mirror of
https://github.com/rust-lang/rust-analyzer
synced 2025-01-16 15:14:02 +00:00
Auto merge of #13971 - lowr:fix/more-precise-builtin-binop-types, r=Veykril
fix: more precise binop inference While inferring binary operator expressions, Rust puts some extra constraints on the types of the operands for better inference. Relevant part in rustc is [this](159ba8a92c/compiler/rustc_hir_typeck/src/op.rs (L128-L152)
). There are two things we currently fail to consider: - we should enforce them only when both lhs and rhs type are builtin types that are applicable to the binop - lhs and rhs types may be single reference to applicable builtin types This PR basically ports [`enforce_builtin_binop_types()`](159ba8a92c/compiler/rustc_hir_typeck/src/op.rs (L159)
) and [`is_builtin_binop()`](159ba8a92c/compiler/rustc_hir_typeck/src/op.rs (LL927)
) to our inference context.
This commit is contained in:
commit
492b3deba7
4 changed files with 250 additions and 126 deletions
|
@ -1,6 +1,6 @@
|
|||
//! Various extensions traits for Chalk types.
|
||||
|
||||
use chalk_ir::{FloatTy, IntTy, Mutability, Scalar, UintTy};
|
||||
use chalk_ir::{FloatTy, IntTy, Mutability, Scalar, TyVariableKind, UintTy};
|
||||
use hir_def::{
|
||||
builtin_type::{BuiltinFloat, BuiltinInt, BuiltinType, BuiltinUint},
|
||||
generics::TypeOrConstParamData,
|
||||
|
@ -18,6 +18,8 @@ use crate::{
|
|||
|
||||
pub trait TyExt {
|
||||
fn is_unit(&self) -> bool;
|
||||
fn is_integral(&self) -> bool;
|
||||
fn is_floating_point(&self) -> bool;
|
||||
fn is_never(&self) -> bool;
|
||||
fn is_unknown(&self) -> bool;
|
||||
fn is_ty_var(&self) -> bool;
|
||||
|
@ -51,6 +53,21 @@ impl TyExt for Ty {
|
|||
matches!(self.kind(Interner), TyKind::Tuple(0, _))
|
||||
}
|
||||
|
||||
fn is_integral(&self) -> bool {
|
||||
matches!(
|
||||
self.kind(Interner),
|
||||
TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_))
|
||||
| TyKind::InferenceVar(_, TyVariableKind::Integer)
|
||||
)
|
||||
}
|
||||
|
||||
fn is_floating_point(&self) -> bool {
|
||||
matches!(
|
||||
self.kind(Interner),
|
||||
TyKind::Scalar(Scalar::Float(_)) | TyKind::InferenceVar(_, TyVariableKind::Float)
|
||||
)
|
||||
}
|
||||
|
||||
fn is_never(&self) -> bool {
|
||||
matches!(self.kind(Interner), TyKind::Never)
|
||||
}
|
||||
|
|
|
@ -1041,10 +1041,6 @@ impl Expectation {
|
|||
}
|
||||
}
|
||||
|
||||
fn from_option(ty: Option<Ty>) -> Self {
|
||||
ty.map_or(Expectation::None, Expectation::HasType)
|
||||
}
|
||||
|
||||
/// The following explanation is copied straight from rustc:
|
||||
/// Provides an expectation for an rvalue expression given an *optional*
|
||||
/// hint, which is not required for type safety (the resulting type might
|
||||
|
|
|
@ -10,8 +10,7 @@ use chalk_ir::{
|
|||
};
|
||||
use hir_def::{
|
||||
expr::{
|
||||
ArithOp, Array, BinaryOp, ClosureKind, CmpOp, Expr, ExprId, LabelId, Literal, Statement,
|
||||
UnaryOp,
|
||||
ArithOp, Array, BinaryOp, ClosureKind, Expr, ExprId, LabelId, Literal, Statement, UnaryOp,
|
||||
},
|
||||
generics::TypeOrConstParamData,
|
||||
path::{GenericArg, GenericArgs},
|
||||
|
@ -1017,11 +1016,21 @@ impl<'a> InferenceContext<'a> {
|
|||
let (trait_, func) = match trait_func {
|
||||
Some(it) => it,
|
||||
None => {
|
||||
let rhs_ty = self.builtin_binary_op_rhs_expectation(op, lhs_ty.clone());
|
||||
let rhs_ty = self.infer_expr_coerce(rhs, &Expectation::from_option(rhs_ty));
|
||||
return self
|
||||
.builtin_binary_op_return_ty(op, lhs_ty, rhs_ty)
|
||||
.unwrap_or_else(|| self.err_ty());
|
||||
// HACK: `rhs_ty` is a general inference variable with no clue at all at this
|
||||
// point. Passing `lhs_ty` as both operands just to check if `lhs_ty` is a builtin
|
||||
// type applicable to `op`.
|
||||
let ret_ty = if self.is_builtin_binop(&lhs_ty, &lhs_ty, op) {
|
||||
// Assume both operands are builtin so we can continue inference. No guarantee
|
||||
// on the correctness, rustc would complain as necessary lang items don't seem
|
||||
// to exist anyway.
|
||||
self.enforce_builtin_binop_types(&lhs_ty, &rhs_ty, op)
|
||||
} else {
|
||||
self.err_ty()
|
||||
};
|
||||
|
||||
self.infer_expr_coerce(rhs, &Expectation::has_type(rhs_ty));
|
||||
|
||||
return ret_ty;
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -1071,11 +1080,9 @@ impl<'a> InferenceContext<'a> {
|
|||
|
||||
let ret_ty = self.normalize_associated_types_in(ret_ty);
|
||||
|
||||
// use knowledge of built-in binary ops, which can sometimes help inference
|
||||
if let Some(builtin_rhs) = self.builtin_binary_op_rhs_expectation(op, lhs_ty.clone()) {
|
||||
self.unify(&builtin_rhs, &rhs_ty);
|
||||
}
|
||||
if let Some(builtin_ret) = self.builtin_binary_op_return_ty(op, lhs_ty, rhs_ty) {
|
||||
if self.is_builtin_binop(&lhs_ty, &rhs_ty, op) {
|
||||
// use knowledge of built-in binary ops, which can sometimes help inference
|
||||
let builtin_ret = self.enforce_builtin_binop_types(&lhs_ty, &rhs_ty, op);
|
||||
self.unify(&builtin_ret, &ret_ty);
|
||||
}
|
||||
|
||||
|
@ -1477,92 +1484,124 @@ impl<'a> InferenceContext<'a> {
|
|||
indices
|
||||
}
|
||||
|
||||
fn builtin_binary_op_return_ty(&mut self, op: BinaryOp, lhs_ty: Ty, rhs_ty: Ty) -> Option<Ty> {
|
||||
let lhs_ty = self.resolve_ty_shallow(&lhs_ty);
|
||||
let rhs_ty = self.resolve_ty_shallow(&rhs_ty);
|
||||
match op {
|
||||
BinaryOp::LogicOp(_) | BinaryOp::CmpOp(_) => {
|
||||
Some(TyKind::Scalar(Scalar::Bool).intern(Interner))
|
||||
}
|
||||
BinaryOp::Assignment { .. } => Some(TyBuilder::unit()),
|
||||
BinaryOp::ArithOp(ArithOp::Shl | ArithOp::Shr) => {
|
||||
// all integer combinations are valid here
|
||||
if matches!(
|
||||
lhs_ty.kind(Interner),
|
||||
TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_))
|
||||
| TyKind::InferenceVar(_, TyVariableKind::Integer)
|
||||
) && matches!(
|
||||
rhs_ty.kind(Interner),
|
||||
TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_))
|
||||
| TyKind::InferenceVar(_, TyVariableKind::Integer)
|
||||
) {
|
||||
Some(lhs_ty)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
BinaryOp::ArithOp(_) => match (lhs_ty.kind(Interner), rhs_ty.kind(Interner)) {
|
||||
// (int, int) | (uint, uint) | (float, float)
|
||||
(TyKind::Scalar(Scalar::Int(_)), TyKind::Scalar(Scalar::Int(_)))
|
||||
| (TyKind::Scalar(Scalar::Uint(_)), TyKind::Scalar(Scalar::Uint(_)))
|
||||
| (TyKind::Scalar(Scalar::Float(_)), TyKind::Scalar(Scalar::Float(_))) => {
|
||||
Some(rhs_ty)
|
||||
}
|
||||
// ({int}, int) | ({int}, uint)
|
||||
(
|
||||
TyKind::InferenceVar(_, TyVariableKind::Integer),
|
||||
TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_)),
|
||||
) => Some(rhs_ty),
|
||||
// (int, {int}) | (uint, {int})
|
||||
(
|
||||
TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_)),
|
||||
TyKind::InferenceVar(_, TyVariableKind::Integer),
|
||||
) => Some(lhs_ty),
|
||||
// ({float} | float)
|
||||
(
|
||||
TyKind::InferenceVar(_, TyVariableKind::Float),
|
||||
TyKind::Scalar(Scalar::Float(_)),
|
||||
) => Some(rhs_ty),
|
||||
// (float, {float})
|
||||
(
|
||||
TyKind::Scalar(Scalar::Float(_)),
|
||||
TyKind::InferenceVar(_, TyVariableKind::Float),
|
||||
) => Some(lhs_ty),
|
||||
// ({int}, {int}) | ({float}, {float})
|
||||
(
|
||||
TyKind::InferenceVar(_, TyVariableKind::Integer),
|
||||
TyKind::InferenceVar(_, TyVariableKind::Integer),
|
||||
)
|
||||
| (
|
||||
TyKind::InferenceVar(_, TyVariableKind::Float),
|
||||
TyKind::InferenceVar(_, TyVariableKind::Float),
|
||||
) => Some(rhs_ty),
|
||||
_ => None,
|
||||
},
|
||||
/// Dereferences a single level of immutable referencing.
|
||||
fn deref_ty_if_possible(&mut self, ty: &Ty) -> Ty {
|
||||
let ty = self.resolve_ty_shallow(ty);
|
||||
match ty.kind(Interner) {
|
||||
TyKind::Ref(Mutability::Not, _, inner) => self.resolve_ty_shallow(inner),
|
||||
_ => ty,
|
||||
}
|
||||
}
|
||||
|
||||
fn builtin_binary_op_rhs_expectation(&mut self, op: BinaryOp, lhs_ty: Ty) -> Option<Ty> {
|
||||
Some(match op {
|
||||
BinaryOp::LogicOp(..) => TyKind::Scalar(Scalar::Bool).intern(Interner),
|
||||
BinaryOp::Assignment { op: None } => lhs_ty,
|
||||
BinaryOp::CmpOp(CmpOp::Eq { .. }) => match self
|
||||
.resolve_ty_shallow(&lhs_ty)
|
||||
.kind(Interner)
|
||||
{
|
||||
TyKind::Scalar(_) | TyKind::Str => lhs_ty,
|
||||
TyKind::InferenceVar(_, TyVariableKind::Integer | TyVariableKind::Float) => lhs_ty,
|
||||
_ => return None,
|
||||
},
|
||||
BinaryOp::ArithOp(ArithOp::Shl | ArithOp::Shr) => return None,
|
||||
BinaryOp::CmpOp(CmpOp::Ord { .. })
|
||||
| BinaryOp::Assignment { op: Some(_) }
|
||||
| BinaryOp::ArithOp(_) => match self.resolve_ty_shallow(&lhs_ty).kind(Interner) {
|
||||
TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_) | Scalar::Float(_)) => lhs_ty,
|
||||
TyKind::InferenceVar(_, TyVariableKind::Integer | TyVariableKind::Float) => lhs_ty,
|
||||
_ => return None,
|
||||
},
|
||||
})
|
||||
/// Enforces expectations on lhs type and rhs type depending on the operator and returns the
|
||||
/// output type of the binary op.
|
||||
fn enforce_builtin_binop_types(&mut self, lhs: &Ty, rhs: &Ty, op: BinaryOp) -> Ty {
|
||||
// Special-case a single layer of referencing, so that things like `5.0 + &6.0f32` work (See rust-lang/rust#57447).
|
||||
let lhs = self.deref_ty_if_possible(lhs);
|
||||
let rhs = self.deref_ty_if_possible(rhs);
|
||||
|
||||
let (op, is_assign) = match op {
|
||||
BinaryOp::Assignment { op: Some(inner) } => (BinaryOp::ArithOp(inner), true),
|
||||
_ => (op, false),
|
||||
};
|
||||
|
||||
let output_ty = match op {
|
||||
BinaryOp::LogicOp(_) => {
|
||||
let bool_ = self.result.standard_types.bool_.clone();
|
||||
self.unify(&lhs, &bool_);
|
||||
self.unify(&rhs, &bool_);
|
||||
bool_
|
||||
}
|
||||
|
||||
BinaryOp::ArithOp(ArithOp::Shl | ArithOp::Shr) => {
|
||||
// result type is same as LHS always
|
||||
lhs
|
||||
}
|
||||
|
||||
BinaryOp::ArithOp(_) => {
|
||||
// LHS, RHS, and result will have the same type
|
||||
self.unify(&lhs, &rhs);
|
||||
lhs
|
||||
}
|
||||
|
||||
BinaryOp::CmpOp(_) => {
|
||||
// LHS and RHS will have the same type
|
||||
self.unify(&lhs, &rhs);
|
||||
self.result.standard_types.bool_.clone()
|
||||
}
|
||||
|
||||
BinaryOp::Assignment { op: None } => {
|
||||
stdx::never!("Simple assignment operator is not binary op.");
|
||||
lhs
|
||||
}
|
||||
|
||||
BinaryOp::Assignment { .. } => unreachable!("handled above"),
|
||||
};
|
||||
|
||||
if is_assign {
|
||||
self.result.standard_types.unit.clone()
|
||||
} else {
|
||||
output_ty
|
||||
}
|
||||
}
|
||||
|
||||
fn is_builtin_binop(&mut self, lhs: &Ty, rhs: &Ty, op: BinaryOp) -> bool {
|
||||
// Special-case a single layer of referencing, so that things like `5.0 + &6.0f32` work (See rust-lang/rust#57447).
|
||||
let lhs = self.deref_ty_if_possible(lhs);
|
||||
let rhs = self.deref_ty_if_possible(rhs);
|
||||
|
||||
let op = match op {
|
||||
BinaryOp::Assignment { op: Some(inner) } => BinaryOp::ArithOp(inner),
|
||||
_ => op,
|
||||
};
|
||||
|
||||
match op {
|
||||
BinaryOp::LogicOp(_) => true,
|
||||
|
||||
BinaryOp::ArithOp(ArithOp::Shl | ArithOp::Shr) => {
|
||||
lhs.is_integral() && rhs.is_integral()
|
||||
}
|
||||
|
||||
BinaryOp::ArithOp(
|
||||
ArithOp::Add | ArithOp::Sub | ArithOp::Mul | ArithOp::Div | ArithOp::Rem,
|
||||
) => {
|
||||
lhs.is_integral() && rhs.is_integral()
|
||||
|| lhs.is_floating_point() && rhs.is_floating_point()
|
||||
}
|
||||
|
||||
BinaryOp::ArithOp(ArithOp::BitAnd | ArithOp::BitOr | ArithOp::BitXor) => {
|
||||
lhs.is_integral() && rhs.is_integral()
|
||||
|| lhs.is_floating_point() && rhs.is_floating_point()
|
||||
|| matches!(
|
||||
(lhs.kind(Interner), rhs.kind(Interner)),
|
||||
(TyKind::Scalar(Scalar::Bool), TyKind::Scalar(Scalar::Bool))
|
||||
)
|
||||
}
|
||||
|
||||
BinaryOp::CmpOp(_) => {
|
||||
let is_scalar = |kind| {
|
||||
matches!(
|
||||
kind,
|
||||
&TyKind::Scalar(_)
|
||||
| TyKind::FnDef(..)
|
||||
| TyKind::Function(_)
|
||||
| TyKind::Raw(..)
|
||||
| TyKind::InferenceVar(
|
||||
_,
|
||||
TyVariableKind::Integer | TyVariableKind::Float
|
||||
)
|
||||
)
|
||||
};
|
||||
is_scalar(lhs.kind(Interner)) && is_scalar(rhs.kind(Interner))
|
||||
}
|
||||
|
||||
BinaryOp::Assignment { op: None } => {
|
||||
stdx::never!("Simple assignment operator is not binary op.");
|
||||
false
|
||||
}
|
||||
|
||||
BinaryOp::Assignment { .. } => unreachable!("handled above"),
|
||||
}
|
||||
}
|
||||
|
||||
fn with_breakable_ctx<T>(
|
||||
|
|
|
@ -3507,14 +3507,9 @@ trait Request {
|
|||
fn bin_op_adt_with_rhs_primitive() {
|
||||
check_infer_with_mismatches(
|
||||
r#"
|
||||
#[lang = "add"]
|
||||
pub trait Add<Rhs = Self> {
|
||||
type Output;
|
||||
fn add(self, rhs: Rhs) -> Self::Output;
|
||||
}
|
||||
|
||||
//- minicore: add
|
||||
struct Wrapper(u32);
|
||||
impl Add<u32> for Wrapper {
|
||||
impl core::ops::Add<u32> for Wrapper {
|
||||
type Output = Self;
|
||||
fn add(self, rhs: u32) -> Wrapper {
|
||||
Wrapper(rhs)
|
||||
|
@ -3527,29 +3522,106 @@ fn main(){
|
|||
|
||||
}"#,
|
||||
expect![[r#"
|
||||
72..76 'self': Self
|
||||
78..81 'rhs': Rhs
|
||||
192..196 'self': Wrapper
|
||||
198..201 'rhs': u32
|
||||
219..247 '{ ... }': Wrapper
|
||||
229..236 'Wrapper': Wrapper(u32) -> Wrapper
|
||||
229..241 'Wrapper(rhs)': Wrapper
|
||||
237..240 'rhs': u32
|
||||
259..345 '{ ...um; }': ()
|
||||
269..276 'wrapped': Wrapper
|
||||
279..286 'Wrapper': Wrapper(u32) -> Wrapper
|
||||
279..290 'Wrapper(10)': Wrapper
|
||||
287..289 '10': u32
|
||||
300..303 'num': u32
|
||||
311..312 '2': u32
|
||||
322..325 'res': Wrapper
|
||||
328..335 'wrapped': Wrapper
|
||||
328..341 'wrapped + num': Wrapper
|
||||
338..341 'num': u32
|
||||
95..99 'self': Wrapper
|
||||
101..104 'rhs': u32
|
||||
122..150 '{ ... }': Wrapper
|
||||
132..139 'Wrapper': Wrapper(u32) -> Wrapper
|
||||
132..144 'Wrapper(rhs)': Wrapper
|
||||
140..143 'rhs': u32
|
||||
162..248 '{ ...um; }': ()
|
||||
172..179 'wrapped': Wrapper
|
||||
182..189 'Wrapper': Wrapper(u32) -> Wrapper
|
||||
182..193 'Wrapper(10)': Wrapper
|
||||
190..192 '10': u32
|
||||
203..206 'num': u32
|
||||
214..215 '2': u32
|
||||
225..228 'res': Wrapper
|
||||
231..238 'wrapped': Wrapper
|
||||
231..244 'wrapped + num': Wrapper
|
||||
241..244 'num': u32
|
||||
"#]],
|
||||
)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn builtin_binop_expectation_works_on_single_reference() {
|
||||
check_types(
|
||||
r#"
|
||||
//- minicore: add
|
||||
use core::ops::Add;
|
||||
impl Add<i32> for i32 { type Output = i32 }
|
||||
impl Add<&i32> for i32 { type Output = i32 }
|
||||
impl Add<u32> for u32 { type Output = u32 }
|
||||
impl Add<&u32> for u32 { type Output = u32 }
|
||||
|
||||
struct V<T>;
|
||||
impl<T> V<T> {
|
||||
fn default() -> Self { loop {} }
|
||||
fn get(&self, _: &T) -> &T { loop {} }
|
||||
}
|
||||
|
||||
fn take_u32(_: u32) {}
|
||||
fn minimized() {
|
||||
let v = V::default();
|
||||
let p = v.get(&0);
|
||||
//^ &u32
|
||||
take_u32(42 + p);
|
||||
}
|
||||
"#,
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn no_builtin_binop_expectation_for_general_ty_var() {
|
||||
// FIXME: Ideally type mismatch should be reported on `take_u32(42 - p)`.
|
||||
check_types(
|
||||
r#"
|
||||
//- minicore: add
|
||||
use core::ops::Add;
|
||||
impl Add<i32> for i32 { type Output = i32; }
|
||||
impl Add<&i32> for i32 { type Output = i32; }
|
||||
// This is needed to prevent chalk from giving unique solution to `i32: Add<&?0>` after applying
|
||||
// fallback to integer type variable for `42`.
|
||||
impl Add<&()> for i32 { type Output = (); }
|
||||
|
||||
struct V<T>;
|
||||
impl<T> V<T> {
|
||||
fn default() -> Self { loop {} }
|
||||
fn get(&self) -> &T { loop {} }
|
||||
}
|
||||
|
||||
fn take_u32(_: u32) {}
|
||||
fn minimized() {
|
||||
let v = V::default();
|
||||
let p = v.get();
|
||||
//^ &{unknown}
|
||||
take_u32(42 + p);
|
||||
}
|
||||
"#,
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn no_builtin_binop_expectation_for_non_builtin_types() {
|
||||
check_no_mismatches(
|
||||
r#"
|
||||
//- minicore: default, eq
|
||||
struct S;
|
||||
impl Default for S { fn default() -> Self { S } }
|
||||
impl Default for i32 { fn default() -> Self { 0 } }
|
||||
impl PartialEq<S> for i32 { fn eq(&self, _: &S) -> bool { true } }
|
||||
impl PartialEq<i32> for i32 { fn eq(&self, _: &S) -> bool { true } }
|
||||
|
||||
fn take_s(_: S) {}
|
||||
fn test() {
|
||||
let s = Default::default();
|
||||
let _eq = 0 == s;
|
||||
take_s(s);
|
||||
}
|
||||
"#,
|
||||
)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn array_length() {
|
||||
check_infer(
|
||||
|
|
Loading…
Reference in a new issue