Describe variance resolution approach differences to rustc

This commit is contained in:
Lukas Wirth 2024-12-29 10:52:47 +01:00
parent bb921fbe94
commit 2d299ab8a4

View file

@ -2,6 +2,16 @@
//! chapter for more info. //! chapter for more info.
//! //!
//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/variance.html //! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/variance.html
//!
//! The implementation here differs from rustc. Rustc does a crate wide fixpoint resolution
//! as the algorithm for determining variance is a fixpoint computation with potential cycles that
//! need to be resolved. rust-analyzer does not want a crate-wide analysis though as that would hurt
//! incrementality too much and as such our query is based on a per item basis.
//!
//! This does unfortunately run into the issue that we can run into query cycles which salsa
//! currently does not allow to be resolved via a fixpoint computation. This will likely be resolved
//! by the next salsa version. If not, we will likely have to adapt and go with the rustc approach
//! while installing firewall per item queries to prevent invalidation issues.
use crate::db::HirDatabase; use crate::db::HirDatabase;
use crate::generics::{generics, Generics}; use crate::generics::{generics, Generics};
@ -371,33 +381,19 @@ impl Context<'_> {
if args.is_empty() { if args.is_empty() {
return; return;
} }
if def_id == self.generics.def() { let Some(variances) = self.db.variances_of(def_id) else {
// HACK: Workaround for the trivial cycle salsa case (see return;
// recursive_one_bivariant_more_non_bivariant_params test) };
for k in args {
match k.data(Interner) {
GenericArgData::Lifetime(lt) => {
self.add_constraints_from_region(lt, Variance::Bivariant)
}
GenericArgData::Ty(ty) => self.add_constraints_from_ty(ty, Variance::Bivariant),
GenericArgData::Const(val) => self.add_constraints_from_const(val, variance),
}
}
} else {
let Some(variances) = self.db.variances_of(def_id) else {
return;
};
for (i, k) in args.iter().enumerate() { for (i, k) in args.iter().enumerate() {
match k.data(Interner) { match k.data(Interner) {
GenericArgData::Lifetime(lt) => { GenericArgData::Lifetime(lt) => {
self.add_constraints_from_region(lt, variance.xform(variances[i])) self.add_constraints_from_region(lt, variance.xform(variances[i]))
}
GenericArgData::Ty(ty) => {
self.add_constraints_from_ty(ty, variance.xform(variances[i]))
}
GenericArgData::Const(val) => self.add_constraints_from_const(val, variance),
} }
GenericArgData::Ty(ty) => {
self.add_constraints_from_ty(ty, variance.xform(variances[i]))
}
GenericArgData::Const(val) => self.add_constraints_from_const(val, variance),
} }
} }
} }
@ -956,22 +952,17 @@ struct S3<T>(S<T, T>);
} }
#[test] #[test]
fn recursive_one_bivariant_more_non_bivariant_params() { fn prove_fixedpoint() {
// FIXME: This is wrong, this should be `BivariantPartialIndirect[T: bivariant, U: covariant]` (likewise for Wrapper) // FIXME: This is wrong, this should be `FixedPoint[T: covariant, U: covariant, V: covariant]`
// This is a limitation of current salsa where a cycle may only set a fallback value to the // This is a limitation of current salsa where a cycle may only set a fallback value to the
// query result which is not what we want! We want to treat the cycle call as fallback // query result, but we need to solve a fixpoint here. The new salsa will have this
// without setting the query result to the fallback. // fortunately.
// `BivariantPartial` works as we workaround for the trivial case of being self-referential
check( check(
r#" r#"
struct BivariantPartial<T, U>(*const BivariantPartial<T, U>, U); struct FixedPoint<T, U, V>(&'static FixedPoint<(), T, U>, V);
struct Wrapper<T, U>(BivariantPartialIndirect<T, U>);
struct BivariantPartialIndirect<T, U>(*const Wrapper<T, U>, U);
"#, "#,
expect![[r#" expect![[r#"
BivariantPartial[T: bivariant, U: covariant] FixedPoint[T: bivariant, U: bivariant, V: bivariant]
Wrapper[T: bivariant, U: bivariant]
BivariantPartialIndirect[T: bivariant, U: bivariant]
"#]], "#]],
); );
} }