||
|
@ -597,7 +657,17 @@ impl SplitWildcard {
|
|||
// sometimes prefer reporting the list of constructors instead of just `_`.
|
||||
let report_when_all_missing = pcx.is_top_level && !IntRange::is_integral(pcx.ty);
|
||||
let ctor = if !self.matrix_ctors.is_empty() || report_when_all_missing {
|
||||
Missing
|
||||
if pcx.is_non_exhaustive {
|
||||
Missing {
|
||||
nonexhaustive_enum_missing_real_variants: self
|
||||
.iter_missing(pcx)
|
||||
.filter(|c| !c.is_non_exhaustive())
|
||||
.next()
|
||||
.is_some(),
|
||||
}
|
||||
} else {
|
||||
Missing { nonexhaustive_enum_missing_real_variants: false }
|
||||
}
|
||||
} else {
|
||||
Wildcard
|
||||
};
|
||||
|
@ -611,291 +681,334 @@ impl SplitWildcard {
|
|||
|
||||
/// A value can be decomposed into a constructor applied to some fields. This struct represents
|
||||
/// those fields, generalized to allow patterns in each field. See also `Constructor`.
|
||||
/// This is constructed from a constructor using [`Fields::wildcards()`].
|
||||
///
|
||||
/// If a private or `non_exhaustive` field is uninhabited, the code mustn't observe that it is
|
||||
/// uninhabited. For that, we filter these fields out of the matrix. This is handled automatically
|
||||
/// in `Fields`. This filtering is uncommon in practice, because uninhabited fields are rarely used,
|
||||
/// so we avoid it when possible to preserve performance.
|
||||
#[derive(Debug, Clone)]
|
||||
pub(super) enum Fields {
|
||||
/// Lists of patterns that don't contain any filtered fields.
|
||||
/// `Slice` and `Vec` behave the same; the difference is only to avoid allocating and
|
||||
/// triple-dereferences when possible. Frankly this is premature optimization, I (Nadrieril)
|
||||
/// have not measured if it really made a difference.
|
||||
Vec(SmallVec<[PatId; 2]>),
|
||||
/// This is constructed for a constructor using [`Fields::wildcards()`]. The idea is that
|
||||
/// [`Fields::wildcards()`] constructs a list of fields where all entries are wildcards, and then
|
||||
/// given a pattern we fill some of the fields with its subpatterns.
|
||||
/// In the following example `Fields::wildcards` returns `[_, _, _, _]`. Then in
|
||||
/// `extract_pattern_arguments` we fill some of the entries, and the result is
|
||||
/// `[Some(0), _, _, _]`.
|
||||
/// ```rust
|
||||
/// let x: [Option<u8>; 4] = foo();
|
||||
/// match x {
|
||||
/// [Some(0), ..] => {}
|
||||
/// }
|
||||
/// ```
|
||||
///
|
||||
/// Note that the number of fields of a constructor may not match the fields declared in the
|
||||
/// original struct/variant. This happens if a private or `non_exhaustive` field is uninhabited,
|
||||
/// because the code mustn't observe that it is uninhabited. In that case that field is not
|
||||
/// included in `fields`. For that reason, when you have a `mir::Field` you must use
|
||||
/// `index_with_declared_idx`.
|
||||
#[derive(Clone, Copy)]
|
||||
pub(super) struct Fields<'p> {
|
||||
fields: &'p [DeconstructedPat<'p>],
|
||||
}
|
||||
|
||||
impl Fields {
|
||||
/// Internal use. Use `Fields::wildcards()` instead.
|
||||
/// Must not be used if the pattern is a field of a struct/tuple/variant.
|
||||
fn from_single_pattern(pat: PatId) -> Self {
|
||||
Fields::Vec(smallvec![pat])
|
||||
impl<'p> Fields<'p> {
|
||||
fn empty() -> Self {
|
||||
Fields { fields: &[] }
|
||||
}
|
||||
|
||||
/// Convenience; internal use.
|
||||
fn wildcards_from_tys(cx: &MatchCheckCtx<'_>, tys: impl IntoIterator<Item = Ty>) -> Self {
|
||||
let wilds = tys.into_iter().map(Pat::wildcard_from_ty);
|
||||
let pats = wilds.map(|pat| cx.alloc_pat(pat)).collect();
|
||||
Fields::Vec(pats)
|
||||
fn singleton(cx: &MatchCheckCtx<'_, 'p>, field: DeconstructedPat<'p>) -> Self {
|
||||
let field = cx.pattern_arena.alloc(field);
|
||||
Fields { fields: std::slice::from_ref(field) }
|
||||
}
|
||||
|
||||
/// Creates a new list of wildcard fields for a given constructor.
|
||||
pub(crate) fn wildcards(pcx: PatCtxt<'_>, constructor: &Constructor) -> Self {
|
||||
let ty = pcx.ty;
|
||||
let cx = pcx.cx;
|
||||
let wildcard_from_ty = |ty: &Ty| cx.alloc_pat(Pat::wildcard_from_ty(ty.clone()));
|
||||
pub(super) fn from_iter(
|
||||
cx: &MatchCheckCtx<'_, 'p>,
|
||||
fields: impl IntoIterator<Item = DeconstructedPat<'p>>,
|
||||
) -> Self {
|
||||
let fields: &[_] = cx.pattern_arena.alloc_extend(fields);
|
||||
Fields { fields }
|
||||
}
|
||||
|
||||
fn wildcards_from_tys(cx: &MatchCheckCtx<'_, 'p>, tys: impl IntoIterator<Item = Ty>) -> Self {
|
||||
Fields::from_iter(cx, tys.into_iter().map(DeconstructedPat::wildcard))
|
||||
}
|
||||
|
||||
// In the cases of either a `#[non_exhaustive]` field list or a non-public field, we hide
|
||||
// uninhabited fields in order not to reveal the uninhabitedness of the whole variant.
|
||||
// This lists the fields we keep along with their types.
|
||||
fn list_variant_nonhidden_fields<'a>(
|
||||
cx: &'a MatchCheckCtx<'a, 'p>,
|
||||
ty: &'a Ty,
|
||||
variant: VariantId,
|
||||
) -> impl Iterator<Item = (LocalFieldId, Ty)> + Captures<'a> + Captures<'p> {
|
||||
let (adt, substs) = ty.as_adt().unwrap();
|
||||
|
||||
let adt_is_local = variant.module(cx.db.upcast()).krate() == cx.module.krate();
|
||||
// Whether we must not match the fields of this variant exhaustively.
|
||||
let is_non_exhaustive = is_field_list_non_exhaustive(variant, cx) && !adt_is_local;
|
||||
|
||||
let visibility = cx.db.field_visibilities(variant);
|
||||
let field_ty = cx.db.field_types(variant);
|
||||
let fields_len = variant.variant_data(cx.db.upcast()).fields().len() as u32;
|
||||
|
||||
(0..fields_len).map(|idx| LocalFieldId::from_raw(idx.into())).filter_map(move |fid| {
|
||||
// TODO check ty has been normalized
|
||||
let ty = field_ty[fid].clone().substitute(Interner, substs);
|
||||
let is_visible = matches!(adt, hir_def::AdtId::EnumId(..))
|
||||
|| visibility[fid].is_visible_from(cx.db.upcast(), cx.module);
|
||||
let is_uninhabited = cx.is_uninhabited(&ty);
|
||||
|
||||
if is_uninhabited && (!is_visible || is_non_exhaustive) {
|
||||
None
|
||||
} else {
|
||||
Some((fid, ty))
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
/// Creates a new list of wildcard fields for a given constructor. The result must have a
|
||||
/// length of `constructor.arity()`.
|
||||
pub(crate) fn wildcards(
|
||||
cx: &MatchCheckCtx<'_, 'p>,
|
||||
ty: &Ty,
|
||||
constructor: &Constructor,
|
||||
) -> Self {
|
||||
let ret = match constructor {
|
||||
Single | Variant(_) => match ty.kind(Interner) {
|
||||
TyKind::Tuple(_, substs) => {
|
||||
let tys = substs.iter(Interner).map(|ty| ty.assert_ty_ref(Interner));
|
||||
Fields::wildcards_from_tys(cx, tys.cloned())
|
||||
}
|
||||
TyKind::Ref(.., rty) => Fields::from_single_pattern(wildcard_from_ty(rty)),
|
||||
TyKind::Ref(.., rty) => Fields::wildcards_from_tys(cx, once(rty.clone())),
|
||||
&TyKind::Adt(AdtId(adt), ref substs) => {
|
||||
if adt_is_box(adt, cx) {
|
||||
// Use T as the sub pattern type of Box<T>.
|
||||
let subst_ty = substs.at(Interner, 0).assert_ty_ref(Interner);
|
||||
Fields::from_single_pattern(wildcard_from_ty(subst_ty))
|
||||
// The only legal patterns of type `Box` (outside `std`) are `_` and box
|
||||
// patterns. If we're here we can assume this is a box pattern.
|
||||
let subst_ty = substs.at(Interner, 0).assert_ty_ref(Interner).clone();
|
||||
Fields::wildcards_from_tys(cx, once(subst_ty))
|
||||
} else {
|
||||
let variant_id = constructor.variant_id_for_adt(adt);
|
||||
let adt_is_local =
|
||||
variant_id.module(cx.db.upcast()).krate() == cx.module.krate();
|
||||
// Whether we must not match the fields of this variant exhaustively.
|
||||
let is_non_exhaustive =
|
||||
is_field_list_non_exhaustive(variant_id, cx) && !adt_is_local;
|
||||
|
||||
cov_mark::hit!(match_check_wildcard_expanded_to_substitutions);
|
||||
let field_ty_data = cx.db.field_types(variant_id);
|
||||
let field_tys = || {
|
||||
field_ty_data
|
||||
.iter()
|
||||
.map(|(_, binders)| binders.clone().substitute(Interner, substs))
|
||||
};
|
||||
|
||||
// In the following cases, we don't need to filter out any fields. This is
|
||||
// the vast majority of real cases, since uninhabited fields are uncommon.
|
||||
let has_no_hidden_fields = (matches!(adt, hir_def::AdtId::EnumId(_))
|
||||
&& !is_non_exhaustive)
|
||||
|| !field_tys().any(|ty| cx.is_uninhabited(&ty));
|
||||
|
||||
if has_no_hidden_fields {
|
||||
Fields::wildcards_from_tys(cx, field_tys())
|
||||
} else {
|
||||
//FIXME(iDawer): see MatchCheckCtx::is_uninhabited, has_no_hidden_fields is always true
|
||||
unimplemented!("exhaustive_patterns feature")
|
||||
}
|
||||
let variant = constructor.variant_id_for_adt(adt);
|
||||
let tys = Fields::list_variant_nonhidden_fields(cx, ty, variant)
|
||||
.map(|(_, ty)| ty);
|
||||
Fields::wildcards_from_tys(cx, tys)
|
||||
}
|
||||
}
|
||||
ty_kind => {
|
||||
never!("Unexpected type for `Single` constructor: {:?}", ty_kind);
|
||||
Fields::from_single_pattern(wildcard_from_ty(ty))
|
||||
Fields::wildcards_from_tys(cx, once(ty.clone()))
|
||||
}
|
||||
},
|
||||
Slice(..) => {
|
||||
unimplemented!()
|
||||
}
|
||||
Str(..) | FloatRange(..) | IntRange(..) | NonExhaustive | Opaque | Missing
|
||||
| Wildcard => Fields::Vec(Default::default()),
|
||||
Str(..)
|
||||
| FloatRange(..)
|
||||
| IntRange(..)
|
||||
| NonExhaustive
|
||||
| Opaque
|
||||
| Missing { .. }
|
||||
| Wildcard => Fields::empty(),
|
||||
Or => {
|
||||
never!("called `Fields::wildcards` on an `Or` ctor");
|
||||
Fields::empty()
|
||||
}
|
||||
};
|
||||
ret
|
||||
}
|
||||
|
||||
/// Apply a constructor to a list of patterns, yielding a new pattern. `self`
|
||||
/// must have as many elements as this constructor's arity.
|
||||
///
|
||||
/// This is roughly the inverse of `specialize_constructor`.
|
||||
///
|
||||
/// Examples:
|
||||
/// `ctor`: `Constructor::Single`
|
||||
/// `ty`: `Foo(u32, u32, u32)`
|
||||
/// `self`: `[10, 20, _]`
|
||||
/// returns `Foo(10, 20, _)`
|
||||
///
|
||||
/// `ctor`: `Constructor::Variant(Option::Some)`
|
||||
/// `ty`: `Option<bool>`
|
||||
/// `self`: `[false]`
|
||||
/// returns `Some(false)`
|
||||
pub(super) fn apply(self, pcx: PatCtxt<'_>, ctor: &Constructor) -> Pat {
|
||||
let subpatterns_and_indices = self.patterns_and_indices();
|
||||
let mut subpatterns =
|
||||
subpatterns_and_indices.iter().map(|&(_, p)| pcx.cx.pattern_arena.borrow()[p].clone());
|
||||
// FIXME(iDawer) witnesses are not yet used
|
||||
const UNHANDLED: PatKind = PatKind::Wild;
|
||||
|
||||
let pat = match ctor {
|
||||
Single | Variant(_) => match pcx.ty.kind(Interner) {
|
||||
TyKind::Adt(..) | TyKind::Tuple(..) => {
|
||||
// We want the real indices here.
|
||||
let subpatterns = subpatterns_and_indices
|
||||
.iter()
|
||||
.map(|&(field, pat)| FieldPat {
|
||||
field,
|
||||
pattern: pcx.cx.pattern_arena.borrow()[pat].clone(),
|
||||
})
|
||||
.collect();
|
||||
|
||||
if let Some((hir_def::AdtId::EnumId(_), substs)) = pcx.ty.as_adt() {
|
||||
let enum_variant = match ctor {
|
||||
&Variant(id) => id,
|
||||
_ => unreachable!(),
|
||||
};
|
||||
PatKind::Variant { substs: substs.clone(), enum_variant, subpatterns }
|
||||
} else {
|
||||
PatKind::Leaf { subpatterns }
|
||||
}
|
||||
}
|
||||
// Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
|
||||
// be careful to reconstruct the correct constant pattern here. However a string
|
||||
// literal pattern will never be reported as a non-exhaustiveness witness, so we
|
||||
// can ignore this issue.
|
||||
TyKind::Ref(..) => PatKind::Deref { subpattern: subpatterns.next().unwrap() },
|
||||
TyKind::Slice(..) | TyKind::Array(..) => {
|
||||
never!("bad slice pattern {:?} {:?}", ctor, pcx.ty);
|
||||
PatKind::Wild
|
||||
}
|
||||
_ => PatKind::Wild,
|
||||
},
|
||||
Constructor::Slice(_) => UNHANDLED,
|
||||
Str(_) => UNHANDLED,
|
||||
FloatRange(..) => UNHANDLED,
|
||||
Constructor::IntRange(_) => UNHANDLED,
|
||||
NonExhaustive => PatKind::Wild,
|
||||
Wildcard => return Pat::wildcard_from_ty(pcx.ty.clone()),
|
||||
Opaque => {
|
||||
never!("we should not try to apply an opaque constructor");
|
||||
PatKind::Wild
|
||||
}
|
||||
Missing => {
|
||||
never!(
|
||||
"trying to apply the `Missing` constructor; \
|
||||
this should have been done in `apply_constructors`",
|
||||
);
|
||||
PatKind::Wild
|
||||
}
|
||||
};
|
||||
|
||||
Pat { ty: pcx.ty.clone(), kind: Box::new(pat) }
|
||||
}
|
||||
|
||||
/// Returns the number of patterns. This is the same as the arity of the constructor used to
|
||||
/// construct `self`.
|
||||
pub(super) fn len(&self) -> usize {
|
||||
match self {
|
||||
Fields::Vec(pats) => pats.len(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the list of patterns along with the corresponding field indices.
|
||||
fn patterns_and_indices(&self) -> SmallVec<[(LocalFieldId, PatId); 2]> {
|
||||
match self {
|
||||
Fields::Vec(pats) => pats
|
||||
.iter()
|
||||
.copied()
|
||||
.enumerate()
|
||||
.map(|(i, p)| (LocalFieldId::from_raw((i as u32).into()), p))
|
||||
.collect(),
|
||||
}
|
||||
}
|
||||
|
||||
pub(super) fn into_patterns(self) -> SmallVec<[PatId; 2]> {
|
||||
match self {
|
||||
Fields::Vec(pats) => pats,
|
||||
}
|
||||
}
|
||||
|
||||
/// Overrides some of the fields with the provided patterns. Exactly like
|
||||
/// `replace_fields_indexed`, except that it takes `FieldPat`s as input.
|
||||
fn replace_with_fieldpats(
|
||||
&self,
|
||||
new_pats: impl IntoIterator<Item = (LocalFieldId, PatId)>,
|
||||
) -> Self {
|
||||
self.replace_fields_indexed(
|
||||
new_pats.into_iter().map(|(field, pat)| (u32::from(field.into_raw()) as usize, pat)),
|
||||
)
|
||||
}
|
||||
|
||||
/// Overrides some of the fields with the provided patterns. This is used when a pattern
|
||||
/// defines some fields but not all, for example `Foo { field1: Some(_), .. }`: here we start
|
||||
/// with a `Fields` that is just one wildcard per field of the `Foo` struct, and override the
|
||||
/// entry corresponding to `field1` with the pattern `Some(_)`. This is also used for slice
|
||||
/// patterns for the same reason.
|
||||
fn replace_fields_indexed(&self, new_pats: impl IntoIterator<Item = (usize, PatId)>) -> Self {
|
||||
let mut fields = self.clone();
|
||||
|
||||
match &mut fields {
|
||||
Fields::Vec(pats) => {
|
||||
for (i, pat) in new_pats {
|
||||
if let Some(p) = pats.get_mut(i) {
|
||||
*p = pat;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
fields
|
||||
}
|
||||
|
||||
/// Replaces contained fields with the given list of patterns. There must be `len()` patterns
|
||||
/// in `pats`.
|
||||
pub(super) fn replace_fields(
|
||||
&self,
|
||||
cx: &MatchCheckCtx<'_>,
|
||||
pats: impl IntoIterator<Item = Pat>,
|
||||
) -> Self {
|
||||
let pats = pats.into_iter().map(|pat| cx.alloc_pat(pat)).collect();
|
||||
|
||||
match self {
|
||||
Fields::Vec(_) => Fields::Vec(pats),
|
||||
}
|
||||
}
|
||||
|
||||
/// Replaces contained fields with the arguments of the given pattern. Only use on a pattern
|
||||
/// that is compatible with the constructor used to build `self`.
|
||||
/// This is meant to be used on the result of `Fields::wildcards()`. The idea is that
|
||||
/// `wildcards` constructs a list of fields where all entries are wildcards, and the pattern
|
||||
/// provided to this function fills some of the fields with non-wildcards.
|
||||
/// In the following example `Fields::wildcards` would return `[_, _, _, _]`. If we call
|
||||
/// `replace_with_pattern_arguments` on it with the pattern, the result will be `[Some(0), _,
|
||||
/// _, _]`.
|
||||
/// ```rust
|
||||
/// let x: [Option<u8>; 4] = foo();
|
||||
/// match x {
|
||||
/// [Some(0), ..] => {}
|
||||
/// }
|
||||
/// ```
|
||||
/// This is guaranteed to preserve the number of patterns in `self`.
|
||||
pub(super) fn replace_with_pattern_arguments(
|
||||
&self,
|
||||
pat: PatId,
|
||||
cx: &MatchCheckCtx<'_>,
|
||||
) -> Self {
|
||||
// FIXME(iDawer): Factor out pattern deep cloning. See discussion:
|
||||
// https://github.com/rust-analyzer/rust-analyzer/pull/8717#discussion_r633086640
|
||||
let mut arena = cx.pattern_arena.borrow_mut();
|
||||
match arena[pat].kind.as_ref() {
|
||||
PatKind::Deref { subpattern } => {
|
||||
assert_eq!(self.len(), 1);
|
||||
let subpattern = subpattern.clone();
|
||||
Fields::from_single_pattern(arena.alloc(subpattern))
|
||||
}
|
||||
PatKind::Leaf { subpatterns } | PatKind::Variant { subpatterns, .. } => {
|
||||
let subpatterns = subpatterns.clone();
|
||||
let subpatterns = subpatterns
|
||||
.iter()
|
||||
.map(|field_pat| (field_pat.field, arena.alloc(field_pat.pattern.clone())));
|
||||
self.replace_with_fieldpats(subpatterns)
|
||||
}
|
||||
|
||||
PatKind::Wild
|
||||
| PatKind::Binding { .. }
|
||||
| PatKind::LiteralBool { .. }
|
||||
| PatKind::Or { .. } => self.clone(),
|
||||
}
|
||||
/// Returns the list of patterns.
|
||||
pub(super) fn iter_patterns<'a>(
|
||||
&'a self,
|
||||
) -> impl Iterator<Item = &'p DeconstructedPat<'p>> + Captures<'a> {
|
||||
self.fields.iter()
|
||||
}
|
||||
}
|
||||
|
||||
fn is_field_list_non_exhaustive(variant_id: VariantId, cx: &MatchCheckCtx<'_>) -> bool {
|
||||
/// Values and patterns can be represented as a constructor applied to some fields. This represents
|
||||
/// a pattern in this form.
|
||||
/// This also keeps track of whether the pattern has been foundreachable during analysis. For this
|
||||
/// reason we should be careful not to clone patterns for which we care about that. Use
|
||||
/// `clone_and_forget_reachability` is you're sure.
|
||||
pub(crate) struct DeconstructedPat<'p> {
|
||||
ctor: Constructor,
|
||||
fields: Fields<'p>,
|
||||
ty: Ty,
|
||||
reachable: Cell<bool>,
|
||||
}
|
||||
|
||||
impl<'p> DeconstructedPat<'p> {
|
||||
pub(super) fn wildcard(ty: Ty) -> Self {
|
||||
Self::new(Wildcard, Fields::empty(), ty)
|
||||
}
|
||||
|
||||
pub(super) fn new(ctor: Constructor, fields: Fields<'p>, ty: Ty) -> Self {
|
||||
DeconstructedPat { ctor, fields, ty, reachable: Cell::new(false) }
|
||||
}
|
||||
|
||||
/// Construct a pattern that matches everything that starts with this constructor.
|
||||
/// For example, if `ctor` is a `Constructor::Variant` for `Option::Some`, we get the pattern
|
||||
/// `Some(_)`.
|
||||
pub(super) fn wild_from_ctor(pcx: PatCtxt<'_, 'p>, ctor: Constructor) -> Self {
|
||||
let fields = Fields::wildcards(pcx.cx, pcx.ty, &ctor);
|
||||
DeconstructedPat::new(ctor, fields, pcx.ty.clone())
|
||||
}
|
||||
|
||||
/// Clone this value. This method emphasizes that cloning loses reachability information and
|
||||
/// should be done carefully.
|
||||
pub(super) fn clone_and_forget_reachability(&self) -> Self {
|
||||
DeconstructedPat::new(self.ctor.clone(), self.fields, self.ty.clone())
|
||||
}
|
||||
|
||||
pub(crate) fn from_pat(cx: &MatchCheckCtx<'_, 'p>, pat: &Pat) -> Self {
|
||||
let mkpat = |pat| DeconstructedPat::from_pat(cx, pat);
|
||||
let ctor;
|
||||
let fields;
|
||||
match pat.kind.as_ref() {
|
||||
PatKind::Binding { subpattern: Some(subpat) } => return mkpat(subpat),
|
||||
PatKind::Binding { subpattern: None } | PatKind::Wild => {
|
||||
ctor = Wildcard;
|
||||
fields = Fields::empty();
|
||||
}
|
||||
PatKind::Deref { subpattern } => {
|
||||
ctor = Single;
|
||||
fields = Fields::singleton(cx, mkpat(subpattern));
|
||||
}
|
||||
PatKind::Leaf { subpatterns } | PatKind::Variant { subpatterns, .. } => {
|
||||
match pat.ty.kind(Interner) {
|
||||
TyKind::Tuple(_, substs) => {
|
||||
ctor = Single;
|
||||
let mut wilds: SmallVec<[_; 2]> = substs
|
||||
.iter(Interner)
|
||||
.map(|arg| arg.assert_ty_ref(Interner).clone())
|
||||
.map(DeconstructedPat::wildcard)
|
||||
.collect();
|
||||
for pat in subpatterns {
|
||||
let idx: u32 = pat.field.into_raw().into();
|
||||
wilds[idx as usize] = mkpat(&pat.pattern);
|
||||
}
|
||||
fields = Fields::from_iter(cx, wilds)
|
||||
}
|
||||
TyKind::Adt(adt, substs) if adt_is_box(adt.0, cx) => {
|
||||
// The only legal patterns of type `Box` (outside `std`) are `_` and box
|
||||
// patterns. If we're here we can assume this is a box pattern.
|
||||
// FIXME(Nadrieril): A `Box` can in theory be matched either with `Box(_,
|
||||
// _)` or a box pattern. As a hack to avoid an ICE with the former, we
|
||||
// ignore other fields than the first one. This will trigger an error later
|
||||
// anyway.
|
||||
// See https://github.com/rust-lang/rust/issues/82772 ,
|
||||
// explanation: https://github.com/rust-lang/rust/pull/82789#issuecomment-796921977
|
||||
// The problem is that we can't know from the type whether we'll match
|
||||
// normally or through box-patterns. We'll have to figure out a proper
|
||||
// solution when we introduce generalized deref patterns. Also need to
|
||||
// prevent mixing of those two options.
|
||||
let pat =
|
||||
subpatterns.iter().find(|pat| pat.field.into_raw() == 0u32.into());
|
||||
let field = if let Some(pat) = pat {
|
||||
mkpat(&pat.pattern)
|
||||
} else {
|
||||
let ty = substs.at(Interner, 0).assert_ty_ref(Interner).clone();
|
||||
DeconstructedPat::wildcard(ty)
|
||||
};
|
||||
ctor = Single;
|
||||
fields = Fields::singleton(cx, field)
|
||||
}
|
||||
&TyKind::Adt(adt, _) => {
|
||||
ctor = match pat.kind.as_ref() {
|
||||
PatKind::Leaf { .. } => Single,
|
||||
PatKind::Variant { enum_variant, .. } => Variant(*enum_variant),
|
||||
_ => {
|
||||
never!();
|
||||
Wildcard
|
||||
}
|
||||
};
|
||||
let variant = ctor.variant_id_for_adt(adt.0);
|
||||
let fields_len = variant.variant_data(cx.db.upcast()).fields().len();
|
||||
// For each field in the variant, we store the relevant index into `self.fields` if any.
|
||||
let mut field_id_to_id: Vec<Option<usize>> = vec![None; fields_len];
|
||||
let tys = Fields::list_variant_nonhidden_fields(cx, &pat.ty, variant)
|
||||
.enumerate()
|
||||
.map(|(i, (fid, ty))| {
|
||||
let field_idx: u32 = fid.into_raw().into();
|
||||
field_id_to_id[field_idx as usize] = Some(i);
|
||||
ty
|
||||
});
|
||||
let mut wilds: SmallVec<[_; 2]> =
|
||||
tys.map(DeconstructedPat::wildcard).collect();
|
||||
for pat in subpatterns {
|
||||
let field_idx: u32 = pat.field.into_raw().into();
|
||||
if let Some(i) = field_id_to_id[field_idx as usize] {
|
||||
wilds[i] = mkpat(&pat.pattern);
|
||||
}
|
||||
}
|
||||
fields = Fields::from_iter(cx, wilds);
|
||||
}
|
||||
_ => {
|
||||
never!("pattern has unexpected type: pat: {:?}, ty: {:?}", pat, &pat.ty);
|
||||
ctor = Wildcard;
|
||||
fields = Fields::empty();
|
||||
}
|
||||
}
|
||||
}
|
||||
&PatKind::LiteralBool { value } => {
|
||||
ctor = IntRange(IntRange::from_bool(value));
|
||||
fields = Fields::empty();
|
||||
}
|
||||
PatKind::Or { .. } => {
|
||||
ctor = Or;
|
||||
let pats: SmallVec<[_; 2]> = expand_or_pat(pat).into_iter().map(mkpat).collect();
|
||||
fields = Fields::from_iter(cx, pats)
|
||||
}
|
||||
}
|
||||
DeconstructedPat::new(ctor, fields, pat.ty.clone())
|
||||
}
|
||||
|
||||
// // FIXME(iDawer): implement reporting of noncovered patterns
|
||||
// pub(crate) fn to_pat(&self, _cx: &MatchCheckCtx<'_, 'p>) -> Pat {
|
||||
// Pat { ty: self.ty.clone(), kind: PatKind::Wild.into() }
|
||||
// }
|
||||
|
||||
pub(super) fn is_or_pat(&self) -> bool {
|
||||
matches!(self.ctor, Or)
|
||||
}
|
||||
|
||||
pub(super) fn ctor(&self) -> &Constructor {
|
||||
&self.ctor
|
||||
}
|
||||
|
||||
pub(super) fn ty(&self) -> &Ty {
|
||||
&self.ty
|
||||
}
|
||||
|
||||
pub(super) fn iter_fields<'a>(&'a self) -> impl Iterator<Item = &'a DeconstructedPat<'a>> + 'a {
|
||||
self.fields.iter_patterns()
|
||||
}
|
||||
|
||||
/// Specialize this pattern with a constructor.
|
||||
/// `other_ctor` can be different from `self.ctor`, but must be covered by it.
|
||||
pub(super) fn specialize<'a>(
|
||||
&'a self,
|
||||
cx: &MatchCheckCtx<'_, 'p>,
|
||||
other_ctor: &Constructor,
|
||||
) -> SmallVec<[&'p DeconstructedPat<'p>; 2]> {
|
||||
match (&self.ctor, other_ctor) {
|
||||
(Wildcard, _) => {
|
||||
// We return a wildcard for each field of `other_ctor`.
|
||||
Fields::wildcards(cx, &self.ty, other_ctor).iter_patterns().collect()
|
||||
}
|
||||
(Slice(self_slice), Slice(other_slice))
|
||||
if self_slice.arity() != other_slice.arity() =>
|
||||
{
|
||||
unimplemented!()
|
||||
}
|
||||
_ => self.fields.iter_patterns().collect(),
|
||||
}
|
||||
}
|
||||
|
||||
/// We keep track for each pattern if it was ever reachable during the analysis. This is used
|
||||
/// with `unreachable_spans` to report unreachable subpatterns arising from or patterns.
|
||||
pub(super) fn set_reachable(&self) {
|
||||
self.reachable.set(true)
|
||||
}
|
||||
pub(super) fn is_reachable(&self) -> bool {
|
||||
self.reachable.get()
|
||||
}
|
||||
}
|
||||
|
||||
fn is_field_list_non_exhaustive(variant_id: VariantId, cx: &MatchCheckCtx<'_, '_>) -> bool {
|
||||
let attr_def_id = match variant_id {
|
||||
VariantId::EnumVariantId(id) => id.into(),
|
||||
VariantId::StructId(id) => id.into(),
|
||||
|
@ -904,7 +1017,7 @@ fn is_field_list_non_exhaustive(variant_id: VariantId, cx: &MatchCheckCtx<'_>) -
|
|||
cx.db.attrs(attr_def_id).by_key("non_exhaustive").exists()
|
||||
}
|
||||
|
||||
fn adt_is_box(adt: hir_def::AdtId, cx: &MatchCheckCtx<'_>) -> bool {
|
||||
fn adt_is_box(adt: hir_def::AdtId, cx: &MatchCheckCtx<'_, '_>) -> bool {
|
||||
use hir_def::lang_item::LangItemTarget;
|
||||
match cx.db.lang_item(cx.module.krate(), SmolStr::new_inline("owned_box")) {
|
||||
Some(LangItemTarget::StructId(box_id)) => adt == box_id.into(),
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
//! Based on rust-lang/rust 1.52.0-nightly (25c15cdbe 2021-04-22)
|
||||
//! <https://github.com/rust-lang/rust/blob/25c15cdbe/compiler/rustc_mir_build/src/thir/pattern/usefulness.rs>
|
||||
//! Based on rust-lang/rust (last sync 68b76a483 2021-10-01)
|
||||
//! <https://github.com/rust-lang/rust/blob/68b76a483/compiler/rustc_mir_build/src/thir/pattern/usefulness.rs>
|
||||
//!
|
||||
//! -----
|
||||
//!
|
||||
|
@ -271,33 +271,26 @@
|
|||
//! The details are not necessary to understand this file, so we explain them in
|
||||
//! [`super::deconstruct_pat`]. Splitting is done by the [`Constructor::split`] function.
|
||||
|
||||
use std::{cell::RefCell, iter::FromIterator};
|
||||
use std::iter::once;
|
||||
|
||||
use hir_def::{expr::ExprId, HasModule, ModuleId};
|
||||
use la_arena::Arena;
|
||||
use once_cell::unsync::OnceCell;
|
||||
use rustc_hash::FxHashMap;
|
||||
use hir_def::{AdtId, HasModule, ModuleId};
|
||||
use smallvec::{smallvec, SmallVec};
|
||||
use typed_arena::Arena;
|
||||
|
||||
use crate::{db::HirDatabase, InferenceResult, Interner, Ty};
|
||||
use crate::{db::HirDatabase, Ty, TyExt};
|
||||
|
||||
use super::{
|
||||
deconstruct_pat::{Constructor, Fields, SplitWildcard},
|
||||
Pat, PatId, PatKind, PatternFoldable, PatternFolder,
|
||||
};
|
||||
use super::deconstruct_pat::{Constructor, DeconstructedPat, Fields, SplitWildcard};
|
||||
|
||||
use self::{helper::PatIdExt, Usefulness::*, WitnessPreference::*};
|
||||
use self::{helper::Captures, ArmType::*, Usefulness::*};
|
||||
|
||||
pub(crate) struct MatchCheckCtx<'a> {
|
||||
pub(crate) struct MatchCheckCtx<'a, 'p> {
|
||||
pub(crate) module: ModuleId,
|
||||
pub(crate) match_expr: ExprId,
|
||||
pub(crate) infer: &'a InferenceResult,
|
||||
pub(crate) db: &'a dyn HirDatabase,
|
||||
/// Lowered patterns from arms plus generated by the check.
|
||||
pub(crate) pattern_arena: &'a RefCell<PatternArena>,
|
||||
pub(crate) pattern_arena: &'p Arena<DeconstructedPat<'p>>,
|
||||
}
|
||||
|
||||
impl<'a> MatchCheckCtx<'a> {
|
||||
impl<'a, 'p> MatchCheckCtx<'a, 'p> {
|
||||
pub(super) fn is_uninhabited(&self, _ty: &Ty) -> bool {
|
||||
// FIXME(iDawer) implement exhaustive_patterns feature. More info in:
|
||||
// Tracking issue for RFC 1872: exhaustive_patterns feature https://github.com/rust-lang/rust/issues/51085
|
||||
|
@ -305,12 +298,16 @@ impl<'a> MatchCheckCtx<'a> {
|
|||
}
|
||||
|
||||
/// Returns whether the given type is an enum from another crate declared `#[non_exhaustive]`.
|
||||
pub(super) fn is_foreign_non_exhaustive_enum(&self, enum_id: hir_def::EnumId) -> bool {
|
||||
let has_non_exhaustive_attr =
|
||||
self.db.attrs(enum_id.into()).by_key("non_exhaustive").exists();
|
||||
let is_local =
|
||||
hir_def::AdtId::from(enum_id).module(self.db.upcast()).krate() == self.module.krate();
|
||||
has_non_exhaustive_attr && !is_local
|
||||
pub(super) fn is_foreign_non_exhaustive_enum(&self, ty: &Ty) -> bool {
|
||||
match ty.as_adt() {
|
||||
Some((adt @ AdtId::EnumId(_), _)) => {
|
||||
let has_non_exhaustive_attr =
|
||||
self.db.attrs(adt.into()).by_key("non_exhaustive").exists();
|
||||
let is_local = adt.module(self.db.upcast()).krate() == self.module.krate();
|
||||
has_non_exhaustive_attr && !is_local
|
||||
}
|
||||
_ => false,
|
||||
}
|
||||
}
|
||||
|
||||
// Rust feature described as "Allows exhaustive pattern matching on types that contain uninhabited types."
|
||||
|
@ -318,92 +315,34 @@ impl<'a> MatchCheckCtx<'a> {
|
|||
// FIXME see MatchCheckCtx::is_uninhabited
|
||||
false
|
||||
}
|
||||
|
||||
pub(super) fn alloc_pat(&self, pat: Pat) -> PatId {
|
||||
self.pattern_arena.borrow_mut().alloc(pat)
|
||||
}
|
||||
|
||||
/// Get type of a pattern. Handles expanded patterns.
|
||||
pub(super) fn type_of(&self, pat: PatId) -> Ty {
|
||||
self.pattern_arena.borrow()[pat].ty.clone()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
pub(super) struct PatCtxt<'a> {
|
||||
pub(super) cx: &'a MatchCheckCtx<'a>,
|
||||
pub(super) struct PatCtxt<'a, 'p> {
|
||||
pub(super) cx: &'a MatchCheckCtx<'a, 'p>,
|
||||
/// Type of the current column under investigation.
|
||||
pub(super) ty: &'a Ty,
|
||||
/// Whether the current pattern is the whole pattern as found in a match arm, or if it's a
|
||||
/// subpattern.
|
||||
pub(super) is_top_level: bool,
|
||||
}
|
||||
|
||||
pub(crate) fn expand_pattern(pat: Pat) -> Pat {
|
||||
LiteralExpander.fold_pattern(&pat)
|
||||
}
|
||||
|
||||
struct LiteralExpander;
|
||||
|
||||
impl PatternFolder for LiteralExpander {
|
||||
fn fold_pattern(&mut self, pat: &Pat) -> Pat {
|
||||
match (pat.ty.kind(Interner), pat.kind.as_ref()) {
|
||||
(_, PatKind::Binding { subpattern: Some(s), .. }) => s.fold_with(self),
|
||||
_ => pat.super_fold_with(self),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Pat {
|
||||
fn _is_wildcard(&self) -> bool {
|
||||
matches!(*self.kind, PatKind::Binding { subpattern: None, .. } | PatKind::Wild)
|
||||
}
|
||||
}
|
||||
|
||||
impl PatIdExt for PatId {
|
||||
fn is_or_pat(self, cx: &MatchCheckCtx<'_>) -> bool {
|
||||
matches!(*cx.pattern_arena.borrow()[self].kind, PatKind::Or { .. })
|
||||
}
|
||||
|
||||
/// Recursively expand this pattern into its subpatterns. Only useful for or-patterns.
|
||||
fn expand_or_pat(self, cx: &MatchCheckCtx<'_>) -> Vec<Self> {
|
||||
fn expand(pat: PatId, vec: &mut Vec<PatId>, pat_arena: &mut PatternArena) {
|
||||
if let PatKind::Or { pats } = pat_arena[pat].kind.as_ref() {
|
||||
// FIXME(iDawer): Factor out pattern deep cloning. See discussion:
|
||||
// https://github.com/rust-analyzer/rust-analyzer/pull/8717#discussion_r633086640
|
||||
let pats = pats.clone();
|
||||
for pat in pats {
|
||||
let pat = pat_arena.alloc(pat.clone());
|
||||
expand(pat, vec, pat_arena);
|
||||
}
|
||||
} else {
|
||||
vec.push(pat)
|
||||
}
|
||||
}
|
||||
|
||||
let mut pat_arena = cx.pattern_arena.borrow_mut();
|
||||
let mut pats = Vec::new();
|
||||
expand(self, &mut pats, &mut pat_arena);
|
||||
pats
|
||||
}
|
||||
/// Wether the current pattern is from a `non_exhaustive` enum.
|
||||
pub(super) is_non_exhaustive: bool,
|
||||
}
|
||||
|
||||
/// A row of a matrix. Rows of len 1 are very common, which is why `SmallVec[_; 2]`
|
||||
/// works well.
|
||||
#[derive(Clone)]
|
||||
pub(super) struct PatStack {
|
||||
pats: SmallVec<[PatId; 2]>,
|
||||
/// Cache for the constructor of the head
|
||||
head_ctor: OnceCell<Constructor>,
|
||||
pub(super) struct PatStack<'p> {
|
||||
pats: SmallVec<[&'p DeconstructedPat<'p>; 2]>,
|
||||
}
|
||||
|
||||
impl PatStack {
|
||||
fn from_pattern(pat: PatId) -> Self {
|
||||
impl<'p> PatStack<'p> {
|
||||
fn from_pattern(pat: &'p DeconstructedPat<'p>) -> Self {
|
||||
Self::from_vec(smallvec![pat])
|
||||
}
|
||||
|
||||
fn from_vec(vec: SmallVec<[PatId; 2]>) -> Self {
|
||||
PatStack { pats: vec, head_ctor: OnceCell::new() }
|
||||
fn from_vec(vec: SmallVec<[&'p DeconstructedPat<'p>; 2]>) -> Self {
|
||||
PatStack { pats: vec }
|
||||
}
|
||||
|
||||
fn is_empty(&self) -> bool {
|
||||
|
@ -414,73 +353,42 @@ impl PatStack {
|
|||
self.pats.len()
|
||||
}
|
||||
|
||||
fn head(&self) -> PatId {
|
||||
fn head(&self) -> &'p DeconstructedPat<'p> {
|
||||
self.pats[0]
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn head_ctor(&self, cx: &MatchCheckCtx<'_>) -> &Constructor {
|
||||
self.head_ctor.get_or_init(|| Constructor::from_pat(cx, self.head()))
|
||||
}
|
||||
|
||||
// Recursively expand the first pattern into its subpatterns. Only useful if the pattern is an
|
||||
// or-pattern. Panics if `self` is empty.
|
||||
fn expand_or_pat(&self, cx: &MatchCheckCtx<'_>) -> impl Iterator<Item = PatStack> + '_ {
|
||||
self.head().expand_or_pat(cx).into_iter().map(move |pat| {
|
||||
fn expand_or_pat(&self) -> impl Iterator<Item = PatStack<'p>> + Captures<'_> {
|
||||
self.head().iter_fields().map(move |pat| {
|
||||
let mut new_patstack = PatStack::from_pattern(pat);
|
||||
new_patstack.pats.extend_from_slice(&self.pats[1..]);
|
||||
new_patstack
|
||||
})
|
||||
}
|
||||
|
||||
/// This computes `S(self.head_ctor(), self)`. See top of the file for explanations.
|
||||
/// This computes `S(self.head().ctor(), self)`. See top of the file for explanations.
|
||||
///
|
||||
/// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing
|
||||
/// fields filled with wild patterns.
|
||||
///
|
||||
/// This is roughly the inverse of `Constructor::apply`.
|
||||
fn pop_head_constructor(
|
||||
&self,
|
||||
ctor_wild_subpatterns: &Fields,
|
||||
cx: &MatchCheckCtx<'_>,
|
||||
) -> PatStack {
|
||||
fn pop_head_constructor(&self, cx: &MatchCheckCtx<'_, 'p>, ctor: &Constructor) -> PatStack<'p> {
|
||||
// We pop the head pattern and push the new fields extracted from the arguments of
|
||||
// `self.head()`.
|
||||
let mut new_fields =
|
||||
ctor_wild_subpatterns.replace_with_pattern_arguments(self.head(), cx).into_patterns();
|
||||
let mut new_fields: SmallVec<[_; 2]> = self.head().specialize(cx, ctor);
|
||||
new_fields.extend_from_slice(&self.pats[1..]);
|
||||
PatStack::from_vec(new_fields)
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for PatStack {
|
||||
fn default() -> Self {
|
||||
Self::from_vec(smallvec![])
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialEq for PatStack {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
self.pats == other.pats
|
||||
}
|
||||
}
|
||||
|
||||
impl FromIterator<PatId> for PatStack {
|
||||
fn from_iter<T>(iter: T) -> Self
|
||||
where
|
||||
T: IntoIterator<Item = PatId>,
|
||||
{
|
||||
Self::from_vec(iter.into_iter().collect())
|
||||
}
|
||||
}
|
||||
|
||||
/// A 2D matrix.
|
||||
#[derive(Clone)]
|
||||
pub(super) struct Matrix {
|
||||
patterns: Vec<PatStack>,
|
||||
pub(super) struct Matrix<'p> {
|
||||
patterns: Vec<PatStack<'p>>,
|
||||
}
|
||||
|
||||
impl Matrix {
|
||||
impl<'p> Matrix<'p> {
|
||||
fn empty() -> Self {
|
||||
Matrix { patterns: vec![] }
|
||||
}
|
||||
|
@ -492,9 +400,9 @@ impl Matrix {
|
|||
|
||||
/// Pushes a new row to the matrix. If the row starts with an or-pattern, this recursively
|
||||
/// expands it.
|
||||
fn push(&mut self, row: PatStack, cx: &MatchCheckCtx<'_>) {
|
||||
if !row.is_empty() && row.head().is_or_pat(cx) {
|
||||
for row in row.expand_or_pat(cx) {
|
||||
fn push(&mut self, row: PatStack<'p>) {
|
||||
if !row.is_empty() && row.head().is_or_pat() {
|
||||
for row in row.expand_or_pat() {
|
||||
self.patterns.push(row);
|
||||
}
|
||||
} else {
|
||||
|
@ -503,317 +411,56 @@ impl Matrix {
|
|||
}
|
||||
|
||||
/// Iterate over the first component of each row
|
||||
fn heads(&self) -> impl Iterator<Item = PatId> + '_ {
|
||||
fn heads(&self) -> impl Iterator<Item = &'p DeconstructedPat<'p>> + Clone + Captures<'_> {
|
||||
self.patterns.iter().map(|r| r.head())
|
||||
}
|
||||
|
||||
/// Iterate over the first constructor of each row.
|
||||
fn head_ctors<'a>(
|
||||
&'a self,
|
||||
cx: &'a MatchCheckCtx<'_>,
|
||||
) -> impl Iterator<Item = &'a Constructor> + Clone {
|
||||
self.patterns.iter().map(move |r| r.head_ctor(cx))
|
||||
}
|
||||
|
||||
/// This computes `S(constructor, self)`. See top of the file for explanations.
|
||||
fn specialize_constructor(
|
||||
&self,
|
||||
pcx: PatCtxt<'_>,
|
||||
ctor: &Constructor,
|
||||
ctor_wild_subpatterns: &Fields,
|
||||
) -> Matrix {
|
||||
let rows = self
|
||||
.patterns
|
||||
.iter()
|
||||
.filter(|r| ctor.is_covered_by(pcx, r.head_ctor(pcx.cx)))
|
||||
.map(|r| r.pop_head_constructor(ctor_wild_subpatterns, pcx.cx));
|
||||
Matrix::from_iter(rows, pcx.cx)
|
||||
}
|
||||
|
||||
fn from_iter(rows: impl IntoIterator<Item = PatStack>, cx: &MatchCheckCtx<'_>) -> Matrix {
|
||||
fn specialize_constructor(&self, pcx: PatCtxt<'_, 'p>, ctor: &Constructor) -> Matrix<'p> {
|
||||
let mut matrix = Matrix::empty();
|
||||
for x in rows {
|
||||
// Using `push` ensures we correctly expand or-patterns.
|
||||
matrix.push(x, cx);
|
||||
for row in &self.patterns {
|
||||
if ctor.is_covered_by(pcx, row.head().ctor()) {
|
||||
let new_row = row.pop_head_constructor(pcx.cx, ctor);
|
||||
matrix.push(new_row);
|
||||
}
|
||||
}
|
||||
matrix
|
||||
}
|
||||
}
|
||||
|
||||
/// Given a pattern or a pattern-stack, this struct captures a set of its subpatterns. We use that
|
||||
/// to track reachable sub-patterns arising from or-patterns. In the absence of or-patterns this
|
||||
/// will always be either `Empty` (the whole pattern is unreachable) or `Full` (the whole pattern
|
||||
/// is reachable). When there are or-patterns, some subpatterns may be reachable while others
|
||||
/// aren't. In this case the whole pattern still counts as reachable, but we will lint the
|
||||
/// unreachable subpatterns.
|
||||
///
|
||||
/// This supports a limited set of operations, so not all possible sets of subpatterns can be
|
||||
/// represented. That's ok, we only want the ones that make sense for our usage.
|
||||
///
|
||||
/// What we're doing is illustrated by this:
|
||||
/// ```
|
||||
/// match (true, 0) {
|
||||
/// (true, 0) => {}
|
||||
/// (_, 1) => {}
|
||||
/// (true | false, 0 | 1) => {}
|
||||
/// }
|
||||
/// ```
|
||||
/// When we try the alternatives of the `true | false` or-pattern, the last `0` is reachable in the
|
||||
/// `false` alternative but not the `true`. So overall it is reachable. By contrast, the last `1`
|
||||
/// is not reachable in either alternative, so we want to signal this to the user.
|
||||
/// Therefore we take the union of sets of reachable patterns coming from different alternatives in
|
||||
/// order to figure out which subpatterns are overall reachable.
|
||||
///
|
||||
/// Invariant: we try to construct the smallest representation we can. In particular if
|
||||
/// `self.is_empty()` we ensure that `self` is `Empty`, and same with `Full`. This is not important
|
||||
/// for correctness currently.
|
||||
#[derive(Debug, Clone)]
|
||||
enum SubPatSet {
|
||||
/// The empty set. This means the pattern is unreachable.
|
||||
Empty,
|
||||
/// The set containing the full pattern.
|
||||
Full,
|
||||
/// If the pattern is a pattern with a constructor or a pattern-stack, we store a set for each
|
||||
/// of its subpatterns. Missing entries in the map are implicitly full, because that's the
|
||||
/// common case.
|
||||
Seq { subpats: FxHashMap<usize, SubPatSet> },
|
||||
/// If the pattern is an or-pattern, we store a set for each of its alternatives. Missing
|
||||
/// entries in the map are implicitly empty. Note: we always flatten nested or-patterns.
|
||||
Alt {
|
||||
subpats: FxHashMap<usize, SubPatSet>,
|
||||
/// Counts the total number of alternatives in the pattern
|
||||
alt_count: usize,
|
||||
/// We keep the pattern around to retrieve spans.
|
||||
pat: PatId,
|
||||
},
|
||||
}
|
||||
|
||||
impl SubPatSet {
|
||||
fn full() -> Self {
|
||||
SubPatSet::Full
|
||||
}
|
||||
|
||||
fn empty() -> Self {
|
||||
SubPatSet::Empty
|
||||
}
|
||||
|
||||
fn is_empty(&self) -> bool {
|
||||
match self {
|
||||
SubPatSet::Empty => true,
|
||||
SubPatSet::Full => false,
|
||||
// If any subpattern in a sequence is unreachable, the whole pattern is unreachable.
|
||||
SubPatSet::Seq { subpats } => subpats.values().any(|set| set.is_empty()),
|
||||
// An or-pattern is reachable if any of its alternatives is.
|
||||
SubPatSet::Alt { subpats, .. } => subpats.values().all(|set| set.is_empty()),
|
||||
}
|
||||
}
|
||||
|
||||
fn is_full(&self) -> bool {
|
||||
match self {
|
||||
SubPatSet::Empty => false,
|
||||
SubPatSet::Full => true,
|
||||
// The whole pattern is reachable only when all its alternatives are.
|
||||
SubPatSet::Seq { subpats } => subpats.values().all(|sub_set| sub_set.is_full()),
|
||||
// The whole or-pattern is reachable only when all its alternatives are.
|
||||
SubPatSet::Alt { subpats, alt_count, .. } => {
|
||||
subpats.len() == *alt_count && subpats.values().all(|set| set.is_full())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Union `self` with `other`, mutating `self`.
|
||||
fn union(&mut self, other: Self) {
|
||||
use SubPatSet::*;
|
||||
// Union with full stays full; union with empty changes nothing.
|
||||
if self.is_full() || other.is_empty() {
|
||||
return;
|
||||
} else if self.is_empty() {
|
||||
*self = other;
|
||||
return;
|
||||
} else if other.is_full() {
|
||||
*self = Full;
|
||||
return;
|
||||
}
|
||||
|
||||
match (&mut *self, other) {
|
||||
(Seq { subpats: s_set }, Seq { subpats: mut o_set }) => {
|
||||
s_set.retain(|i, s_sub_set| {
|
||||
// Missing entries count as full.
|
||||
let o_sub_set = o_set.remove(i).unwrap_or(Full);
|
||||
s_sub_set.union(o_sub_set);
|
||||
// We drop full entries.
|
||||
!s_sub_set.is_full()
|
||||
});
|
||||
// Everything left in `o_set` is missing from `s_set`, i.e. counts as full. Since
|
||||
// unioning with full returns full, we can drop those entries.
|
||||
}
|
||||
(Alt { subpats: s_set, .. }, Alt { subpats: mut o_set, .. }) => {
|
||||
s_set.retain(|i, s_sub_set| {
|
||||
// Missing entries count as empty.
|
||||
let o_sub_set = o_set.remove(i).unwrap_or(Empty);
|
||||
s_sub_set.union(o_sub_set);
|
||||
// We drop empty entries.
|
||||
!s_sub_set.is_empty()
|
||||
});
|
||||
// Everything left in `o_set` is missing from `s_set`, i.e. counts as empty. Since
|
||||
// unioning with empty changes nothing, we can take those entries as is.
|
||||
s_set.extend(o_set);
|
||||
}
|
||||
_ => panic!("bug"),
|
||||
}
|
||||
|
||||
if self.is_full() {
|
||||
*self = Full;
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns a list of the unreachable subpatterns. If `self` is empty (i.e. the
|
||||
/// whole pattern is unreachable) we return `None`.
|
||||
fn list_unreachable_subpatterns(&self, cx: &MatchCheckCtx<'_>) -> Option<Vec<PatId>> {
|
||||
/// Panics if `set.is_empty()`.
|
||||
fn fill_subpats(
|
||||
set: &SubPatSet,
|
||||
unreachable_pats: &mut Vec<PatId>,
|
||||
cx: &MatchCheckCtx<'_>,
|
||||
) {
|
||||
match set {
|
||||
SubPatSet::Empty => panic!("bug"),
|
||||
SubPatSet::Full => {}
|
||||
SubPatSet::Seq { subpats } => {
|
||||
for sub_set in subpats.values() {
|
||||
fill_subpats(sub_set, unreachable_pats, cx);
|
||||
}
|
||||
}
|
||||
SubPatSet::Alt { subpats, pat, alt_count, .. } => {
|
||||
let expanded = pat.expand_or_pat(cx);
|
||||
for (i, &expanded) in expanded.iter().enumerate().take(*alt_count) {
|
||||
let sub_set = subpats.get(&i).unwrap_or(&SubPatSet::Empty);
|
||||
if sub_set.is_empty() {
|
||||
// Found an unreachable subpattern.
|
||||
unreachable_pats.push(expanded);
|
||||
} else {
|
||||
fill_subpats(sub_set, unreachable_pats, cx);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if self.is_empty() {
|
||||
return None;
|
||||
}
|
||||
if self.is_full() {
|
||||
// No subpatterns are unreachable.
|
||||
return Some(Vec::new());
|
||||
}
|
||||
let mut unreachable_pats = Vec::new();
|
||||
fill_subpats(self, &mut unreachable_pats, cx);
|
||||
Some(unreachable_pats)
|
||||
}
|
||||
|
||||
/// When `self` refers to a patstack that was obtained from specialization, after running
|
||||
/// `unspecialize` it will refer to the original patstack before specialization.
|
||||
fn unspecialize(self, arity: usize) -> Self {
|
||||
use SubPatSet::*;
|
||||
match self {
|
||||
Full => Full,
|
||||
Empty => Empty,
|
||||
Seq { subpats } => {
|
||||
// We gather the first `arity` subpatterns together and shift the remaining ones.
|
||||
let mut new_subpats = FxHashMap::default();
|
||||
let mut new_subpats_first_col = FxHashMap::default();
|
||||
for (i, sub_set) in subpats {
|
||||
if i < arity {
|
||||
// The first `arity` indices are now part of the pattern in the first
|
||||
// column.
|
||||
new_subpats_first_col.insert(i, sub_set);
|
||||
} else {
|
||||
// Indices after `arity` are simply shifted
|
||||
new_subpats.insert(i - arity + 1, sub_set);
|
||||
}
|
||||
}
|
||||
// If `new_subpats_first_col` has no entries it counts as full, so we can omit it.
|
||||
if !new_subpats_first_col.is_empty() {
|
||||
new_subpats.insert(0, Seq { subpats: new_subpats_first_col });
|
||||
}
|
||||
Seq { subpats: new_subpats }
|
||||
}
|
||||
Alt { .. } => panic!("bug"), // `self` is a patstack
|
||||
}
|
||||
}
|
||||
|
||||
/// When `self` refers to a patstack that was obtained from splitting an or-pattern, after
|
||||
/// running `unspecialize` it will refer to the original patstack before splitting.
|
||||
///
|
||||
/// For example:
|
||||
/// ```
|
||||
/// match Some(true) {
|
||||
/// Some(true) => {}
|
||||
/// None | Some(true | false) => {}
|
||||
/// }
|
||||
/// ```
|
||||
/// Here `None` would return the full set and `Some(true | false)` would return the set
|
||||
/// containing `false`. After `unsplit_or_pat`, we want the set to contain `None` and `false`.
|
||||
/// This is what this function does.
|
||||
fn unsplit_or_pat(mut self, alt_id: usize, alt_count: usize, pat: PatId) -> Self {
|
||||
use SubPatSet::*;
|
||||
if self.is_empty() {
|
||||
return Empty;
|
||||
}
|
||||
|
||||
// Subpatterns coming from inside the or-pattern alternative itself, e.g. in `None | Some(0
|
||||
// | 1)`.
|
||||
let set_first_col = match &mut self {
|
||||
Full => Full,
|
||||
Seq { subpats } => subpats.remove(&0).unwrap_or(Full),
|
||||
Empty => unreachable!(),
|
||||
Alt { .. } => panic!("bug"), // `self` is a patstack
|
||||
};
|
||||
let mut subpats_first_col = FxHashMap::default();
|
||||
subpats_first_col.insert(alt_id, set_first_col);
|
||||
let set_first_col = Alt { subpats: subpats_first_col, pat, alt_count };
|
||||
|
||||
let mut subpats = match self {
|
||||
Full => FxHashMap::default(),
|
||||
Seq { subpats } => subpats,
|
||||
Empty => unreachable!(),
|
||||
Alt { .. } => panic!("bug"), // `self` is a patstack
|
||||
};
|
||||
subpats.insert(0, set_first_col);
|
||||
Seq { subpats }
|
||||
}
|
||||
}
|
||||
|
||||
/// This carries the results of computing usefulness, as described at the top of the file. When
|
||||
/// checking usefulness of a match branch, we use the `NoWitnesses` variant, which also keeps track
|
||||
/// of potential unreachable sub-patterns (in the presence of or-patterns). When checking
|
||||
/// exhaustiveness of a whole match, we use the `WithWitnesses` variant, which carries a list of
|
||||
/// witnesses of non-exhaustiveness when there are any.
|
||||
/// Which variant to use is dictated by `WitnessPreference`.
|
||||
#[derive(Clone, Debug)]
|
||||
enum Usefulness {
|
||||
/// Carries a set of subpatterns that have been found to be reachable. If empty, this indicates
|
||||
/// the whole pattern is unreachable. If not, this indicates that the pattern is reachable but
|
||||
/// that some sub-patterns may be unreachable (due to or-patterns). In the absence of
|
||||
/// or-patterns this will always be either `Empty` (the whole pattern is unreachable) or `Full`
|
||||
/// (the whole pattern is reachable).
|
||||
NoWitnesses(SubPatSet),
|
||||
/// Which variant to use is dictated by `ArmType`.
|
||||
enum Usefulness<'p> {
|
||||
/// If we don't care about witnesses, simply remember if the pattern was useful.
|
||||
NoWitnesses { useful: bool },
|
||||
/// Carries a list of witnesses of non-exhaustiveness. If empty, indicates that the whole
|
||||
/// pattern is unreachable.
|
||||
WithWitnesses(Vec<Witness>),
|
||||
WithWitnesses(Vec<Witness<'p>>),
|
||||
}
|
||||
|
||||
impl Usefulness {
|
||||
fn new_useful(preference: WitnessPreference) -> Self {
|
||||
impl<'p> Usefulness<'p> {
|
||||
fn new_useful(preference: ArmType) -> Self {
|
||||
match preference {
|
||||
ConstructWitness => WithWitnesses(vec![Witness(vec![])]),
|
||||
LeaveOutWitness => NoWitnesses(SubPatSet::full()),
|
||||
// A single (empty) witness of reachability.
|
||||
FakeExtraWildcard => WithWitnesses(vec![Witness(vec![])]),
|
||||
RealArm => NoWitnesses { useful: true },
|
||||
}
|
||||
}
|
||||
fn new_not_useful(preference: WitnessPreference) -> Self {
|
||||
fn new_not_useful(preference: ArmType) -> Self {
|
||||
match preference {
|
||||
ConstructWitness => WithWitnesses(vec![]),
|
||||
LeaveOutWitness => NoWitnesses(SubPatSet::empty()),
|
||||
FakeExtraWildcard => WithWitnesses(vec![]),
|
||||
RealArm => NoWitnesses { useful: false },
|
||||
}
|
||||
}
|
||||
|
||||
fn is_useful(&self) -> bool {
|
||||
match self {
|
||||
Usefulness::NoWitnesses { useful } => *useful,
|
||||
Usefulness::WithWitnesses(witnesses) => !witnesses.is_empty(),
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -823,89 +470,78 @@ impl Usefulness {
|
|||
(WithWitnesses(_), WithWitnesses(o)) if o.is_empty() => {}
|
||||
(WithWitnesses(s), WithWitnesses(o)) if s.is_empty() => *self = WithWitnesses(o),
|
||||
(WithWitnesses(s), WithWitnesses(o)) => s.extend(o),
|
||||
(NoWitnesses(s), NoWitnesses(o)) => s.union(o),
|
||||
(NoWitnesses { useful: s_useful }, NoWitnesses { useful: o_useful }) => {
|
||||
*s_useful = *s_useful || o_useful
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
/// When trying several branches and each returns a `Usefulness`, we need to combine the
|
||||
/// results together.
|
||||
fn merge(pref: WitnessPreference, usefulnesses: impl Iterator<Item = Self>) -> Self {
|
||||
let mut ret = Self::new_not_useful(pref);
|
||||
for u in usefulnesses {
|
||||
ret.extend(u);
|
||||
if let NoWitnesses(subpats) = &ret {
|
||||
if subpats.is_full() {
|
||||
// Once we reach the full set, more unions won't change the result.
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
}
|
||||
ret
|
||||
}
|
||||
|
||||
/// After calculating the usefulness for a branch of an or-pattern, call this to make this
|
||||
/// usefulness mergeable with those from the other branches.
|
||||
fn unsplit_or_pat(self, alt_id: usize, alt_count: usize, pat: PatId) -> Self {
|
||||
match self {
|
||||
NoWitnesses(subpats) => NoWitnesses(subpats.unsplit_or_pat(alt_id, alt_count, pat)),
|
||||
WithWitnesses(_) => panic!("bug"),
|
||||
}
|
||||
}
|
||||
|
||||
/// After calculating usefulness after a specialization, call this to recontruct a usefulness
|
||||
/// After calculating usefulness after a specialization, call this to reconstruct a usefulness
|
||||
/// that makes sense for the matrix pre-specialization. This new usefulness can then be merged
|
||||
/// with the results of specializing with the other constructors.
|
||||
fn apply_constructor(
|
||||
self,
|
||||
pcx: PatCtxt<'_>,
|
||||
matrix: &Matrix,
|
||||
pcx: PatCtxt<'_, 'p>,
|
||||
matrix: &Matrix<'p>,
|
||||
ctor: &Constructor,
|
||||
ctor_wild_subpatterns: &Fields,
|
||||
) -> Self {
|
||||
match self {
|
||||
WithWitnesses(witnesses) if witnesses.is_empty() => WithWitnesses(witnesses),
|
||||
NoWitnesses { .. } => self,
|
||||
WithWitnesses(ref witnesses) if witnesses.is_empty() => self,
|
||||
WithWitnesses(witnesses) => {
|
||||
let new_witnesses = if matches!(ctor, Constructor::Missing) {
|
||||
let mut split_wildcard = SplitWildcard::new(pcx);
|
||||
split_wildcard.split(pcx, matrix.head_ctors(pcx.cx));
|
||||
// Construct for each missing constructor a "wild" version of this
|
||||
// constructor, that matches everything that can be built with
|
||||
// it. For example, if `ctor` is a `Constructor::Variant` for
|
||||
// `Option::Some`, we get the pattern `Some(_)`.
|
||||
let new_patterns: Vec<_> = split_wildcard
|
||||
.iter_missing(pcx)
|
||||
.map(|missing_ctor| {
|
||||
Fields::wildcards(pcx, missing_ctor).apply(pcx, missing_ctor)
|
||||
})
|
||||
.collect();
|
||||
let new_witnesses = if let Constructor::Missing { .. } = ctor {
|
||||
// We got the special `Missing` constructor, so each of the missing constructors
|
||||
// gives a new pattern that is not caught by the match. We list those patterns.
|
||||
let new_patterns = if pcx.is_non_exhaustive {
|
||||
// Here we don't want the user to try to list all variants, we want them to add
|
||||
// a wildcard, so we only suggest that.
|
||||
vec![DeconstructedPat::wildcard(pcx.ty.clone())]
|
||||
} else {
|
||||
let mut split_wildcard = SplitWildcard::new(pcx);
|
||||
split_wildcard.split(pcx, matrix.heads().map(DeconstructedPat::ctor));
|
||||
// Construct for each missing constructor a "wild" version of this
|
||||
// constructor, that matches everything that can be built with
|
||||
// it. For example, if `ctor` is a `Constructor::Variant` for
|
||||
// `Option::Some`, we get the pattern `Some(_)`.
|
||||
split_wildcard
|
||||
.iter_missing(pcx)
|
||||
.cloned()
|
||||
.map(|missing_ctor| DeconstructedPat::wild_from_ctor(pcx, missing_ctor))
|
||||
.collect()
|
||||
};
|
||||
|
||||
witnesses
|
||||
.into_iter()
|
||||
.flat_map(|witness| {
|
||||
new_patterns.iter().map(move |pat| {
|
||||
let mut witness = witness.clone();
|
||||
witness.0.push(pat.clone());
|
||||
witness
|
||||
Witness(
|
||||
witness
|
||||
.0
|
||||
.iter()
|
||||
.chain(once(pat))
|
||||
.map(DeconstructedPat::clone_and_forget_reachability)
|
||||
.collect(),
|
||||
)
|
||||
})
|
||||
})
|
||||
.collect()
|
||||
} else {
|
||||
witnesses
|
||||
.into_iter()
|
||||
.map(|witness| witness.apply_constructor(pcx, ctor, ctor_wild_subpatterns))
|
||||
.map(|witness| witness.apply_constructor(pcx, ctor))
|
||||
.collect()
|
||||
};
|
||||
WithWitnesses(new_witnesses)
|
||||
}
|
||||
NoWitnesses(subpats) => NoWitnesses(subpats.unspecialize(ctor_wild_subpatterns.len())),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
enum WitnessPreference {
|
||||
ConstructWitness,
|
||||
LeaveOutWitness,
|
||||
enum ArmType {
|
||||
FakeExtraWildcard,
|
||||
RealArm,
|
||||
}
|
||||
|
||||
/// A witness of non-exhaustiveness for error reporting, represented
|
||||
|
@ -941,12 +577,11 @@ enum WitnessPreference {
|
|||
/// `Witness(vec![Pair(Some(_), true)])`
|
||||
///
|
||||
/// The final `Pair(Some(_), true)` is then the resulting witness.
|
||||
#[derive(Clone, Debug)]
|
||||
pub(crate) struct Witness(Vec<Pat>);
|
||||
pub(crate) struct Witness<'p>(Vec<DeconstructedPat<'p>>);
|
||||
|
||||
impl Witness {
|
||||
impl<'p> Witness<'p> {
|
||||
/// Asserts that the witness contains a single pattern, and returns it.
|
||||
fn single_pattern(self) -> Pat {
|
||||
fn single_pattern(self) -> DeconstructedPat<'p> {
|
||||
assert_eq!(self.0.len(), 1);
|
||||
self.0.into_iter().next().unwrap()
|
||||
}
|
||||
|
@ -964,17 +599,13 @@ impl Witness {
|
|||
///
|
||||
/// left_ty: struct X { a: (bool, &'static str), b: usize}
|
||||
/// pats: [(false, "foo"), 42] => X { a: (false, "foo"), b: 42 }
|
||||
fn apply_constructor(
|
||||
mut self,
|
||||
pcx: PatCtxt<'_>,
|
||||
ctor: &Constructor,
|
||||
ctor_wild_subpatterns: &Fields,
|
||||
) -> Self {
|
||||
fn apply_constructor(mut self, pcx: PatCtxt<'_, 'p>, ctor: &Constructor) -> Self {
|
||||
let pat = {
|
||||
let len = self.0.len();
|
||||
let arity = ctor_wild_subpatterns.len();
|
||||
let arity = ctor.arity(pcx);
|
||||
let pats = self.0.drain((len - arity)..).rev();
|
||||
ctor_wild_subpatterns.replace_fields(pcx.cx, pats).apply(pcx, ctor)
|
||||
let fields = Fields::from_iter(pcx.cx, pats);
|
||||
DeconstructedPat::new(ctor.clone(), fields, pcx.ty.clone())
|
||||
};
|
||||
|
||||
self.0.push(pat);
|
||||
|
@ -1005,14 +636,14 @@ impl Witness {
|
|||
/// `is_under_guard` is used to inform if the pattern has a guard. If it
|
||||
/// has one it must not be inserted into the matrix. This shouldn't be
|
||||
/// relied on for soundness.
|
||||
fn is_useful(
|
||||
cx: &MatchCheckCtx<'_>,
|
||||
matrix: &Matrix,
|
||||
v: &PatStack,
|
||||
witness_preference: WitnessPreference,
|
||||
fn is_useful<'p>(
|
||||
cx: &MatchCheckCtx<'_, 'p>,
|
||||
matrix: &Matrix<'p>,
|
||||
v: &PatStack<'p>,
|
||||
witness_preference: ArmType,
|
||||
is_under_guard: bool,
|
||||
is_top_level: bool,
|
||||
) -> Usefulness {
|
||||
) -> Usefulness<'p> {
|
||||
let Matrix { patterns: rows, .. } = matrix;
|
||||
|
||||
// The base case. We are pattern-matching on () and the return value is
|
||||
|
@ -1031,67 +662,60 @@ fn is_useful(
|
|||
|
||||
assert!(rows.iter().all(|r| r.len() == v.len()));
|
||||
|
||||
// FIXME(Nadrieril): Hack to work around type normalization issues (see rust-lang/rust#72476).
|
||||
let ty = matrix.heads().next().map_or(cx.type_of(v.head()), |r| cx.type_of(r));
|
||||
let pcx = PatCtxt { cx, ty: &ty, is_top_level };
|
||||
let ty = v.head().ty();
|
||||
let is_non_exhaustive = cx.is_foreign_non_exhaustive_enum(ty);
|
||||
let pcx = PatCtxt { cx, ty, is_top_level, is_non_exhaustive };
|
||||
|
||||
// If the first pattern is an or-pattern, expand it.
|
||||
let ret = if v.head().is_or_pat(cx) {
|
||||
//expanding or-pattern
|
||||
let v_head = v.head();
|
||||
let vs: Vec<_> = v.expand_or_pat(cx).collect();
|
||||
let alt_count = vs.len();
|
||||
let mut ret = Usefulness::new_not_useful(witness_preference);
|
||||
if v.head().is_or_pat() {
|
||||
// We try each or-pattern branch in turn.
|
||||
let mut matrix = matrix.clone();
|
||||
let usefulnesses = vs.into_iter().enumerate().map(|(i, v)| {
|
||||
for v in v.expand_or_pat() {
|
||||
let usefulness = is_useful(cx, &matrix, &v, witness_preference, is_under_guard, false);
|
||||
ret.extend(usefulness);
|
||||
// If pattern has a guard don't add it to the matrix.
|
||||
if !is_under_guard {
|
||||
// We push the already-seen patterns into the matrix in order to detect redundant
|
||||
// branches like `Some(_) | Some(0)`.
|
||||
matrix.push(v, cx);
|
||||
matrix.push(v);
|
||||
}
|
||||
usefulness.unsplit_or_pat(i, alt_count, v_head)
|
||||
});
|
||||
Usefulness::merge(witness_preference, usefulnesses)
|
||||
}
|
||||
} else {
|
||||
let v_ctor = v.head_ctor(cx);
|
||||
// if let Constructor::IntRange(ctor_range) = v_ctor {
|
||||
// // Lint on likely incorrect range patterns (#63987)
|
||||
// ctor_range.lint_overlapping_range_endpoints(
|
||||
// pcx,
|
||||
// matrix.head_ctors_and_spans(cx),
|
||||
// matrix.column_count().unwrap_or(0),
|
||||
// hir_id,
|
||||
// )
|
||||
// }
|
||||
let v_ctor = v.head().ctor();
|
||||
|
||||
// FIXME: implement `overlapping_range_endpoints` lint
|
||||
|
||||
// We split the head constructor of `v`.
|
||||
let split_ctors = v_ctor.split(pcx, matrix.head_ctors(cx));
|
||||
let split_ctors = v_ctor.split(pcx, matrix.heads().map(DeconstructedPat::ctor));
|
||||
// For each constructor, we compute whether there's a value that starts with it that would
|
||||
// witness the usefulness of `v`.
|
||||
let start_matrix = matrix;
|
||||
let usefulnesses = split_ctors.into_iter().map(|ctor| {
|
||||
// debug!("specialize({:?})", ctor);
|
||||
for ctor in split_ctors {
|
||||
// We cache the result of `Fields::wildcards` because it is used a lot.
|
||||
let ctor_wild_subpatterns = Fields::wildcards(pcx, &ctor);
|
||||
let spec_matrix =
|
||||
start_matrix.specialize_constructor(pcx, &ctor, &ctor_wild_subpatterns);
|
||||
let v = v.pop_head_constructor(&ctor_wild_subpatterns, cx);
|
||||
let spec_matrix = start_matrix.specialize_constructor(pcx, &ctor);
|
||||
let v = v.pop_head_constructor(cx, &ctor);
|
||||
let usefulness =
|
||||
is_useful(cx, &spec_matrix, &v, witness_preference, is_under_guard, false);
|
||||
usefulness.apply_constructor(pcx, start_matrix, &ctor, &ctor_wild_subpatterns)
|
||||
});
|
||||
Usefulness::merge(witness_preference, usefulnesses)
|
||||
let usefulness = usefulness.apply_constructor(pcx, start_matrix, &ctor);
|
||||
|
||||
// FIXME: implement `non_exhaustive_omitted_patterns` lint
|
||||
|
||||
ret.extend(usefulness);
|
||||
}
|
||||
};
|
||||
|
||||
if ret.is_useful() {
|
||||
v.head().set_reachable();
|
||||
}
|
||||
|
||||
ret
|
||||
}
|
||||
|
||||
/// The arm of a match expression.
|
||||
#[derive(Clone, Copy)]
|
||||
pub(crate) struct MatchArm {
|
||||
pub(crate) pat: PatId,
|
||||
pub(crate) struct MatchArm<'p> {
|
||||
pub(crate) pat: &'p DeconstructedPat<'p>,
|
||||
pub(crate) has_guard: bool,
|
||||
}
|
||||
|
||||
|
@ -1101,18 +725,19 @@ pub(crate) enum Reachability {
|
|||
/// The arm is reachable. This additionally carries a set of or-pattern branches that have been
|
||||
/// found to be unreachable despite the overall arm being reachable. Used only in the presence
|
||||
/// of or-patterns, otherwise it stays empty.
|
||||
Reachable(Vec<PatId>),
|
||||
// FIXME: store ureachable subpattern IDs
|
||||
Reachable,
|
||||
/// The arm is unreachable.
|
||||
Unreachable,
|
||||
}
|
||||
|
||||
/// The output of checking a match for exhaustiveness and arm reachability.
|
||||
pub(crate) struct UsefulnessReport {
|
||||
pub(crate) struct UsefulnessReport<'p> {
|
||||
/// For each arm of the input, whether that arm is reachable after the arms above it.
|
||||
pub(crate) _arm_usefulness: Vec<(MatchArm, Reachability)>,
|
||||
pub(crate) _arm_usefulness: Vec<(MatchArm<'p>, Reachability)>,
|
||||
/// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of
|
||||
/// exhaustiveness.
|
||||
pub(crate) non_exhaustiveness_witnesses: Vec<Pat>,
|
||||
pub(crate) non_exhaustiveness_witnesses: Vec<DeconstructedPat<'p>>,
|
||||
}
|
||||
|
||||
/// The entrypoint for the usefulness algorithm. Computes whether a match is exhaustive and which
|
||||
|
@ -1120,53 +745,41 @@ pub(crate) struct UsefulnessReport {
|
|||
///
|
||||
/// Note: the input patterns must have been lowered through
|
||||
/// `check_match::MatchVisitor::lower_pattern`.
|
||||
pub(crate) fn compute_match_usefulness(
|
||||
cx: &MatchCheckCtx<'_>,
|
||||
arms: &[MatchArm],
|
||||
) -> UsefulnessReport {
|
||||
pub(crate) fn compute_match_usefulness<'p>(
|
||||
cx: &MatchCheckCtx<'_, 'p>,
|
||||
arms: &[MatchArm<'p>],
|
||||
scrut_ty: &Ty,
|
||||
) -> UsefulnessReport<'p> {
|
||||
let mut matrix = Matrix::empty();
|
||||
let arm_usefulness = arms
|
||||
.iter()
|
||||
.copied()
|
||||
.map(|arm| {
|
||||
let v = PatStack::from_pattern(arm.pat);
|
||||
let usefulness = is_useful(cx, &matrix, &v, LeaveOutWitness, arm.has_guard, true);
|
||||
is_useful(cx, &matrix, &v, RealArm, arm.has_guard, true);
|
||||
if !arm.has_guard {
|
||||
matrix.push(v, cx);
|
||||
matrix.push(v);
|
||||
}
|
||||
let reachability = match usefulness {
|
||||
NoWitnesses(subpats) if subpats.is_empty() => Reachability::Unreachable,
|
||||
NoWitnesses(subpats) => {
|
||||
Reachability::Reachable(subpats.list_unreachable_subpatterns(cx).unwrap())
|
||||
}
|
||||
WithWitnesses(..) => panic!("bug"),
|
||||
let reachability = if arm.pat.is_reachable() {
|
||||
Reachability::Reachable
|
||||
} else {
|
||||
Reachability::Unreachable
|
||||
};
|
||||
(arm, reachability)
|
||||
})
|
||||
.collect();
|
||||
|
||||
let wild_pattern =
|
||||
cx.pattern_arena.borrow_mut().alloc(Pat::wildcard_from_ty(cx.infer[cx.match_expr].clone()));
|
||||
let wild_pattern = cx.pattern_arena.alloc(DeconstructedPat::wildcard(scrut_ty.clone()));
|
||||
let v = PatStack::from_pattern(wild_pattern);
|
||||
let usefulness = is_useful(cx, &matrix, &v, ConstructWitness, false, true);
|
||||
let usefulness = is_useful(cx, &matrix, &v, FakeExtraWildcard, false, true);
|
||||
let non_exhaustiveness_witnesses = match usefulness {
|
||||
WithWitnesses(pats) => pats.into_iter().map(Witness::single_pattern).collect(),
|
||||
NoWitnesses(_) => panic!("bug"),
|
||||
NoWitnesses { .. } => panic!("bug"),
|
||||
};
|
||||
UsefulnessReport { _arm_usefulness: arm_usefulness, non_exhaustiveness_witnesses }
|
||||
}
|
||||
|
||||
pub(crate) type PatternArena = Arena<Pat>;
|
||||
|
||||
mod helper {
|
||||
use super::MatchCheckCtx;
|
||||
|
||||
pub(super) trait PatIdExt: Sized {
|
||||
// fn is_wildcard(self, cx: &MatchCheckCtx<'_>) -> bool;
|
||||
fn is_or_pat(self, cx: &MatchCheckCtx<'_>) -> bool;
|
||||
fn expand_or_pat(self, cx: &MatchCheckCtx<'_>) -> Vec<Self>;
|
||||
}
|
||||
|
||||
pub(crate) mod helper {
|
||||
// Copy-pasted from rust/compiler/rustc_data_structures/src/captures.rs
|
||||
/// "Signaling" trait used in impl trait to tag lifetimes that you may
|
||||
/// need to capture but don't really need for other reasons.
|
||||
|
|
|
@ -821,7 +821,6 @@ fn main() {
|
|||
|
||||
#[test]
|
||||
fn pattern_type_is_of_substitution() {
|
||||
cov_mark::check!(match_check_wildcard_expanded_to_substitutions);
|
||||
check_diagnostics_no_bails(
|
||||
r#"
|
||||
struct Foo<T>(T);
|
||||
|
|
Loading…
Reference in a new issue