rust-analyzer/crates/proc-macro-api/src/msg/flat.rs

445 lines
15 KiB
Rust
Raw Normal View History

//! Serialization-friendly representation of `tt::Subtree`.
//!
//! It is possible to serialize `Subtree` as is, as a tree, but using
//! arbitrary-nested trees in JSON is problematic, as they can cause the JSON
//! parser to overflow the stack.
//!
//! Additionally, such implementation would be pretty verbose, and we do care
//! about performance here a bit.
//!
//! So what this module does is dumping a `tt::Subtree` into a bunch of flat
//! array of numbers. See the test in the parent module to get an example
//! output.
//!
//! ```json
//! {
//! // Array of subtrees, each subtree is represented by 4 numbers:
//! // id of delimiter, delimiter kind, index of first child in `token_tree`,
//! // index of last child in `token_tree`
//! "subtree":[4294967295,0,0,5,2,2,5,5],
//! // 2 ints per literal: [token id, index into `text`]
//! "literal":[4294967295,1],
//! // 3 ints per punct: [token id, char, spacing]
//! "punct":[4294967295,64,1],
//! // 2 ints per ident: [token id, index into `text`]
//! "ident": [0,0,1,1],
//! // children of all subtrees, concatenated. Each child is represented as `index << 2 | tag`
//! // where tag denotes one of subtree, literal, punct or ident.
//! "token_tree":[3,7,1,4],
//! // Strings shared by idents and literals
//! "text": ["struct","Foo"]
//! }
//! ```
//!
//! We probably should replace most of the code here with bincode someday, but,
//! as we don't have bincode in Cargo.toml yet, lets stick with serde_json for
//! the time being.
use std::collections::{HashMap, VecDeque};
use serde::{Deserialize, Serialize};
use tt::Span;
2023-01-31 10:49:49 +00:00
use crate::msg::{ENCODE_CLOSE_SPAN_VERSION, VARIABLE_SIZED_SPANS};
pub trait SerializableSpan<const L: usize>: Span {
fn into_u32(self) -> [u32; L];
fn from_u32(input: [u32; L]) -> Self;
}
impl SerializableSpan<1> for tt::TokenId {
fn into_u32(self) -> [u32; 1] {
[self.0]
}
fn from_u32([input]: [u32; 1]) -> Self {
tt::TokenId(input)
}
}
#[derive(Serialize, Deserialize, Debug)]
pub struct FlatTree {
subtree: Vec<u32>,
literal: Vec<u32>,
punct: Vec<u32>,
ident: Vec<u32>,
token_tree: Vec<u32>,
text: Vec<String>,
#[serde(skip_serializing_if = "SpanMap::do_serialize")]
#[serde(default)]
span_map: SpanMap,
}
#[derive(Serialize, Deserialize, Debug)]
pub struct SpanMap {
#[serde(skip_serializing)]
serialize: bool,
span_size: u32,
spans: Vec<u32>,
}
impl Default for SpanMap {
fn default() -> Self {
Self { serialize: false, span_size: 1, spans: Default::default() }
}
}
impl SpanMap {
fn serialize_span<const L: usize, S: SerializableSpan<L>>(&mut self, span: S) -> u32 {
let u32s = span.into_u32();
if L == 1 {
u32s[0]
} else {
let offset = self.spans.len() as u32;
self.spans.extend(u32s);
offset
}
}
fn deserialize_span<const L: usize, S: SerializableSpan<L>>(&self, offset: u32) -> S {
S::from_u32(if L == 1 {
[offset].as_ref().try_into().unwrap()
} else {
self.spans[offset as usize..][..L].try_into().unwrap()
})
}
}
impl SpanMap {
pub fn do_serialize(&self) -> bool {
self.serialize
}
}
struct SubtreeRepr<const L: usize, S> {
open: S,
close: S,
2023-01-31 10:49:49 +00:00
kind: tt::DelimiterKind,
tt: [u32; 2],
}
struct LiteralRepr<const L: usize, S> {
id: S,
text: u32,
}
struct PunctRepr<const L: usize, S> {
id: S,
char: char,
spacing: tt::Spacing,
}
struct IdentRepr<const L: usize, S> {
id: S,
text: u32,
}
impl FlatTree {
pub fn new<const L: usize, S: SerializableSpan<L>>(
subtree: &tt::Subtree<S>,
version: u32,
) -> FlatTree {
let mut w = Writer {
string_table: HashMap::new(),
work: VecDeque::new(),
subtree: Vec::new(),
literal: Vec::new(),
punct: Vec::new(),
ident: Vec::new(),
token_tree: Vec::new(),
text: Vec::new(),
};
w.write(subtree);
assert!(L == 1 || version >= VARIABLE_SIZED_SPANS);
let mut span_map = SpanMap {
serialize: version >= VARIABLE_SIZED_SPANS && L != 1,
span_size: L as u32,
spans: Vec::new(),
};
return FlatTree {
subtree: if version >= ENCODE_CLOSE_SPAN_VERSION {
write_vec(&mut span_map, w.subtree, SubtreeRepr::write_with_close_span)
} else {
write_vec(&mut span_map, w.subtree, SubtreeRepr::write)
},
literal: write_vec(&mut span_map, w.literal, LiteralRepr::write),
punct: write_vec(&mut span_map, w.punct, PunctRepr::write),
ident: write_vec(&mut span_map, w.ident, IdentRepr::write),
token_tree: w.token_tree,
text: w.text,
span_map,
};
fn write_vec<T, F: Fn(T, &mut SpanMap) -> [u32; N], const N: usize>(
map: &mut SpanMap,
xs: Vec<T>,
f: F,
) -> Vec<u32> {
xs.into_iter().flat_map(|it| f(it, map)).collect()
}
}
pub fn to_subtree<const L: usize, S: SerializableSpan<L>>(
self,
version: u32,
) -> tt::Subtree<S> {
assert!((version >= VARIABLE_SIZED_SPANS || L == 1) && L as u32 == self.span_map.span_size);
return Reader {
subtree: if version >= ENCODE_CLOSE_SPAN_VERSION {
read_vec(&self.span_map, self.subtree, SubtreeRepr::read_with_close_span)
} else {
read_vec(&self.span_map, self.subtree, SubtreeRepr::read)
},
literal: read_vec(&self.span_map, self.literal, LiteralRepr::read),
punct: read_vec(&self.span_map, self.punct, PunctRepr::read),
ident: read_vec(&self.span_map, self.ident, IdentRepr::read),
token_tree: self.token_tree,
text: self.text,
}
.read();
fn read_vec<T, F: Fn([u32; N], &SpanMap) -> T, const N: usize>(
map: &SpanMap,
xs: Vec<u32>,
f: F,
) -> Vec<T> {
let mut chunks = xs.chunks_exact(N);
let res = chunks.by_ref().map(|chunk| f(chunk.try_into().unwrap(), map)).collect();
assert!(chunks.remainder().is_empty());
res
}
}
}
impl<const L: usize, S: SerializableSpan<L>> SubtreeRepr<L, S> {
fn write(self, map: &mut SpanMap) -> [u32; 4] {
let kind = match self.kind {
2023-01-31 10:49:49 +00:00
tt::DelimiterKind::Invisible => 0,
tt::DelimiterKind::Parenthesis => 1,
tt::DelimiterKind::Brace => 2,
tt::DelimiterKind::Bracket => 3,
};
[map.serialize_span(self.open), kind, self.tt[0], self.tt[1]]
}
fn read([open, kind, lo, len]: [u32; 4], map: &SpanMap) -> Self {
let kind = match kind {
2023-01-31 10:49:49 +00:00
0 => tt::DelimiterKind::Invisible,
1 => tt::DelimiterKind::Parenthesis,
2 => tt::DelimiterKind::Brace,
3 => tt::DelimiterKind::Bracket,
other => panic!("bad kind {other}"),
};
SubtreeRepr { open: map.deserialize_span(open), close: S::DUMMY, kind, tt: [lo, len] }
}
fn write_with_close_span(self, map: &mut SpanMap) -> [u32; 5] {
let kind = match self.kind {
tt::DelimiterKind::Invisible => 0,
tt::DelimiterKind::Parenthesis => 1,
tt::DelimiterKind::Brace => 2,
tt::DelimiterKind::Bracket => 3,
};
[
map.serialize_span(self.open),
map.serialize_span(self.close),
kind,
self.tt[0],
self.tt[1],
]
}
fn read_with_close_span([open, close, kind, lo, len]: [u32; 5], map: &SpanMap) -> Self {
let kind = match kind {
0 => tt::DelimiterKind::Invisible,
1 => tt::DelimiterKind::Parenthesis,
2 => tt::DelimiterKind::Brace,
3 => tt::DelimiterKind::Bracket,
other => panic!("bad kind {other}"),
};
SubtreeRepr {
open: map.deserialize_span(open),
close: map.deserialize_span(close),
kind,
tt: [lo, len],
}
}
}
impl<const L: usize, S: SerializableSpan<L>> LiteralRepr<L, S> {
fn write(self, map: &mut SpanMap) -> [u32; 2] {
[map.serialize_span(self.id), self.text]
}
fn read([id, text]: [u32; 2], map: &SpanMap) -> Self {
LiteralRepr { id: map.deserialize_span(id), text }
}
}
impl<const L: usize, S: SerializableSpan<L>> PunctRepr<L, S> {
fn write(self, map: &mut SpanMap) -> [u32; 3] {
let spacing = match self.spacing {
tt::Spacing::Alone => 0,
tt::Spacing::Joint => 1,
};
[map.serialize_span(self.id), self.char as u32, spacing]
}
fn read([id, char, spacing]: [u32; 3], map: &SpanMap) -> Self {
let spacing = match spacing {
0 => tt::Spacing::Alone,
1 => tt::Spacing::Joint,
other => panic!("bad spacing {other}"),
};
PunctRepr { id: map.deserialize_span(id), char: char.try_into().unwrap(), spacing }
}
}
impl<const L: usize, S: SerializableSpan<L>> IdentRepr<L, S> {
fn write(self, map: &mut SpanMap) -> [u32; 2] {
[map.serialize_span(self.id), self.text]
}
fn read(data: [u32; 2], map: &SpanMap) -> Self {
IdentRepr { id: map.deserialize_span(data[0]), text: data[1] }
}
}
struct Writer<'a, const L: usize, S> {
work: VecDeque<(usize, &'a tt::Subtree<S>)>,
string_table: HashMap<&'a str, u32>,
subtree: Vec<SubtreeRepr<L, S>>,
literal: Vec<LiteralRepr<L, S>>,
punct: Vec<PunctRepr<L, S>>,
ident: Vec<IdentRepr<L, S>>,
token_tree: Vec<u32>,
text: Vec<String>,
}
impl<'a, const L: usize, S: Copy> Writer<'a, L, S> {
fn write(&mut self, root: &'a tt::Subtree<S>) {
self.enqueue(root);
while let Some((idx, subtree)) = self.work.pop_front() {
self.subtree(idx, subtree);
}
}
fn subtree(&mut self, idx: usize, subtree: &'a tt::Subtree<S>) {
let mut first_tt = self.token_tree.len();
let n_tt = subtree.token_trees.len();
self.token_tree.resize(first_tt + n_tt, !0);
self.subtree[idx].tt = [first_tt as u32, (first_tt + n_tt) as u32];
for child in &subtree.token_trees {
let idx_tag = match child {
tt::TokenTree::Subtree(it) => {
let idx = self.enqueue(it);
2022-12-30 10:02:45 +00:00
idx << 2
}
tt::TokenTree::Leaf(leaf) => match leaf {
tt::Leaf::Literal(lit) => {
let idx = self.literal.len() as u32;
let text = self.intern(&lit.text);
2023-01-31 10:49:49 +00:00
self.literal.push(LiteralRepr { id: lit.span, text });
idx << 2 | 0b01
}
tt::Leaf::Punct(punct) => {
let idx = self.punct.len() as u32;
self.punct.push(PunctRepr {
char: punct.char,
spacing: punct.spacing,
2023-01-31 10:49:49 +00:00
id: punct.span,
});
idx << 2 | 0b10
}
tt::Leaf::Ident(ident) => {
let idx = self.ident.len() as u32;
let text = self.intern(&ident.text);
2023-01-31 10:49:49 +00:00
self.ident.push(IdentRepr { id: ident.span, text });
idx << 2 | 0b11
}
},
};
self.token_tree[first_tt] = idx_tag;
first_tt += 1;
}
}
fn enqueue(&mut self, subtree: &'a tt::Subtree<S>) -> u32 {
let idx = self.subtree.len();
let open = subtree.delimiter.open;
let close = subtree.delimiter.close;
2023-01-31 10:49:49 +00:00
let delimiter_kind = subtree.delimiter.kind;
self.subtree.push(SubtreeRepr { open, close, kind: delimiter_kind, tt: [!0, !0] });
self.work.push_back((idx, subtree));
idx as u32
}
pub(crate) fn intern(&mut self, text: &'a str) -> u32 {
let table = &mut self.text;
*self.string_table.entry(text).or_insert_with(|| {
let idx = table.len();
table.push(text.to_string());
idx as u32
})
}
}
struct Reader<const L: usize, S> {
subtree: Vec<SubtreeRepr<L, S>>,
literal: Vec<LiteralRepr<L, S>>,
punct: Vec<PunctRepr<L, S>>,
ident: Vec<IdentRepr<L, S>>,
token_tree: Vec<u32>,
text: Vec<String>,
}
impl<const L: usize, S: SerializableSpan<L>> Reader<L, S> {
pub(crate) fn read(self) -> tt::Subtree<S> {
let mut res: Vec<Option<tt::Subtree<S>>> = vec![None; self.subtree.len()];
for i in (0..self.subtree.len()).rev() {
let repr = &self.subtree[i];
let token_trees = &self.token_tree[repr.tt[0] as usize..repr.tt[1] as usize];
let s = tt::Subtree {
delimiter: tt::Delimiter { open: repr.open, close: repr.close, kind: repr.kind },
token_trees: token_trees
.iter()
.copied()
.map(|idx_tag| {
let tag = idx_tag & 0b11;
let idx = (idx_tag >> 2) as usize;
match tag {
// XXX: we iterate subtrees in reverse to guarantee
// that this unwrap doesn't fire.
0b00 => res[idx].take().unwrap().into(),
0b01 => {
let repr = &self.literal[idx];
tt::Leaf::Literal(tt::Literal {
text: self.text[repr.text as usize].as_str().into(),
2023-01-31 10:49:49 +00:00
span: repr.id,
})
.into()
}
0b10 => {
let repr = &self.punct[idx];
tt::Leaf::Punct(tt::Punct {
char: repr.char,
spacing: repr.spacing,
2023-01-31 10:49:49 +00:00
span: repr.id,
})
.into()
}
0b11 => {
let repr = &self.ident[idx];
tt::Leaf::Ident(tt::Ident {
text: self.text[repr.text as usize].as_str().into(),
2023-01-31 10:49:49 +00:00
span: repr.id,
})
.into()
}
other => panic!("bad tag: {other}"),
}
})
.collect(),
};
res[i] = Some(s);
}
res[0].take().unwrap()
}
}