2895: Rewrite ra_prof's profile printing r=michalt a=michalt

This changes the way we print things to first construct a mapping from
events to the children and uses that mapping to actually print things.
It should not change the actual output that we produce.

The new approach two benefits:

 * It avoids a potential quadratic behavior of the previous approach.
   For instance, for a vector of N elements:
   ```
   [Message{level: (N - 1)}, ..., Message{level: 1}, Message{level: 0}]
   ```
   we would first do a linear scan to find entry with level 0, then
   another scan to find one with level 1, etc.

 * It makes it much easier to improve the output in the future, because
   we now pre-compute the children for each entry and can easily take
   that into account when printing.

Signed-off-by: Michal Terepeta <michal.terepeta@gmail.com>

Co-authored-by: Michal Terepeta <michal.terepeta@gmail.com>
This commit is contained in:
bors[bot] 2020-01-29 20:09:49 +00:00 committed by GitHub
commit 5dcd9fdf5e
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -6,9 +6,9 @@ mod google_cpu_profiler;
use std::{
cell::RefCell,
collections::BTreeMap,
collections::HashSet,
io::{stderr, Write},
iter::repeat,
mem,
sync::{
atomic::{AtomicBool, Ordering},
@ -17,7 +17,6 @@ use std::{
time::{Duration, Instant},
};
use itertools::Itertools;
use once_cell::sync::Lazy;
pub use crate::memory_usage::{Bytes, MemoryUsage};
@ -216,7 +215,7 @@ impl Drop for Profiler {
// (otherwise we could print `0ms` despite user's `>0` filter when
// `duration` is just a few nanos).
if duration.as_millis() > longer_than.as_millis() {
print(0, &stack.messages, &mut stdout.lock(), longer_than, None);
print(&stack.messages, longer_than, &mut stdout.lock());
}
stack.messages.clear();
}
@ -227,59 +226,85 @@ impl Drop for Profiler {
}
}
fn print(
lvl: usize,
msgs: &[Message],
out: &mut impl Write,
longer_than: Duration,
total: Option<Duration>,
) {
fn print(msgs: &[Message], longer_than: Duration, out: &mut impl Write) {
if msgs.is_empty() {
return;
}
// The index of the first element that will be included in the slice when we recurse.
let mut next_start = 0;
let indent = repeat(" ").take(lvl).collect::<String>();
// We output hierarchy for long calls, but sum up all short calls
let mut short = Vec::new();
let children_map = idx_to_children(msgs);
let root_idx = msgs.len() - 1;
print_for_idx(root_idx, &children_map, msgs, longer_than, out);
}
fn print_for_idx(
current_idx: usize,
children_map: &[Vec<usize>],
msgs: &[Message],
longer_than: Duration,
out: &mut impl Write,
) {
let current = &msgs[current_idx];
let current_indent = " ".repeat(current.level);
writeln!(out, "{}{:5}ms - {}", current_indent, current.duration.as_millis(), current.message)
.expect("printing profiling info");
let longer_than_millis = longer_than.as_millis();
let children_indices = &children_map[current_idx];
let mut accounted_for = Duration::default();
for (i, &Message { level, duration, message: ref msg }) in msgs.iter().enumerate() {
if level != lvl {
continue;
}
accounted_for += duration;
if duration.as_millis() > longer_than.as_millis() {
writeln!(out, "{}{:5}ms - {}", indent, duration.as_millis(), msg)
.expect("printing profiling info to stdout");
let mut short_children = BTreeMap::new(); // Use `BTreeMap` to get deterministic output.
print(lvl + 1, &msgs[next_start..i], out, longer_than, Some(duration));
for child_idx in children_indices.iter() {
let child = &msgs[*child_idx];
if child.duration.as_millis() > longer_than_millis {
print_for_idx(*child_idx, children_map, msgs, longer_than, out);
} else {
short.push((msg, duration))
let pair = short_children.entry(&child.message).or_insert((Duration::default(), 0));
pair.0 += child.duration;
pair.1 += 1;
}
accounted_for += child.duration;
}
next_start = i + 1;
}
short.sort_by_key(|(msg, _time)| *msg);
for (msg, entires) in short.iter().group_by(|(msg, _time)| msg).into_iter() {
let mut count = 0;
let mut total_duration = Duration::default();
entires.for_each(|(_msg, time)| {
count += 1;
total_duration += *time;
});
writeln!(out, "{}{:5}ms - {} ({} calls)", indent, total_duration.as_millis(), msg, count)
.expect("printing profiling info to stdout");
for (child_msg, (duration, count)) in short_children.iter() {
let millis = duration.as_millis();
writeln!(out, " {}{:5}ms - {} ({} calls)", current_indent, millis, child_msg, count)
.expect("printing profiling info");
}
if let Some(total) = total {
if let Some(unaccounted) = total.checked_sub(accounted_for) {
let unaccounted_millis = unaccounted.as_millis();
if unaccounted_millis > longer_than.as_millis() && unaccounted_millis > 0 {
writeln!(out, "{}{:5}ms - ???", indent, unaccounted_millis)
.expect("printing profiling info to stdout");
let unaccounted_millis = (current.duration - accounted_for).as_millis();
if !children_indices.is_empty()
&& unaccounted_millis > 0
&& unaccounted_millis > longer_than_millis
{
writeln!(out, " {}{:5}ms - ???", current_indent, unaccounted_millis)
.expect("printing profiling info");
}
}
/// Returns a mapping from an index in the `msgs` to the vector with the indices of its children.
///
/// This assumes that the entries in `msgs` are in the order of when the calls to `profile` finish.
/// In other words, a postorder of the call graph. In particular, the root is the last element of
/// `msgs`.
fn idx_to_children(msgs: &[Message]) -> Vec<Vec<usize>> {
// Initialize with the index of the root; `msgs` and `ancestors` should be never empty.
assert!(!msgs.is_empty());
let mut ancestors = vec![msgs.len() - 1];
let mut result: Vec<Vec<usize>> = vec![vec![]; msgs.len()];
for (idx, msg) in msgs[..msgs.len() - 1].iter().enumerate().rev() {
// We need to find the parent of the current message, i.e., the last ancestor that has a
// level lower than the current message.
while msgs[*ancestors.last().unwrap()].level >= msg.level {
ancestors.pop();
}
result[*ancestors.last().unwrap()].push(idx);
ancestors.push(idx);
}
// Note that above we visited all children from the last to the first one. Let's reverse vectors
// to get the more natural order where the first element is the first child.
for vec in result.iter_mut() {
vec.reverse();
}
result
}
/// Prints backtrace to stderr, useful for debugging.
@ -388,7 +413,7 @@ mod tests {
Message { level: 1, duration: Duration::from_nanos(2), message: "bar".to_owned() },
Message { level: 0, duration: Duration::from_millis(1), message: "foo".to_owned() },
];
print(0, &msgs, &mut result, Duration::from_millis(0), Some(Duration::from_millis(1)));
print(&msgs, Duration::from_millis(0), &mut result);
// The calls to `bar` are so short that they'll be rounded to 0ms and should get collapsed
// when printing.
assert_eq!(
@ -404,7 +429,7 @@ mod tests {
Message { level: 1, duration: Duration::from_millis(2), message: "bar".to_owned() },
Message { level: 0, duration: Duration::from_millis(5), message: "foo".to_owned() },
];
print(0, &msgs, &mut result, Duration::from_millis(0), Some(Duration::from_millis(1)));
print(&msgs, Duration::from_millis(0), &mut result);
assert_eq!(
std::str::from_utf8(&result).unwrap().lines().collect::<Vec<_>>(),
vec![
@ -426,7 +451,7 @@ mod tests {
Message { level: 1, duration: Duration::from_millis(4), message: "bar".to_owned() },
Message { level: 0, duration: Duration::from_millis(9), message: "foo".to_owned() },
];
print(0, &msgs, &mut result, Duration::from_millis(0), None);
print(&msgs, Duration::from_millis(0), &mut result);
assert_eq!(
std::str::from_utf8(&result).unwrap().lines().collect::<Vec<_>>(),
vec![