9727: internal: Simplify extract_function assist r=Veykril a=Veykril

also fixes #7839(blocked on #9728)

Co-authored-by: Lukas Wirth <lukastw97@gmail.com>
This commit is contained in:
bors[bot] 2021-07-30 14:56:50 +00:00 committed by GitHub
commit 1f817833e7
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 505 additions and 434 deletions

View file

@ -74,20 +74,12 @@ pub(crate) fn extract_function(acc: &mut Assists, ctx: &AssistContext) -> Option
let (locals_used, has_await, self_param) = analyze_body(&ctx.sema, &body); let (locals_used, has_await, self_param) = analyze_body(&ctx.sema, &body);
let anchor = if self_param.is_some() { Anchor::Method } else { Anchor::Freestanding }; let anchor = if self_param.is_some() { Anchor::Method } else { Anchor::Freestanding };
let insert_after = scope_for_fn_insertion(&body, anchor)?; let insert_after = node_to_insert_after(&body, anchor)?;
let module = ctx.sema.scope(&insert_after).module()?; let module = ctx.sema.scope(&insert_after).module()?;
let vars_defined_in_body_and_outlive =
vars_defined_in_body_and_outlive(ctx, &body, node.parent().as_ref().unwrap_or(&node));
let ret_ty = body_return_ty(ctx, &body)?; let ret_ty = body_return_ty(ctx, &body)?;
let ret_values = ret_values(ctx, &body, node.parent().as_ref().unwrap_or(&node));
// FIXME: we compute variables that outlive here just to check `never!` condition
// this requires traversing whole `body` (cheap) and finding all references (expensive)
// maybe we can move this check to `edit` closure somehow?
if stdx::never!(!vars_defined_in_body_and_outlive.is_empty() && !ret_ty.is_unit()) {
// We should not have variables that outlive body if we have expression block
return None;
}
let control_flow = external_control_flow(ctx, &body)?; let control_flow = external_control_flow(ctx, &body)?;
let target_range = body.text_range(); let target_range = body.text_range();
@ -97,22 +89,35 @@ pub(crate) fn extract_function(acc: &mut Assists, ctx: &AssistContext) -> Option
"Extract into function", "Extract into function",
target_range, target_range,
move |builder| { move |builder| {
let ret_values: Vec<_> = ret_values.collect();
if stdx::never!(!ret_values.is_empty() && !ret_ty.is_unit()) {
// We should not have variables that outlive body if we have expression block
return;
}
let params = extracted_function_params(ctx, &body, locals_used.iter().copied()); let params = extracted_function_params(ctx, &body, locals_used.iter().copied());
let insert_comma = body
.parent()
.and_then(ast::MatchArm::cast)
.map_or(false, |it| it.comma_token().is_none());
let fun = Function { let fun = Function {
name: "fun_name".to_string(), name: "fun_name".to_string(),
self_param: self_param.map(|(_, pat)| pat), self_param,
params, params,
control_flow, control_flow,
ret_ty, ret_ty,
body, body,
vars_defined_in_body_and_outlive, vars_defined_in_body_and_outlive: ret_values,
}; };
let new_indent = IndentLevel::from_node(&insert_after); let new_indent = IndentLevel::from_node(&insert_after);
let old_indent = fun.body.indent_level(); let old_indent = fun.body.indent_level();
builder.replace(target_range, format_replacement(ctx, &fun, old_indent, has_await)); builder.replace(target_range, make_call(ctx, &fun, old_indent, has_await));
if insert_comma {
builder.insert(target_range.end(), ",");
}
let fn_def = format_function(ctx, module, &fun, old_indent, new_indent, has_await); let fn_def = format_function(ctx, module, &fun, old_indent, new_indent, has_await);
let insert_offset = insert_after.text_range().end(); let insert_offset = insert_after.text_range().end();
@ -123,135 +128,6 @@ pub(crate) fn extract_function(acc: &mut Assists, ctx: &AssistContext) -> Option
}, },
) )
} }
fn external_control_flow(ctx: &AssistContext, body: &FunctionBody) -> Option<ControlFlow> {
let mut ret_expr = None;
let mut try_expr = None;
let mut break_expr = None;
let mut continue_expr = None;
let (syntax, text_range) = match body {
FunctionBody::Expr(expr) => (expr.syntax(), expr.syntax().text_range()),
FunctionBody::Span { parent, text_range } => (parent.syntax(), *text_range),
};
let mut nested_loop = None;
let mut nested_scope = None;
for e in syntax.preorder() {
let e = match e {
WalkEvent::Enter(e) => e,
WalkEvent::Leave(e) => {
if nested_loop.as_ref() == Some(&e) {
nested_loop = None;
}
if nested_scope.as_ref() == Some(&e) {
nested_scope = None;
}
continue;
}
};
if nested_scope.is_some() {
continue;
}
if !text_range.contains_range(e.text_range()) {
continue;
}
match e.kind() {
SyntaxKind::LOOP_EXPR | SyntaxKind::WHILE_EXPR | SyntaxKind::FOR_EXPR => {
if nested_loop.is_none() {
nested_loop = Some(e);
}
}
SyntaxKind::FN
| SyntaxKind::CONST
| SyntaxKind::STATIC
| SyntaxKind::IMPL
| SyntaxKind::MODULE => {
if nested_scope.is_none() {
nested_scope = Some(e);
}
}
SyntaxKind::RETURN_EXPR => {
ret_expr = Some(ast::ReturnExpr::cast(e).unwrap());
}
SyntaxKind::TRY_EXPR => {
try_expr = Some(ast::TryExpr::cast(e).unwrap());
}
SyntaxKind::BREAK_EXPR if nested_loop.is_none() => {
break_expr = Some(ast::BreakExpr::cast(e).unwrap());
}
SyntaxKind::CONTINUE_EXPR if nested_loop.is_none() => {
continue_expr = Some(ast::ContinueExpr::cast(e).unwrap());
}
_ => {}
}
}
let kind = match (try_expr, ret_expr, break_expr, continue_expr) {
(Some(e), None, None, None) => {
let func = e.syntax().ancestors().find_map(ast::Fn::cast)?;
let def = ctx.sema.to_def(&func)?;
let ret_ty = def.ret_type(ctx.db());
let kind = try_kind_of_ty(ret_ty, ctx)?;
Some(FlowKind::Try { kind })
}
(Some(_), Some(r), None, None) => match r.expr() {
Some(expr) => {
if let Some(kind) = expr_err_kind(&expr, ctx) {
Some(FlowKind::TryReturn { expr, kind })
} else {
cov_mark::hit!(external_control_flow_try_and_return_non_err);
return None;
}
}
None => return None,
},
(Some(_), _, _, _) => {
cov_mark::hit!(external_control_flow_try_and_bc);
return None;
}
(None, Some(r), None, None) => match r.expr() {
Some(expr) => Some(FlowKind::ReturnValue(expr)),
None => Some(FlowKind::Return),
},
(None, Some(_), _, _) => {
cov_mark::hit!(external_control_flow_return_and_bc);
return None;
}
(None, None, Some(_), Some(_)) => {
cov_mark::hit!(external_control_flow_break_and_continue);
return None;
}
(None, None, Some(b), None) => match b.expr() {
Some(expr) => Some(FlowKind::BreakValue(expr)),
None => Some(FlowKind::Break),
},
(None, None, None, Some(_)) => Some(FlowKind::Continue),
(None, None, None, None) => None,
};
Some(ControlFlow { kind })
}
/// Checks is expr is `Err(_)` or `None`
fn expr_err_kind(expr: &ast::Expr, ctx: &AssistContext) -> Option<TryKind> {
let func_name = match expr {
ast::Expr::CallExpr(call_expr) => call_expr.expr()?,
ast::Expr::PathExpr(_) => expr.clone(),
_ => return None,
};
let text = func_name.syntax().text();
if text == "Err" {
Some(TryKind::Result { ty: ctx.sema.type_of_expr(expr)? })
} else if text == "None" {
Some(TryKind::Option)
} else {
None
}
}
#[derive(Debug)] #[derive(Debug)]
struct Function { struct Function {
name: String, name: String,
@ -272,11 +148,6 @@ struct Param {
is_copy: bool, is_copy: bool,
} }
#[derive(Debug)]
struct ControlFlow {
kind: Option<FlowKind>,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)] #[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum ParamKind { enum ParamKind {
Value, Value,
@ -292,6 +163,104 @@ enum FunType {
Tuple(Vec<hir::Type>), Tuple(Vec<hir::Type>),
} }
/// Where to put extracted function definition
#[derive(Debug)]
enum Anchor {
/// Extract free function and put right after current top-level function
Freestanding,
/// Extract method and put right after current function in the impl-block
Method,
}
#[derive(Debug)]
struct ControlFlow {
kind: Option<FlowKind>,
}
/// Control flow that is exported from extracted function
///
/// E.g.:
/// ```rust,no_run
/// loop {
/// $0
/// if 42 == 42 {
/// break;
/// }
/// $0
/// }
/// ```
#[derive(Debug, Clone)]
enum FlowKind {
/// Return with value (`return $expr;`)
Return(Option<ast::Expr>),
Try {
kind: TryKind,
},
TryReturn {
expr: ast::Expr,
kind: TryKind,
},
/// Break with value (`break $expr;`)
Break(Option<ast::Expr>),
/// Continue
Continue,
}
#[derive(Debug, Clone)]
enum TryKind {
Option,
Result { ty: hir::Type },
}
#[derive(Debug)]
enum RetType {
Expr(hir::Type),
Stmt,
}
impl RetType {
fn is_unit(&self) -> bool {
match self {
RetType::Expr(ty) => ty.is_unit(),
RetType::Stmt => true,
}
}
}
/// Semantically same as `ast::Expr`, but preserves identity when using only part of the Block
/// This is the future function body, the part that is being extracted.
#[derive(Debug)]
enum FunctionBody {
Expr(ast::Expr),
Span { parent: ast::BlockExpr, text_range: TextRange },
}
#[derive(Debug)]
struct OutlivedLocal {
local: Local,
mut_usage_outside_body: bool,
}
/// Container of local variable usages
///
/// Semanticall same as `UsageSearchResult`, but provides more convenient interface
struct LocalUsages(ide_db::search::UsageSearchResult);
impl LocalUsages {
fn find(ctx: &AssistContext, var: Local) -> Self {
Self(
Definition::Local(var)
.usages(&ctx.sema)
.in_scope(SearchScope::single_file(ctx.frange.file_id))
.all(),
)
}
fn iter(&self) -> impl Iterator<Item = &FileReference> + '_ {
self.0.iter().flat_map(|(_, rs)| rs)
}
}
impl Function { impl Function {
fn return_type(&self, ctx: &AssistContext) -> FunType { fn return_type(&self, ctx: &AssistContext) -> FunType {
match &self.ret_ty { match &self.ret_ty {
@ -355,50 +324,11 @@ impl Param {
} }
} }
/// Control flow that is exported from extracted function
///
/// E.g.:
/// ```rust,no_run
/// loop {
/// $0
/// if 42 == 42 {
/// break;
/// }
/// $0
/// }
/// ```
#[derive(Debug, Clone)]
enum FlowKind {
/// Return without value (`return;`)
Return,
/// Return with value (`return $expr;`)
ReturnValue(ast::Expr),
Try {
kind: TryKind,
},
TryReturn {
expr: ast::Expr,
kind: TryKind,
},
/// Break without value (`return;`)
Break,
/// Break with value (`break $expr;`)
BreakValue(ast::Expr),
/// Continue
Continue,
}
#[derive(Debug, Clone)]
enum TryKind {
Option,
Result { ty: hir::Type },
}
impl FlowKind { impl FlowKind {
fn make_result_handler(&self, expr: Option<ast::Expr>) -> ast::Expr { fn make_result_handler(&self, expr: Option<ast::Expr>) -> ast::Expr {
match self { match self {
FlowKind::Return | FlowKind::ReturnValue(_) => make::expr_return(expr), FlowKind::Return(_) => make::expr_return(expr),
FlowKind::Break | FlowKind::BreakValue(_) => make::expr_break(expr), FlowKind::Break(_) => make::expr_break(expr),
FlowKind::Try { .. } | FlowKind::TryReturn { .. } => { FlowKind::Try { .. } | FlowKind::TryReturn { .. } => {
stdx::never!("cannot have result handler with try"); stdx::never!("cannot have result handler with try");
expr.unwrap_or_else(|| make::expr_return(None)) expr.unwrap_or_else(|| make::expr_return(None))
@ -412,14 +342,14 @@ impl FlowKind {
fn expr_ty(&self, ctx: &AssistContext) -> Option<hir::Type> { fn expr_ty(&self, ctx: &AssistContext) -> Option<hir::Type> {
match self { match self {
FlowKind::ReturnValue(expr) FlowKind::Return(Some(expr))
| FlowKind::BreakValue(expr) | FlowKind::Break(Some(expr))
| FlowKind::TryReturn { expr, .. } => ctx.sema.type_of_expr(expr), | FlowKind::TryReturn { expr, .. } => ctx.sema.type_of_expr(expr),
FlowKind::Try { .. } => { FlowKind::Try { .. } => {
stdx::never!("try does not have defined expr_ty"); stdx::never!("try does not have defined expr_ty");
None None
} }
FlowKind::Return | FlowKind::Break | FlowKind::Continue => None, _ => None,
} }
} }
} }
@ -440,29 +370,14 @@ fn try_kind_of_ty(ty: hir::Type, ctx: &AssistContext) -> Option<TryKind> {
} }
} }
#[derive(Debug)]
enum RetType {
Expr(hir::Type),
Stmt,
}
impl RetType {
fn is_unit(&self) -> bool {
match self {
RetType::Expr(ty) => ty.is_unit(),
RetType::Stmt => true,
}
}
}
/// Semantically same as `ast::Expr`, but preserves identity when using only part of the Block
#[derive(Debug)]
enum FunctionBody {
Expr(ast::Expr),
Span { parent: ast::BlockExpr, text_range: TextRange },
}
impl FunctionBody { impl FunctionBody {
fn parent(&self) -> Option<SyntaxNode> {
match self {
FunctionBody::Expr(expr) => expr.syntax().parent(),
FunctionBody::Span { parent, .. } => Some(parent.syntax().clone()),
}
}
fn from_expr(expr: ast::Expr) -> Option<Self> { fn from_expr(expr: ast::Expr) -> Option<Self> {
match expr { match expr {
ast::Expr::BreakExpr(it) => it.expr().map(Self::Expr), ast::Expr::BreakExpr(it) => it.expr().map(Self::Expr),
@ -488,11 +403,7 @@ impl FunctionBody {
FunctionBody::Expr(expr) => Some(expr.clone()), FunctionBody::Expr(expr) => Some(expr.clone()),
FunctionBody::Span { parent, text_range } => { FunctionBody::Span { parent, text_range } => {
let tail_expr = parent.tail_expr()?; let tail_expr = parent.tail_expr()?;
if text_range.contains_range(tail_expr.syntax().text_range()) { text_range.contains_range(tail_expr.syntax().text_range()).then(|| tail_expr)
Some(tail_expr)
} else {
None
}
} }
} }
} }
@ -520,6 +431,29 @@ impl FunctionBody {
} }
} }
fn preorder_expr(&self, cb: &mut dyn FnMut(WalkEvent<ast::Expr>) -> bool) {
match self {
FunctionBody::Expr(expr) => expr.preorder(cb),
FunctionBody::Span { parent, text_range } => {
parent
.statements()
.filter(|stmt| text_range.contains_range(stmt.syntax().text_range()))
.filter_map(|stmt| match stmt {
ast::Stmt::ExprStmt(expr_stmt) => expr_stmt.expr(),
ast::Stmt::Item(_) => None,
ast::Stmt::LetStmt(stmt) => stmt.initializer(),
})
.for_each(|expr| expr.preorder(cb));
if let Some(expr) = parent
.tail_expr()
.filter(|it| text_range.contains_range(it.syntax().text_range()))
{
expr.preorder(cb);
}
}
}
}
fn walk_pat(&self, cb: &mut dyn FnMut(ast::Pat)) { fn walk_pat(&self, cb: &mut dyn FnMut(ast::Pat)) {
match self { match self {
FunctionBody::Expr(expr) => expr.walk_patterns(cb), FunctionBody::Expr(expr) => expr.walk_patterns(cb),
@ -556,7 +490,7 @@ impl FunctionBody {
fn text_range(&self) -> TextRange { fn text_range(&self) -> TextRange {
match self { match self {
FunctionBody::Expr(expr) => expr.syntax().text_range(), FunctionBody::Expr(expr) => expr.syntax().text_range(),
FunctionBody::Span { parent: _, text_range } => *text_range, &FunctionBody::Span { text_range, .. } => text_range,
} }
} }
@ -564,7 +498,7 @@ impl FunctionBody {
self.text_range().contains_range(range) self.text_range().contains_range(range)
} }
fn preceedes_range(&self, range: TextRange) -> bool { fn precedes_range(&self, range: TextRange) -> bool {
self.text_range().end() <= range.start() self.text_range().end() <= range.start()
} }
@ -573,43 +507,6 @@ impl FunctionBody {
} }
} }
impl HasTokenAtOffset for FunctionBody {
fn token_at_offset(&self, offset: TextSize) -> TokenAtOffset<SyntaxToken> {
match self {
FunctionBody::Expr(expr) => expr.syntax().token_at_offset(offset),
FunctionBody::Span { parent, text_range } => {
match parent.syntax().token_at_offset(offset) {
TokenAtOffset::None => TokenAtOffset::None,
TokenAtOffset::Single(t) => {
if text_range.contains_range(t.text_range()) {
TokenAtOffset::Single(t)
} else {
TokenAtOffset::None
}
}
TokenAtOffset::Between(a, b) => {
match (
text_range.contains_range(a.text_range()),
text_range.contains_range(b.text_range()),
) {
(true, true) => TokenAtOffset::Between(a, b),
(true, false) => TokenAtOffset::Single(a),
(false, true) => TokenAtOffset::Single(b),
(false, false) => TokenAtOffset::None,
}
}
}
}
}
}
}
#[derive(Debug)]
struct OutlivedLocal {
local: Local,
mut_usage_outside_body: bool,
}
/// Try to guess what user wants to extract /// Try to guess what user wants to extract
/// ///
/// We have basically have two cases: /// We have basically have two cases:
@ -668,7 +565,7 @@ fn extraction_target(node: &SyntaxNode, selection_range: TextRange) -> Option<Fu
fn analyze_body( fn analyze_body(
sema: &Semantics<RootDatabase>, sema: &Semantics<RootDatabase>,
body: &FunctionBody, body: &FunctionBody,
) -> (FxIndexSet<Local>, bool, Option<(Local, ast::SelfParam)>) { ) -> (FxIndexSet<Local>, bool, Option<ast::SelfParam>) {
// FIXME: currently usages inside macros are not found // FIXME: currently usages inside macros are not found
let mut has_await = false; let mut has_await = false;
let mut self_param = None; let mut self_param = None;
@ -692,7 +589,7 @@ fn analyze_body(
match local_ref.source(sema.db).value { match local_ref.source(sema.db).value {
Either::Right(it) => { Either::Right(it) => {
stdx::always!( stdx::always!(
self_param.replace((local_ref, it)).is_none(), self_param.replace(it).is_none(),
"body references two different self params" "body references two different self params"
); );
} }
@ -743,7 +640,7 @@ fn extracted_function_params(
} }
fn has_usages_after_body(usages: &LocalUsages, body: &FunctionBody) -> bool { fn has_usages_after_body(usages: &LocalUsages, body: &FunctionBody) -> bool {
usages.iter().any(|reference| body.preceedes_range(reference.range)) usages.iter().any(|reference| body.precedes_range(reference.range))
} }
/// checks if relevant var is used with `&mut` access inside body /// checks if relevant var is used with `&mut` access inside body
@ -812,26 +709,6 @@ fn expr_require_exclusive_access(ctx: &AssistContext, expr: &ast::Expr) -> Optio
Some(false) Some(false)
} }
/// Container of local variable usages
///
/// Semanticall same as `UsageSearchResult`, but provides more convenient interface
struct LocalUsages(ide_db::search::UsageSearchResult);
impl LocalUsages {
fn find(ctx: &AssistContext, var: Local) -> Self {
Self(
Definition::Local(var)
.usages(&ctx.sema)
.in_scope(SearchScope::single_file(ctx.frange.file_id))
.all(),
)
}
fn iter(&self) -> impl Iterator<Item = &FileReference> + '_ {
self.0.iter().flat_map(|(_, rs)| rs.iter())
}
}
trait HasTokenAtOffset { trait HasTokenAtOffset {
fn token_at_offset(&self, offset: TextSize) -> TokenAtOffset<SyntaxToken>; fn token_at_offset(&self, offset: TextSize) -> TokenAtOffset<SyntaxToken>;
} }
@ -842,6 +719,37 @@ impl HasTokenAtOffset for SyntaxNode {
} }
} }
impl HasTokenAtOffset for FunctionBody {
fn token_at_offset(&self, offset: TextSize) -> TokenAtOffset<SyntaxToken> {
match self {
FunctionBody::Expr(expr) => expr.syntax().token_at_offset(offset),
FunctionBody::Span { parent, text_range } => {
match parent.syntax().token_at_offset(offset) {
TokenAtOffset::None => TokenAtOffset::None,
TokenAtOffset::Single(t) => {
if text_range.contains_range(t.text_range()) {
TokenAtOffset::Single(t)
} else {
TokenAtOffset::None
}
}
TokenAtOffset::Between(a, b) => {
match (
text_range.contains_range(a.text_range()),
text_range.contains_range(b.text_range()),
) {
(true, true) => TokenAtOffset::Between(a, b),
(true, false) => TokenAtOffset::Single(a),
(false, true) => TokenAtOffset::Single(b),
(false, false) => TokenAtOffset::None,
}
}
}
}
}
}
}
/// find relevant `ast::Expr` for reference /// find relevant `ast::Expr` for reference
/// ///
/// # Preconditions /// # Preconditions
@ -868,13 +776,16 @@ fn path_element_of_reference(
} }
/// list local variables defined inside `body` /// list local variables defined inside `body`
fn locals_defined_in_body(body: &FunctionBody, ctx: &AssistContext) -> FxIndexSet<Local> { fn locals_defined_in_body(
sema: &Semantics<RootDatabase>,
body: &FunctionBody,
) -> FxIndexSet<Local> {
// FIXME: this doesn't work well with macros // FIXME: this doesn't work well with macros
// see https://github.com/rust-analyzer/rust-analyzer/pull/7535#discussion_r570048550 // see https://github.com/rust-analyzer/rust-analyzer/pull/7535#discussion_r570048550
let mut res = FxIndexSet::default(); let mut res = FxIndexSet::default();
body.walk_pat(&mut |pat| { body.walk_pat(&mut |pat| {
if let ast::Pat::IdentPat(pat) = pat { if let ast::Pat::IdentPat(pat) = pat {
if let Some(local) = ctx.sema.to_def(&pat) { if let Some(local) = sema.to_def(&pat) {
res.insert(local); res.insert(local);
} }
} }
@ -882,17 +793,42 @@ fn locals_defined_in_body(body: &FunctionBody, ctx: &AssistContext) -> FxIndexSe
res res
} }
/// list local variables defined inside `body` that should be returned from extracted function /// Local variables defined inside `body` that are accessed outside of it
fn vars_defined_in_body_and_outlive( fn ret_values<'a>(
ctx: &AssistContext, ctx: &'a AssistContext,
body: &FunctionBody, body: &FunctionBody,
parent: &SyntaxNode, parent: &SyntaxNode,
) -> Vec<OutlivedLocal> { ) -> impl Iterator<Item = OutlivedLocal> + 'a {
let vars_defined_in_body = locals_defined_in_body(body, ctx); let parent = parent.clone();
vars_defined_in_body let range = body.text_range();
locals_defined_in_body(&ctx.sema, body)
.into_iter() .into_iter()
.filter_map(|var| var_outlives_body(ctx, body, var, parent)) .filter_map(move |local| local_outlives_body(ctx, range, local, &parent))
.collect() }
/// Returns usage details if local variable is used after(outside of) body
fn local_outlives_body(
ctx: &AssistContext,
body_range: TextRange,
local: Local,
parent: &SyntaxNode,
) -> Option<OutlivedLocal> {
let usages = LocalUsages::find(ctx, local);
let mut has_mut_usages = false;
let mut any_outlives = false;
for usage in usages.iter() {
if body_range.end() <= usage.range.start() {
has_mut_usages |= reference_is_exclusive(usage, parent, ctx);
any_outlives |= true;
if has_mut_usages {
break; // no need to check more elements we have all the info we wanted
}
}
}
if !any_outlives {
return None;
}
Some(OutlivedLocal { local, mut_usage_outside_body: has_mut_usages })
} }
/// checks if the relevant local was defined before(outside of) body /// checks if the relevant local was defined before(outside of) body
@ -912,25 +848,6 @@ fn either_syntax(value: &Either<ast::IdentPat, ast::SelfParam>) -> &SyntaxNode {
} }
} }
/// returns usage details if local variable is used after(outside of) body
fn var_outlives_body(
ctx: &AssistContext,
body: &FunctionBody,
var: Local,
parent: &SyntaxNode,
) -> Option<OutlivedLocal> {
let usages = LocalUsages::find(ctx, var);
let has_usages = usages.iter().any(|reference| body.preceedes_range(reference.range));
if !has_usages {
return None;
}
let has_mut_usages = usages
.iter()
.filter(|reference| body.preceedes_range(reference.range))
.any(|reference| reference_is_exclusive(reference, parent, ctx));
Some(OutlivedLocal { local: var, mut_usage_outside_body: has_mut_usages })
}
fn body_return_ty(ctx: &AssistContext, body: &FunctionBody) -> Option<RetType> { fn body_return_ty(ctx: &AssistContext, body: &FunctionBody) -> Option<RetType> {
match body.tail_expr() { match body.tail_expr() {
Some(expr) => { Some(expr) => {
@ -940,55 +857,142 @@ fn body_return_ty(ctx: &AssistContext, body: &FunctionBody) -> Option<RetType> {
None => Some(RetType::Stmt), None => Some(RetType::Stmt),
} }
} }
/// Where to put extracted function definition
#[derive(Debug)] /// Analyses the function body for external control flow.
enum Anchor { fn external_control_flow(ctx: &AssistContext, body: &FunctionBody) -> Option<ControlFlow> {
/// Extract free function and put right after current top-level function let mut ret_expr = None;
Freestanding, let mut try_expr = None;
/// Extract method and put right after current function in the impl-block let mut break_expr = None;
Method, let mut continue_expr = None;
let mut loop_depth = 0;
body.preorder_expr(&mut |expr| {
let expr = match expr {
WalkEvent::Enter(e) => e,
WalkEvent::Leave(
ast::Expr::LoopExpr(_) | ast::Expr::ForExpr(_) | ast::Expr::WhileExpr(_),
) => {
loop_depth -= 1;
return false;
}
WalkEvent::Leave(_) => return false,
};
match expr {
ast::Expr::LoopExpr(_) | ast::Expr::ForExpr(_) | ast::Expr::WhileExpr(_) => {
loop_depth += 1;
}
ast::Expr::ReturnExpr(it) => {
ret_expr = Some(it);
}
ast::Expr::TryExpr(it) => {
try_expr = Some(it);
}
ast::Expr::BreakExpr(it) if loop_depth == 0 => {
break_expr = Some(it);
}
ast::Expr::ContinueExpr(it) if loop_depth == 0 => {
continue_expr = Some(it);
}
_ => {}
}
false
});
let kind = match (try_expr, ret_expr, break_expr, continue_expr) {
(Some(e), None, None, None) => {
let func = e.syntax().ancestors().find_map(ast::Fn::cast)?;
let def = ctx.sema.to_def(&func)?;
let ret_ty = def.ret_type(ctx.db());
let kind = try_kind_of_ty(ret_ty, ctx)?;
Some(FlowKind::Try { kind })
}
(Some(_), Some(r), None, None) => match r.expr() {
Some(expr) => {
if let Some(kind) = expr_err_kind(&expr, ctx) {
Some(FlowKind::TryReturn { expr, kind })
} else {
cov_mark::hit!(external_control_flow_try_and_return_non_err);
return None;
}
}
None => return None,
},
(Some(_), _, _, _) => {
cov_mark::hit!(external_control_flow_try_and_bc);
return None;
}
(None, Some(r), None, None) => Some(FlowKind::Return(r.expr())),
(None, Some(_), _, _) => {
cov_mark::hit!(external_control_flow_return_and_bc);
return None;
}
(None, None, Some(_), Some(_)) => {
cov_mark::hit!(external_control_flow_break_and_continue);
return None;
}
(None, None, Some(b), None) => Some(FlowKind::Break(b.expr())),
(None, None, None, Some(_)) => Some(FlowKind::Continue),
(None, None, None, None) => None,
};
Some(ControlFlow { kind })
}
/// Checks is expr is `Err(_)` or `None`
fn expr_err_kind(expr: &ast::Expr, ctx: &AssistContext) -> Option<TryKind> {
let func_name = match expr {
ast::Expr::CallExpr(call_expr) => call_expr.expr()?,
ast::Expr::PathExpr(_) => expr.clone(),
_ => return None,
};
let text = func_name.syntax().text();
if text == "Err" {
Some(TryKind::Result { ty: ctx.sema.type_of_expr(expr)? })
} else if text == "None" {
Some(TryKind::Option)
} else {
None
}
} }
/// find where to put extracted function definition /// find where to put extracted function definition
/// ///
/// Function should be put right after returned node /// Function should be put right after returned node
fn scope_for_fn_insertion(body: &FunctionBody, anchor: Anchor) -> Option<SyntaxNode> { fn node_to_insert_after(body: &FunctionBody, anchor: Anchor) -> Option<SyntaxNode> {
match body { let node = match body {
FunctionBody::Expr(e) => scope_for_fn_insertion_node(e.syntax(), anchor), FunctionBody::Expr(e) => e.syntax(),
FunctionBody::Span { parent, .. } => scope_for_fn_insertion_node(parent.syntax(), anchor), FunctionBody::Span { parent, .. } => parent.syntax(),
} };
}
fn scope_for_fn_insertion_node(node: &SyntaxNode, anchor: Anchor) -> Option<SyntaxNode> {
let mut ancestors = node.ancestors().peekable(); let mut ancestors = node.ancestors().peekable();
let mut last_ancestor = None; let mut last_ancestor = None;
while let Some(next_ancestor) = ancestors.next() { while let Some(next_ancestor) = ancestors.next() {
match next_ancestor.kind() { match next_ancestor.kind() {
SyntaxKind::SOURCE_FILE => break, SyntaxKind::SOURCE_FILE => break,
SyntaxKind::ITEM_LIST if !matches!(anchor, Anchor::Freestanding) => continue,
SyntaxKind::ITEM_LIST => { SyntaxKind::ITEM_LIST => {
if !matches!(anchor, Anchor::Freestanding) {
continue;
}
if ancestors.peek().map(SyntaxNode::kind) == Some(SyntaxKind::MODULE) { if ancestors.peek().map(SyntaxNode::kind) == Some(SyntaxKind::MODULE) {
break; break;
} }
} }
SyntaxKind::ASSOC_ITEM_LIST => { SyntaxKind::ASSOC_ITEM_LIST if !matches!(anchor, Anchor::Method) => {
if !matches!(anchor, Anchor::Method) {
continue; continue;
} }
SyntaxKind::ASSOC_ITEM_LIST => {
if ancestors.peek().map(SyntaxNode::kind) == Some(SyntaxKind::IMPL) { if ancestors.peek().map(SyntaxNode::kind) == Some(SyntaxKind::IMPL) {
break; break;
} }
} }
_ => {} _ => (),
} }
last_ancestor = Some(next_ancestor); last_ancestor = Some(next_ancestor);
} }
last_ancestor last_ancestor
} }
fn format_replacement( fn make_call(
ctx: &AssistContext, ctx: &AssistContext,
fun: &Function, fun: &Function,
indent: IndentLevel, indent: IndentLevel,
@ -1061,10 +1065,10 @@ impl FlowHandler {
let action = flow_kind.clone(); let action = flow_kind.clone();
if *ret_ty == FunType::Unit { if *ret_ty == FunType::Unit {
match flow_kind { match flow_kind {
FlowKind::Return | FlowKind::Break | FlowKind::Continue => { FlowKind::Return(None) | FlowKind::Break(None) | FlowKind::Continue => {
FlowHandler::If { action } FlowHandler::If { action }
} }
FlowKind::ReturnValue(_) | FlowKind::BreakValue(_) => { FlowKind::Return(_) | FlowKind::Break(_) => {
FlowHandler::IfOption { action } FlowHandler::IfOption { action }
} }
FlowKind::Try { kind } | FlowKind::TryReturn { kind, .. } => { FlowKind::Try { kind } | FlowKind::TryReturn { kind, .. } => {
@ -1073,10 +1077,10 @@ impl FlowHandler {
} }
} else { } else {
match flow_kind { match flow_kind {
FlowKind::Return | FlowKind::Break | FlowKind::Continue => { FlowKind::Return(None) | FlowKind::Break(None) | FlowKind::Continue => {
FlowHandler::MatchOption { none: action } FlowHandler::MatchOption { none: action }
} }
FlowKind::ReturnValue(_) | FlowKind::BreakValue(_) => { FlowKind::Return(_) | FlowKind::Break(_) => {
FlowHandler::MatchResult { err: action } FlowHandler::MatchResult { err: action }
} }
FlowKind::Try { kind } | FlowKind::TryReturn { kind, .. } => { FlowKind::Try { kind } | FlowKind::TryReturn { kind, .. } => {
@ -3777,6 +3781,56 @@ async fn some_function() {
extract_function, extract_function,
r#" r#"
fn main() $0{}$0 fn main() $0{}$0
"#,
);
}
#[test]
fn extract_adds_comma_for_match_arm() {
check_assist(
extract_function,
r#"
fn main() {
match 6 {
100 => $0{ 100 }$0
_ => 0,
}
}
"#,
r#"
fn main() {
match 6 {
100 => fun_name(),
_ => 0,
}
}
fn $0fun_name() -> i32 {
100
}
"#,
);
check_assist(
extract_function,
r#"
fn main() {
match 6 {
100 => $0{ 100 }$0,
_ => 0,
}
}
"#,
r#"
fn main() {
match 6 {
100 => fun_name(),
_ => 0,
}
}
fn $0fun_name() -> i32 {
100
}
"#, "#,
); );
} }

View file

@ -1,5 +1,7 @@
//! Various extension methods to ast Expr Nodes, which are hard to code-generate. //! Various extension methods to ast Expr Nodes, which are hard to code-generate.
use rowan::WalkEvent;
use crate::{ use crate::{
ast::{self, support, AstChildren, AstNode}, ast::{self, support, AstChildren, AstNode},
AstToken, AstToken,
@ -34,6 +36,122 @@ impl ast::Expr {
} }
None None
} }
/// Preorder walk all the expression's child expressions.
pub fn walk(&self, cb: &mut dyn FnMut(ast::Expr)) {
self.preorder(&mut |ev| {
if let WalkEvent::Enter(expr) = ev {
cb(expr);
}
false
})
}
/// Preorder walk all the expression's child expressions preserving events.
/// If the callback returns true the subtree of the expression will be skipped.
/// Note that the subtree may already be skipped due to the context analysis this function does.
pub fn preorder(&self, cb: &mut dyn FnMut(WalkEvent<ast::Expr>) -> bool) {
let mut preorder = self.syntax().preorder();
while let Some(event) = preorder.next() {
let node = match event {
WalkEvent::Enter(node) => node,
WalkEvent::Leave(node) => {
if let Some(expr) = ast::Expr::cast(node) {
cb(WalkEvent::Leave(expr));
}
continue;
}
};
match ast::Stmt::cast(node.clone()) {
// recursively walk the initializer, skipping potential const pat expressions
// let statements aren't usually nested too deeply so this is fine to recurse on
Some(ast::Stmt::LetStmt(l)) => {
if let Some(expr) = l.initializer() {
expr.preorder(cb);
}
preorder.skip_subtree();
}
// Don't skip subtree since we want to process the expression child next
Some(ast::Stmt::ExprStmt(_)) => (),
// skip inner items which might have their own expressions
Some(ast::Stmt::Item(_)) => preorder.skip_subtree(),
None => {
// skip const args, those expressions are a different context
if ast::GenericArg::can_cast(node.kind()) {
preorder.skip_subtree();
} else if let Some(expr) = ast::Expr::cast(node) {
let is_different_context = match &expr {
ast::Expr::EffectExpr(effect) => {
matches!(
effect.effect(),
ast::Effect::Async(_)
| ast::Effect::Try(_)
| ast::Effect::Const(_)
)
}
ast::Expr::ClosureExpr(_) => true,
_ => false,
};
let skip = cb(WalkEvent::Enter(expr));
if skip || is_different_context {
preorder.skip_subtree();
}
}
}
}
}
}
/// Preorder walk all the expression's child patterns.
pub fn walk_patterns(&self, cb: &mut dyn FnMut(ast::Pat)) {
let mut preorder = self.syntax().preorder();
while let Some(event) = preorder.next() {
let node = match event {
WalkEvent::Enter(node) => node,
WalkEvent::Leave(_) => continue,
};
match ast::Stmt::cast(node.clone()) {
Some(ast::Stmt::LetStmt(l)) => {
if let Some(pat) = l.pat() {
pat.walk(cb);
}
if let Some(expr) = l.initializer() {
expr.walk_patterns(cb);
}
preorder.skip_subtree();
}
// Don't skip subtree since we want to process the expression child next
Some(ast::Stmt::ExprStmt(_)) => (),
// skip inner items which might have their own patterns
Some(ast::Stmt::Item(_)) => preorder.skip_subtree(),
None => {
// skip const args, those are a different context
if ast::GenericArg::can_cast(node.kind()) {
preorder.skip_subtree();
} else if let Some(expr) = ast::Expr::cast(node.clone()) {
let is_different_context = match &expr {
ast::Expr::EffectExpr(effect) => {
matches!(
effect.effect(),
ast::Effect::Async(_)
| ast::Effect::Try(_)
| ast::Effect::Const(_)
)
}
ast::Expr::ClosureExpr(_) => true,
_ => false,
};
if is_different_context {
preorder.skip_subtree();
}
} else if let Some(pat) = ast::Pat::cast(node) {
preorder.skip_subtree();
pat.walk(cb);
}
}
}
}
}
} }
#[derive(Debug, Clone, PartialEq, Eq)] #[derive(Debug, Clone, PartialEq, Eq)]

View file

@ -55,107 +55,6 @@ impl ast::BlockExpr {
} }
} }
impl ast::Expr {
/// Preorder walk all the expression's child expressions.
pub fn walk(&self, cb: &mut dyn FnMut(ast::Expr)) {
let mut preorder = self.syntax().preorder();
while let Some(event) = preorder.next() {
let node = match event {
WalkEvent::Enter(node) => node,
WalkEvent::Leave(_) => continue,
};
match ast::Stmt::cast(node.clone()) {
// recursively walk the initializer, skipping potential const pat expressions
// let statements aren't usually nested too deeply so this is fine to recurse on
Some(ast::Stmt::LetStmt(l)) => {
if let Some(expr) = l.initializer() {
expr.walk(cb);
}
preorder.skip_subtree();
}
// Don't skip subtree since we want to process the expression child next
Some(ast::Stmt::ExprStmt(_)) => (),
// skip inner items which might have their own expressions
Some(ast::Stmt::Item(_)) => preorder.skip_subtree(),
None => {
// skip const args, those expressions are a different context
if ast::GenericArg::can_cast(node.kind()) {
preorder.skip_subtree();
} else if let Some(expr) = ast::Expr::cast(node) {
let is_different_context = match &expr {
ast::Expr::EffectExpr(effect) => {
matches!(
effect.effect(),
ast::Effect::Async(_)
| ast::Effect::Try(_)
| ast::Effect::Const(_)
)
}
ast::Expr::ClosureExpr(_) => true,
_ => false,
};
cb(expr);
if is_different_context {
preorder.skip_subtree();
}
}
}
}
}
}
/// Preorder walk all the expression's child patterns.
pub fn walk_patterns(&self, cb: &mut dyn FnMut(ast::Pat)) {
let mut preorder = self.syntax().preorder();
while let Some(event) = preorder.next() {
let node = match event {
WalkEvent::Enter(node) => node,
WalkEvent::Leave(_) => continue,
};
match ast::Stmt::cast(node.clone()) {
Some(ast::Stmt::LetStmt(l)) => {
if let Some(pat) = l.pat() {
pat.walk(cb);
}
if let Some(expr) = l.initializer() {
expr.walk_patterns(cb);
}
preorder.skip_subtree();
}
// Don't skip subtree since we want to process the expression child next
Some(ast::Stmt::ExprStmt(_)) => (),
// skip inner items which might have their own patterns
Some(ast::Stmt::Item(_)) => preorder.skip_subtree(),
None => {
// skip const args, those are a different context
if ast::GenericArg::can_cast(node.kind()) {
preorder.skip_subtree();
} else if let Some(expr) = ast::Expr::cast(node.clone()) {
let is_different_context = match &expr {
ast::Expr::EffectExpr(effect) => {
matches!(
effect.effect(),
ast::Effect::Async(_)
| ast::Effect::Try(_)
| ast::Effect::Const(_)
)
}
ast::Expr::ClosureExpr(_) => true,
_ => false,
};
if is_different_context {
preorder.skip_subtree();
}
} else if let Some(pat) = ast::Pat::cast(node) {
preorder.skip_subtree();
pat.walk(cb);
}
}
}
}
}
}
impl ast::Pat { impl ast::Pat {
/// Preorder walk all the pattern's sub patterns. /// Preorder walk all the pattern's sub patterns.
pub fn walk(&self, cb: &mut dyn FnMut(ast::Pat)) { pub fn walk(&self, cb: &mut dyn FnMut(ast::Pat)) {