2022-10-23 08:12:05 +00:00
|
|
|
//! Compute the binary representation of structs, unions and enums
|
|
|
|
|
|
|
|
use std::{
|
|
|
|
cmp::{self, Ordering},
|
|
|
|
iter,
|
|
|
|
num::NonZeroUsize,
|
2022-10-27 19:58:34 +00:00
|
|
|
ops::Bound,
|
2022-10-23 08:12:05 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
use chalk_ir::TyKind;
|
|
|
|
use hir_def::{
|
|
|
|
adt::VariantData,
|
|
|
|
layout::{
|
|
|
|
Abi, AbiAndPrefAlign, Align, FieldsShape, Integer, Layout, LayoutError, Niche, Primitive,
|
|
|
|
ReprOptions, Scalar, Size, StructKind, TagEncoding, TargetDataLayout, Variants,
|
|
|
|
WrappingRange,
|
|
|
|
},
|
|
|
|
AdtId, EnumVariantId, LocalEnumVariantId, UnionId, VariantId,
|
|
|
|
};
|
|
|
|
use la_arena::{ArenaMap, RawIdx};
|
|
|
|
|
2022-10-27 19:58:34 +00:00
|
|
|
struct X(Option<NonZeroUsize>);
|
|
|
|
|
2022-10-23 08:12:05 +00:00
|
|
|
use crate::{
|
|
|
|
db::HirDatabase,
|
|
|
|
lang_items::is_unsafe_cell,
|
|
|
|
layout::{field_ty, scalar_unit},
|
|
|
|
Interner, Substitution,
|
|
|
|
};
|
|
|
|
|
|
|
|
use super::layout_of_ty;
|
|
|
|
|
|
|
|
pub fn layout_of_adt_query(
|
|
|
|
db: &dyn HirDatabase,
|
|
|
|
def: AdtId,
|
|
|
|
subst: Substitution,
|
|
|
|
) -> Result<Layout, LayoutError> {
|
|
|
|
let handle_variant = |def: VariantId, var: &VariantData| {
|
|
|
|
var.fields()
|
|
|
|
.iter()
|
|
|
|
.map(|(fd, _)| layout_of_ty(db, &field_ty(db, def, fd, &subst)))
|
|
|
|
.collect::<Result<Vec<_>, _>>()
|
|
|
|
};
|
|
|
|
fn struct_variant_idx() -> LocalEnumVariantId {
|
|
|
|
LocalEnumVariantId::from_raw(RawIdx::from(0))
|
|
|
|
}
|
|
|
|
let (variants, is_enum, repr) = match def {
|
|
|
|
AdtId::StructId(s) => {
|
|
|
|
let data = db.struct_data(s);
|
|
|
|
let mut r = ArenaMap::new();
|
|
|
|
r.insert(struct_variant_idx(), handle_variant(s.into(), &data.variant_data)?);
|
|
|
|
(r, false, data.repr.unwrap_or_default())
|
|
|
|
}
|
|
|
|
AdtId::UnionId(id) => return layout_of_union(db, id, &subst),
|
|
|
|
AdtId::EnumId(e) => {
|
|
|
|
let data = db.enum_data(e);
|
|
|
|
let r = data
|
|
|
|
.variants
|
|
|
|
.iter()
|
|
|
|
.map(|(idx, v)| {
|
|
|
|
Ok((
|
|
|
|
idx,
|
|
|
|
handle_variant(
|
|
|
|
EnumVariantId { parent: e, local_id: idx }.into(),
|
|
|
|
&v.variant_data,
|
|
|
|
)?,
|
|
|
|
))
|
|
|
|
})
|
|
|
|
.collect::<Result<_, _>>()?;
|
|
|
|
(r, true, data.repr.unwrap_or_default())
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// A variant is absent if it's uninhabited and only has ZST fields.
|
|
|
|
// Present uninhabited variants only require space for their fields,
|
|
|
|
// but *not* an encoding of the discriminant (e.g., a tag value).
|
|
|
|
// See issue #49298 for more details on the need to leave space
|
|
|
|
// for non-ZST uninhabited data (mostly partial initialization).
|
|
|
|
let absent = |fields: &[Layout]| {
|
|
|
|
let uninhabited = fields.iter().any(|f| f.abi.is_uninhabited());
|
|
|
|
let is_zst = fields.iter().all(|f| f.is_zst());
|
|
|
|
uninhabited && is_zst
|
|
|
|
};
|
|
|
|
let (present_first, present_second) = {
|
|
|
|
let mut present_variants =
|
|
|
|
variants.iter().filter_map(|(i, v)| if absent(v) { None } else { Some(i) });
|
|
|
|
(present_variants.next(), present_variants.next())
|
|
|
|
};
|
|
|
|
let present_first = match present_first {
|
|
|
|
Some(present_first) => present_first,
|
|
|
|
// Uninhabited because it has no variants, or only absent ones.
|
|
|
|
None if is_enum => return layout_of_ty(db, &TyKind::Never.intern(Interner)),
|
|
|
|
// If it's a struct, still compute a layout so that we can still compute the
|
|
|
|
// field offsets.
|
|
|
|
None => struct_variant_idx(),
|
|
|
|
};
|
|
|
|
|
|
|
|
let is_univariant = !is_enum ||
|
|
|
|
// Only one variant is present.
|
|
|
|
(present_second.is_none() &&
|
|
|
|
// Representation optimizations are allowed.
|
|
|
|
!repr.inhibit_enum_layout_opt());
|
|
|
|
let dl = &*db.current_target_data_layout();
|
|
|
|
|
|
|
|
if is_univariant {
|
|
|
|
// Struct, or univariant enum equivalent to a struct.
|
|
|
|
// (Typechecking will reject discriminant-sizing attrs.)
|
|
|
|
|
|
|
|
let v = present_first;
|
|
|
|
let kind = if is_enum || variants[v].is_empty() {
|
|
|
|
StructKind::AlwaysSized
|
|
|
|
} else {
|
|
|
|
let always_sized = !variants[v].last().unwrap().is_unsized();
|
|
|
|
if !always_sized {
|
|
|
|
StructKind::MaybeUnsized
|
|
|
|
} else {
|
|
|
|
StructKind::AlwaysSized
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
let mut st = univariant(dl, &variants[v], &repr, kind)?;
|
|
|
|
st.variants = Variants::Single;
|
|
|
|
|
|
|
|
if is_unsafe_cell(def, db) {
|
|
|
|
let hide_niches = |scalar: &mut _| match scalar {
|
|
|
|
Scalar::Initialized { value, valid_range } => {
|
|
|
|
*valid_range = WrappingRange::full(value.size(dl))
|
|
|
|
}
|
|
|
|
// Already doesn't have any niches
|
|
|
|
Scalar::Union { .. } => {}
|
|
|
|
};
|
|
|
|
match &mut st.abi {
|
|
|
|
Abi::Uninhabited => {}
|
|
|
|
Abi::Scalar(scalar) => hide_niches(scalar),
|
|
|
|
Abi::ScalarPair(a, b) => {
|
|
|
|
hide_niches(a);
|
|
|
|
hide_niches(b);
|
|
|
|
}
|
|
|
|
Abi::Vector { element, count: _ } => hide_niches(element),
|
|
|
|
Abi::Aggregate { sized: _ } => {}
|
|
|
|
}
|
|
|
|
st.largest_niche = None;
|
2022-10-27 19:58:34 +00:00
|
|
|
return Ok(st);
|
|
|
|
}
|
|
|
|
|
|
|
|
let (start, end) = layout_scalar_valid_range(db, def);
|
|
|
|
match st.abi {
|
|
|
|
Abi::Scalar(ref mut scalar) | Abi::ScalarPair(ref mut scalar, _) => {
|
|
|
|
if let Bound::Included(start) = start {
|
|
|
|
let valid_range = scalar.valid_range_mut();
|
|
|
|
valid_range.start = start;
|
|
|
|
}
|
|
|
|
if let Bound::Included(end) = end {
|
|
|
|
let valid_range = scalar.valid_range_mut();
|
|
|
|
valid_range.end = end;
|
|
|
|
}
|
|
|
|
// Update `largest_niche` if we have introduced a larger niche.
|
|
|
|
let niche = Niche::from_scalar(dl, Size::ZERO, *scalar);
|
|
|
|
if let Some(niche) = niche {
|
|
|
|
match st.largest_niche {
|
|
|
|
Some(largest_niche) => {
|
|
|
|
// Replace the existing niche even if they're equal,
|
|
|
|
// because this one is at a lower offset.
|
|
|
|
if largest_niche.available(dl) <= niche.available(dl) {
|
|
|
|
st.largest_niche = Some(niche);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
None => st.largest_niche = Some(niche),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
_ => user_error!("nonscalar layout for layout_scalar_valid_range"),
|
2022-10-23 08:12:05 +00:00
|
|
|
}
|
2022-10-27 19:58:34 +00:00
|
|
|
|
2022-10-23 08:12:05 +00:00
|
|
|
return Ok(st);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Until we've decided whether to use the tagged or
|
|
|
|
// niche filling LayoutS, we don't want to intern the
|
|
|
|
// variant layouts, so we can't store them in the
|
|
|
|
// overall LayoutS. Store the overall LayoutS
|
|
|
|
// and the variant LayoutSs here until then.
|
|
|
|
struct TmpLayout {
|
|
|
|
layout: Layout,
|
|
|
|
variants: ArenaMap<LocalEnumVariantId, Layout>,
|
|
|
|
}
|
|
|
|
|
|
|
|
let calculate_niche_filling_layout = || -> Result<Option<TmpLayout>, LayoutError> {
|
|
|
|
// The current code for niche-filling relies on variant indices
|
|
|
|
// instead of actual discriminants, so enums with
|
|
|
|
// explicit discriminants (RFC #2363) would misbehave.
|
|
|
|
if repr.inhibit_enum_layout_opt()
|
|
|
|
// FIXME: bring these codes back
|
|
|
|
// || def
|
|
|
|
// .variants()
|
|
|
|
// .iter_enumerated()
|
|
|
|
// .any(|(i, v)| v.discr != ty::VariantDiscr::Relative(i.as_u32()))
|
|
|
|
{
|
|
|
|
return Ok(None);
|
|
|
|
}
|
|
|
|
|
|
|
|
if variants.iter().count() < 2 {
|
|
|
|
return Ok(None);
|
|
|
|
}
|
|
|
|
|
|
|
|
let mut align = dl.aggregate_align;
|
|
|
|
let mut variant_layouts = variants
|
|
|
|
.iter()
|
|
|
|
.map(|(j, v)| {
|
|
|
|
let mut st = univariant(dl, v, &repr, StructKind::AlwaysSized)?;
|
|
|
|
st.variants = Variants::Single;
|
|
|
|
|
|
|
|
align = align.max(st.align);
|
|
|
|
|
|
|
|
Ok((j, st))
|
|
|
|
})
|
|
|
|
.collect::<Result<ArenaMap<_, _>, _>>()?;
|
|
|
|
|
|
|
|
let largest_variant_index = match variant_layouts
|
|
|
|
.iter()
|
|
|
|
.max_by_key(|(_i, layout)| layout.size.bytes())
|
|
|
|
.map(|(i, _layout)| i)
|
|
|
|
{
|
|
|
|
None => return Ok(None),
|
|
|
|
Some(i) => i,
|
|
|
|
};
|
|
|
|
|
|
|
|
let count = variants
|
|
|
|
.iter()
|
|
|
|
.map(|(i, _)| i)
|
|
|
|
.filter(|x| *x != largest_variant_index && !absent(&variants[*x]))
|
|
|
|
.count() as u128;
|
|
|
|
|
|
|
|
// Find the field with the largest niche
|
|
|
|
let (field_index, niche, (niche_start, niche_scalar)) = match variants
|
|
|
|
[largest_variant_index]
|
|
|
|
.iter()
|
|
|
|
.enumerate()
|
|
|
|
.filter_map(|(j, field)| Some((j, field.largest_niche?)))
|
|
|
|
.max_by_key(|(_, niche)| niche.available(dl))
|
|
|
|
.and_then(|(j, niche)| Some((j, niche, niche.reserve(dl, count)?)))
|
|
|
|
{
|
|
|
|
None => return Ok(None),
|
|
|
|
Some(x) => x,
|
|
|
|
};
|
|
|
|
|
|
|
|
let niche_offset =
|
|
|
|
niche.offset + variant_layouts[largest_variant_index].fields.offset(field_index, dl);
|
|
|
|
let niche_size = niche.value.size(dl);
|
|
|
|
let size = variant_layouts[largest_variant_index].size.align_to(align.abi);
|
|
|
|
|
|
|
|
let all_variants_fit = variant_layouts.iter_mut().all(|(i, layout)| {
|
|
|
|
if i == largest_variant_index {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
layout.largest_niche = None;
|
|
|
|
|
|
|
|
if layout.size <= niche_offset {
|
|
|
|
// This variant will fit before the niche.
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Determine if it'll fit after the niche.
|
|
|
|
let this_align = layout.align.abi;
|
|
|
|
let this_offset = (niche_offset + niche_size).align_to(this_align);
|
|
|
|
|
|
|
|
if this_offset + layout.size > size {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// It'll fit, but we need to make some adjustments.
|
|
|
|
match layout.fields {
|
|
|
|
FieldsShape::Arbitrary { ref mut offsets, .. } => {
|
|
|
|
for (j, offset) in offsets.iter_mut().enumerate() {
|
|
|
|
if !variants[i][j].is_zst() {
|
|
|
|
*offset += this_offset;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
_ => {
|
|
|
|
panic!("Layout of fields should be Arbitrary for variants")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// It can't be a Scalar or ScalarPair because the offset isn't 0.
|
|
|
|
if !layout.abi.is_uninhabited() {
|
|
|
|
layout.abi = Abi::Aggregate { sized: true };
|
|
|
|
}
|
|
|
|
layout.size += this_offset;
|
|
|
|
|
|
|
|
true
|
|
|
|
});
|
|
|
|
|
|
|
|
if !all_variants_fit {
|
|
|
|
return Ok(None);
|
|
|
|
}
|
|
|
|
|
|
|
|
let largest_niche = Niche::from_scalar(dl, niche_offset, niche_scalar);
|
|
|
|
|
|
|
|
let others_zst = variant_layouts
|
|
|
|
.iter()
|
|
|
|
.all(|(i, layout)| i == largest_variant_index || layout.size == Size::ZERO);
|
|
|
|
let same_size = size == variant_layouts[largest_variant_index].size;
|
|
|
|
let same_align = align == variant_layouts[largest_variant_index].align;
|
|
|
|
|
|
|
|
let abi = if variant_layouts.iter().all(|(_, v)| v.abi.is_uninhabited()) {
|
|
|
|
Abi::Uninhabited
|
|
|
|
} else if same_size && same_align && others_zst {
|
|
|
|
match variant_layouts[largest_variant_index].abi {
|
|
|
|
// When the total alignment and size match, we can use the
|
|
|
|
// same ABI as the scalar variant with the reserved niche.
|
|
|
|
Abi::Scalar(_) => Abi::Scalar(niche_scalar),
|
|
|
|
Abi::ScalarPair(first, second) => {
|
|
|
|
// Only the niche is guaranteed to be initialised,
|
|
|
|
// so use union layouts for the other primitive.
|
|
|
|
if niche_offset == Size::ZERO {
|
|
|
|
Abi::ScalarPair(niche_scalar, second.to_union())
|
|
|
|
} else {
|
|
|
|
Abi::ScalarPair(first.to_union(), niche_scalar)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
_ => Abi::Aggregate { sized: true },
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
Abi::Aggregate { sized: true }
|
|
|
|
};
|
|
|
|
|
|
|
|
let layout = Layout {
|
|
|
|
variants: Variants::Multiple {
|
|
|
|
tag: niche_scalar,
|
|
|
|
tag_encoding: TagEncoding::Niche {
|
|
|
|
untagged_variant: largest_variant_index,
|
|
|
|
niche_start,
|
|
|
|
},
|
|
|
|
tag_field: 0,
|
|
|
|
variants: ArenaMap::new(),
|
|
|
|
},
|
|
|
|
fields: FieldsShape::Arbitrary { offsets: vec![niche_offset], memory_index: vec![0] },
|
|
|
|
abi,
|
|
|
|
largest_niche,
|
|
|
|
size,
|
|
|
|
align,
|
|
|
|
};
|
|
|
|
|
|
|
|
Ok(Some(TmpLayout { layout, variants: variant_layouts }))
|
|
|
|
};
|
|
|
|
|
|
|
|
let niche_filling_layout = calculate_niche_filling_layout()?;
|
|
|
|
|
|
|
|
let (mut min, mut max) = (i128::MAX, i128::MIN);
|
|
|
|
// FIXME: bring these back
|
|
|
|
// let discr_type = repr.discr_type();
|
|
|
|
// let bits = Integer::from_attr(dl, discr_type).size().bits();
|
|
|
|
// for (i, discr) in def.discriminants(tcx) {
|
|
|
|
// if variants[i].iter().any(|f| f.abi.is_uninhabited()) {
|
|
|
|
// continue;
|
|
|
|
// }
|
|
|
|
// let mut x = discr.val as i128;
|
|
|
|
// if discr_type.is_signed() {
|
|
|
|
// // sign extend the raw representation to be an i128
|
|
|
|
// x = (x << (128 - bits)) >> (128 - bits);
|
|
|
|
// }
|
|
|
|
// if x < min {
|
|
|
|
// min = x;
|
|
|
|
// }
|
|
|
|
// if x > max {
|
|
|
|
// max = x;
|
|
|
|
// }
|
|
|
|
// }
|
|
|
|
// We might have no inhabited variants, so pretend there's at least one.
|
|
|
|
if (min, max) == (i128::MAX, i128::MIN) {
|
|
|
|
min = 0;
|
|
|
|
max = 0;
|
|
|
|
}
|
|
|
|
assert!(min <= max, "discriminant range is {}...{}", min, max);
|
|
|
|
let (min_ity, signed) = Integer::repr_discr(dl, &repr, min, max)?;
|
|
|
|
|
|
|
|
let mut align = dl.aggregate_align;
|
|
|
|
let mut size = Size::ZERO;
|
|
|
|
|
|
|
|
// We're interested in the smallest alignment, so start large.
|
|
|
|
let mut start_align = Align::from_bytes(256).unwrap();
|
|
|
|
assert_eq!(Integer::for_align(dl, start_align), None);
|
|
|
|
|
|
|
|
// repr(C) on an enum tells us to make a (tag, union) layout,
|
|
|
|
// so we need to grow the prefix alignment to be at least
|
|
|
|
// the alignment of the union. (This value is used both for
|
|
|
|
// determining the alignment of the overall enum, and the
|
|
|
|
// determining the alignment of the payload after the tag.)
|
|
|
|
let mut prefix_align = min_ity.align(dl).abi;
|
|
|
|
if repr.c() {
|
|
|
|
for (_, fields) in variants.iter() {
|
|
|
|
for field in fields {
|
|
|
|
prefix_align = prefix_align.max(field.align.abi);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Create the set of structs that represent each variant.
|
|
|
|
let mut layout_variants = variants
|
|
|
|
.iter()
|
|
|
|
.map(|(i, field_layouts)| {
|
|
|
|
let mut st = univariant(
|
|
|
|
dl,
|
|
|
|
&field_layouts,
|
|
|
|
&repr,
|
|
|
|
StructKind::Prefixed(min_ity.size(), prefix_align),
|
|
|
|
)?;
|
|
|
|
st.variants = Variants::Single;
|
|
|
|
// Find the first field we can't move later
|
|
|
|
// to make room for a larger discriminant.
|
|
|
|
for field in st.fields.index_by_increasing_offset().map(|j| &field_layouts[j]) {
|
|
|
|
if !field.is_zst() || field.align.abi.bytes() != 1 {
|
|
|
|
start_align = start_align.min(field.align.abi);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
size = cmp::max(size, st.size);
|
|
|
|
align = align.max(st.align);
|
|
|
|
Ok((i, st))
|
|
|
|
})
|
|
|
|
.collect::<Result<ArenaMap<_, _>, _>>()?;
|
|
|
|
|
|
|
|
// Align the maximum variant size to the largest alignment.
|
|
|
|
size = size.align_to(align.abi);
|
|
|
|
|
|
|
|
if size.bytes() >= dl.obj_size_bound() {
|
|
|
|
return Err(LayoutError::SizeOverflow);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check to see if we should use a different type for the
|
|
|
|
// discriminant. We can safely use a type with the same size
|
|
|
|
// as the alignment of the first field of each variant.
|
|
|
|
// We increase the size of the discriminant to avoid LLVM copying
|
|
|
|
// padding when it doesn't need to. This normally causes unaligned
|
|
|
|
// load/stores and excessive memcpy/memset operations. By using a
|
|
|
|
// bigger integer size, LLVM can be sure about its contents and
|
|
|
|
// won't be so conservative.
|
|
|
|
|
|
|
|
// Use the initial field alignment
|
|
|
|
let mut ity = if repr.c() || repr.int.is_some() {
|
|
|
|
min_ity
|
|
|
|
} else {
|
|
|
|
Integer::for_align(dl, start_align).unwrap_or(min_ity)
|
|
|
|
};
|
|
|
|
|
|
|
|
// If the alignment is not larger than the chosen discriminant size,
|
|
|
|
// don't use the alignment as the final size.
|
|
|
|
if ity <= min_ity {
|
|
|
|
ity = min_ity;
|
|
|
|
} else {
|
|
|
|
// Patch up the variants' first few fields.
|
|
|
|
// Patch up the variants' first few fields.
|
|
|
|
let old_ity_size = min_ity.size();
|
|
|
|
let new_ity_size = ity.size();
|
|
|
|
for (_, variant) in layout_variants.iter_mut() {
|
|
|
|
match variant.fields {
|
|
|
|
FieldsShape::Arbitrary { ref mut offsets, .. } => {
|
|
|
|
for i in offsets {
|
|
|
|
if *i <= old_ity_size {
|
|
|
|
assert_eq!(*i, old_ity_size);
|
|
|
|
*i = new_ity_size;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// We might be making the struct larger.
|
|
|
|
if variant.size <= old_ity_size {
|
|
|
|
variant.size = new_ity_size;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
_ => user_error!("bug"),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
let tag_mask = ity.size().unsigned_int_max();
|
|
|
|
let tag = Scalar::Initialized {
|
|
|
|
value: Primitive::Int(ity, signed),
|
|
|
|
valid_range: WrappingRange {
|
|
|
|
start: (min as u128 & tag_mask),
|
|
|
|
end: (max as u128 & tag_mask),
|
|
|
|
},
|
|
|
|
};
|
|
|
|
let mut abi = Abi::Aggregate { sized: true };
|
|
|
|
|
|
|
|
if layout_variants.iter().all(|(_, v)| v.abi.is_uninhabited()) {
|
|
|
|
abi = Abi::Uninhabited;
|
|
|
|
} else if tag.size(dl) == size {
|
|
|
|
// Make sure we only use scalar layout when the enum is entirely its
|
|
|
|
// own tag (i.e. it has no padding nor any non-ZST variant fields).
|
|
|
|
abi = Abi::Scalar(tag);
|
|
|
|
} else {
|
|
|
|
// Try to use a ScalarPair for all tagged enums.
|
|
|
|
let mut common_prim = None;
|
|
|
|
let mut common_prim_initialized_in_all_variants = true;
|
|
|
|
for ((_, field_layouts), (_, layout_variant)) in
|
|
|
|
iter::zip(variants.iter(), layout_variants.iter())
|
|
|
|
{
|
|
|
|
let offsets = match layout_variant.fields {
|
|
|
|
FieldsShape::Arbitrary { ref offsets, .. } => offsets,
|
|
|
|
_ => user_error!("bug"),
|
|
|
|
};
|
|
|
|
let mut fields = iter::zip(field_layouts, offsets).filter(|p| !p.0.is_zst());
|
|
|
|
let (field, offset) = match (fields.next(), fields.next()) {
|
|
|
|
(None, None) => {
|
|
|
|
common_prim_initialized_in_all_variants = false;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
(Some(pair), None) => pair,
|
|
|
|
_ => {
|
|
|
|
common_prim = None;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
let prim = match field.abi {
|
|
|
|
Abi::Scalar(scalar) => {
|
|
|
|
common_prim_initialized_in_all_variants &=
|
|
|
|
matches!(scalar, Scalar::Initialized { .. });
|
|
|
|
scalar.primitive()
|
|
|
|
}
|
|
|
|
_ => {
|
|
|
|
common_prim = None;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
if let Some(pair) = common_prim {
|
|
|
|
// This is pretty conservative. We could go fancier
|
|
|
|
// by conflating things like i32 and u32, or even
|
|
|
|
// realising that (u8, u8) could just cohabit with
|
|
|
|
// u16 or even u32.
|
|
|
|
if pair != (prim, offset) {
|
|
|
|
common_prim = None;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
common_prim = Some((prim, offset));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if let Some((prim, offset)) = common_prim {
|
|
|
|
let prim_scalar = if common_prim_initialized_in_all_variants {
|
|
|
|
scalar_unit(dl, prim)
|
|
|
|
} else {
|
|
|
|
// Common prim might be uninit.
|
|
|
|
Scalar::Union { value: prim }
|
|
|
|
};
|
|
|
|
let pair = scalar_pair(dl, tag, prim_scalar);
|
|
|
|
let pair_offsets = match pair.fields {
|
|
|
|
FieldsShape::Arbitrary { ref offsets, ref memory_index } => {
|
|
|
|
assert_eq!(memory_index, &[0, 1]);
|
|
|
|
offsets
|
|
|
|
}
|
|
|
|
_ => user_error!("bug"),
|
|
|
|
};
|
|
|
|
if pair_offsets[0] == Size::ZERO
|
|
|
|
&& pair_offsets[1] == *offset
|
|
|
|
&& align == pair.align
|
|
|
|
&& size == pair.size
|
|
|
|
{
|
|
|
|
// We can use `ScalarPair` only when it matches our
|
|
|
|
// already computed layout (including `#[repr(C)]`).
|
|
|
|
abi = pair.abi;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we pick a "clever" (by-value) ABI, we might have to adjust the ABI of the
|
|
|
|
// variants to ensure they are consistent. This is because a downcast is
|
|
|
|
// semantically a NOP, and thus should not affect layout.
|
|
|
|
if matches!(abi, Abi::Scalar(..) | Abi::ScalarPair(..)) {
|
|
|
|
for (_, variant) in layout_variants.iter_mut() {
|
|
|
|
// We only do this for variants with fields; the others are not accessed anyway.
|
|
|
|
// Also do not overwrite any already existing "clever" ABIs.
|
|
|
|
if variant.fields.count() > 0 && matches!(variant.abi, Abi::Aggregate { .. }) {
|
|
|
|
variant.abi = abi;
|
|
|
|
// Also need to bump up the size and alignment, so that the entire value fits in here.
|
|
|
|
variant.size = cmp::max(variant.size, size);
|
|
|
|
variant.align.abi = cmp::max(variant.align.abi, align.abi);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
let largest_niche = Niche::from_scalar(dl, Size::ZERO, tag);
|
|
|
|
|
|
|
|
let tagged_layout = Layout {
|
|
|
|
variants: Variants::Multiple {
|
|
|
|
tag,
|
|
|
|
tag_encoding: TagEncoding::Direct,
|
|
|
|
tag_field: 0,
|
|
|
|
variants: ArenaMap::new(),
|
|
|
|
},
|
|
|
|
fields: FieldsShape::Arbitrary { offsets: vec![Size::ZERO], memory_index: vec![0] },
|
|
|
|
largest_niche,
|
|
|
|
abi,
|
|
|
|
align,
|
|
|
|
size,
|
|
|
|
};
|
|
|
|
|
|
|
|
let tagged_layout = TmpLayout { layout: tagged_layout, variants: layout_variants };
|
|
|
|
|
|
|
|
let mut best_layout = match (tagged_layout, niche_filling_layout) {
|
|
|
|
(tl, Some(nl)) => {
|
|
|
|
// Pick the smaller layout; otherwise,
|
|
|
|
// pick the layout with the larger niche; otherwise,
|
|
|
|
// pick tagged as it has simpler codegen.
|
|
|
|
use Ordering::*;
|
|
|
|
let niche_size =
|
|
|
|
|tmp_l: &TmpLayout| tmp_l.layout.largest_niche.map_or(0, |n| n.available(dl));
|
|
|
|
match (tl.layout.size.cmp(&nl.layout.size), niche_size(&tl).cmp(&niche_size(&nl))) {
|
|
|
|
(Greater, _) => nl,
|
|
|
|
(Equal, Less) => nl,
|
|
|
|
_ => tl,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
(tl, None) => tl,
|
|
|
|
};
|
|
|
|
|
|
|
|
// Now we can intern the variant layouts and store them in the enum layout.
|
|
|
|
best_layout.layout.variants = match best_layout.layout.variants {
|
|
|
|
Variants::Multiple { tag, tag_encoding, tag_field, .. } => {
|
|
|
|
Variants::Multiple { tag, tag_encoding, tag_field, variants: best_layout.variants }
|
|
|
|
}
|
|
|
|
_ => user_error!("bug"),
|
|
|
|
};
|
|
|
|
|
|
|
|
Ok(best_layout.layout)
|
|
|
|
}
|
|
|
|
|
2022-10-27 19:58:34 +00:00
|
|
|
fn layout_scalar_valid_range(db: &dyn HirDatabase, def: AdtId) -> (Bound<u128>, Bound<u128>) {
|
|
|
|
let attrs = db.attrs(def.into());
|
|
|
|
let get = |name| {
|
|
|
|
let attr = attrs.by_key(name).tt_values();
|
|
|
|
for tree in attr {
|
|
|
|
if let Some(x) = tree.token_trees.first() {
|
|
|
|
if let Ok(x) = x.to_string().parse() {
|
|
|
|
return Bound::Included(x);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
Bound::Unbounded
|
|
|
|
};
|
|
|
|
(get("rustc_layout_scalar_valid_range_start"), get("rustc_layout_scalar_valid_range_end"))
|
|
|
|
}
|
|
|
|
|
2022-10-23 08:12:05 +00:00
|
|
|
pub fn layout_of_adt_recover(
|
|
|
|
_: &dyn HirDatabase,
|
|
|
|
_: &[String],
|
|
|
|
_: &AdtId,
|
|
|
|
_: &Substitution,
|
|
|
|
) -> Result<Layout, LayoutError> {
|
|
|
|
user_error!("infinite sized recursive type");
|
|
|
|
}
|
|
|
|
|
|
|
|
pub(crate) fn univariant(
|
|
|
|
dl: &TargetDataLayout,
|
|
|
|
fields: &[Layout],
|
|
|
|
repr: &ReprOptions,
|
|
|
|
kind: StructKind,
|
|
|
|
) -> Result<Layout, LayoutError> {
|
|
|
|
let pack = repr.pack;
|
|
|
|
if pack.is_some() && repr.align.is_some() {
|
|
|
|
user_error!("Struct can not be packed and aligned");
|
|
|
|
}
|
|
|
|
|
|
|
|
let mut align = if pack.is_some() { dl.i8_align } else { dl.aggregate_align };
|
|
|
|
|
|
|
|
let mut inverse_memory_index: Vec<u32> = (0..fields.len() as u32).collect();
|
|
|
|
|
|
|
|
let optimize = !repr.inhibit_struct_field_reordering_opt();
|
|
|
|
if optimize {
|
|
|
|
let end = if let StructKind::MaybeUnsized = kind { fields.len() - 1 } else { fields.len() };
|
|
|
|
let optimizing = &mut inverse_memory_index[..end];
|
|
|
|
let field_align = |f: &Layout| {
|
|
|
|
if let Some(pack) = pack {
|
|
|
|
f.align.abi.min(pack)
|
|
|
|
} else {
|
|
|
|
f.align.abi
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
match kind {
|
|
|
|
StructKind::AlwaysSized | StructKind::MaybeUnsized => {
|
|
|
|
optimizing.sort_by_key(|&x| {
|
|
|
|
// Place ZSTs first to avoid "interesting offsets",
|
|
|
|
// especially with only one or two non-ZST fields.
|
|
|
|
let f = &fields[x as usize];
|
|
|
|
(!f.is_zst(), cmp::Reverse(field_align(f)))
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
StructKind::Prefixed(..) => {
|
|
|
|
// Sort in ascending alignment so that the layout stays optimal
|
|
|
|
// regardless of the prefix
|
|
|
|
optimizing.sort_by_key(|&x| field_align(&fields[x as usize]));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// inverse_memory_index holds field indices by increasing memory offset.
|
|
|
|
// That is, if field 5 has offset 0, the first element of inverse_memory_index is 5.
|
|
|
|
// We now write field offsets to the corresponding offset slot;
|
|
|
|
// field 5 with offset 0 puts 0 in offsets[5].
|
|
|
|
// At the bottom of this function, we invert `inverse_memory_index` to
|
|
|
|
// produce `memory_index` (see `invert_mapping`).
|
|
|
|
|
|
|
|
let mut sized = true;
|
|
|
|
let mut offsets = vec![Size::ZERO; fields.len()];
|
|
|
|
let mut offset = Size::ZERO;
|
|
|
|
let mut largest_niche = None;
|
|
|
|
let mut largest_niche_available = 0;
|
|
|
|
|
|
|
|
if let StructKind::Prefixed(prefix_size, prefix_align) = kind {
|
|
|
|
let prefix_align =
|
|
|
|
if let Some(pack) = pack { prefix_align.min(pack) } else { prefix_align };
|
|
|
|
align = align.max(AbiAndPrefAlign::new(prefix_align));
|
|
|
|
offset = prefix_size.align_to(prefix_align);
|
|
|
|
}
|
|
|
|
|
|
|
|
for &i in &inverse_memory_index {
|
|
|
|
let field = &fields[i as usize];
|
|
|
|
if !sized {
|
|
|
|
user_error!("Unsized field is not last field");
|
|
|
|
}
|
|
|
|
|
|
|
|
if field.is_unsized() {
|
|
|
|
sized = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Invariant: offset < dl.obj_size_bound() <= 1<<61
|
|
|
|
let field_align = if let Some(pack) = pack {
|
|
|
|
field.align.min(AbiAndPrefAlign::new(pack))
|
|
|
|
} else {
|
|
|
|
field.align
|
|
|
|
};
|
|
|
|
offset = offset.align_to(field_align.abi);
|
|
|
|
align = align.max(field_align);
|
|
|
|
|
|
|
|
offsets[i as usize] = offset;
|
|
|
|
|
|
|
|
if let Some(mut niche) = field.largest_niche {
|
|
|
|
let available = niche.available(dl);
|
|
|
|
if available > largest_niche_available {
|
|
|
|
largest_niche_available = available;
|
|
|
|
niche.offset =
|
|
|
|
niche.offset.checked_add(offset, dl).ok_or(LayoutError::SizeOverflow)?;
|
|
|
|
largest_niche = Some(niche);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
offset = offset.checked_add(field.size, dl).ok_or(LayoutError::SizeOverflow)?;
|
|
|
|
}
|
|
|
|
|
|
|
|
if let Some(repr_align) = repr.align {
|
|
|
|
align = align.max(AbiAndPrefAlign::new(repr_align));
|
|
|
|
}
|
|
|
|
|
|
|
|
let min_size = offset;
|
|
|
|
|
|
|
|
// As stated above, inverse_memory_index holds field indices by increasing offset.
|
|
|
|
// This makes it an already-sorted view of the offsets vec.
|
|
|
|
// To invert it, consider:
|
|
|
|
// If field 5 has offset 0, offsets[0] is 5, and memory_index[5] should be 0.
|
|
|
|
// Field 5 would be the first element, so memory_index is i:
|
|
|
|
// Note: if we didn't optimize, it's already right.
|
|
|
|
|
|
|
|
let memory_index =
|
|
|
|
if optimize { invert_mapping(&inverse_memory_index) } else { inverse_memory_index };
|
|
|
|
|
|
|
|
let size = min_size.align_to(align.abi);
|
|
|
|
let mut abi = Abi::Aggregate { sized };
|
|
|
|
|
|
|
|
// Unpack newtype ABIs and find scalar pairs.
|
|
|
|
if sized && size.bytes() > 0 {
|
|
|
|
// All other fields must be ZSTs.
|
|
|
|
let mut non_zst_fields = fields.iter().enumerate().filter(|&(_, f)| !f.is_zst());
|
|
|
|
|
|
|
|
match (non_zst_fields.next(), non_zst_fields.next(), non_zst_fields.next()) {
|
|
|
|
// We have exactly one non-ZST field.
|
|
|
|
(Some((i, field)), None, None) => {
|
|
|
|
// Field fills the struct and it has a scalar or scalar pair ABI.
|
|
|
|
if offsets[i].bytes() == 0 && align.abi == field.align.abi && size == field.size {
|
|
|
|
match field.abi {
|
|
|
|
// For plain scalars, or vectors of them, we can't unpack
|
|
|
|
// newtypes for `#[repr(C)]`, as that affects C ABIs.
|
|
|
|
Abi::Scalar(_) | Abi::Vector { .. } if optimize => {
|
|
|
|
abi = field.abi;
|
|
|
|
}
|
|
|
|
// But scalar pairs are Rust-specific and get
|
|
|
|
// treated as aggregates by C ABIs anyway.
|
|
|
|
Abi::ScalarPair(..) => {
|
|
|
|
abi = field.abi;
|
|
|
|
}
|
|
|
|
_ => {}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Two non-ZST fields, and they're both scalars.
|
|
|
|
(Some((i, a)), Some((j, b)), None) => {
|
|
|
|
match (a.abi, b.abi) {
|
|
|
|
(Abi::Scalar(a), Abi::Scalar(b)) => {
|
|
|
|
// Order by the memory placement, not source order.
|
|
|
|
let ((i, a), (j, b)) = if offsets[i] < offsets[j] {
|
|
|
|
((i, a), (j, b))
|
|
|
|
} else {
|
|
|
|
((j, b), (i, a))
|
|
|
|
};
|
|
|
|
let pair = scalar_pair(dl, a, b);
|
|
|
|
let pair_offsets = match pair.fields {
|
|
|
|
FieldsShape::Arbitrary { ref offsets, .. } => offsets,
|
|
|
|
_ => unreachable!(),
|
|
|
|
};
|
|
|
|
if offsets[i] == pair_offsets[0]
|
|
|
|
&& offsets[j] == pair_offsets[1]
|
|
|
|
&& align == pair.align
|
|
|
|
&& size == pair.size
|
|
|
|
{
|
|
|
|
// We can use `ScalarPair` only when it matches our
|
|
|
|
// already computed layout (including `#[repr(C)]`).
|
|
|
|
abi = pair.abi;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
_ => {}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
_ => {}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if fields.iter().any(|f| f.abi.is_uninhabited()) {
|
|
|
|
abi = Abi::Uninhabited;
|
|
|
|
}
|
|
|
|
|
|
|
|
Ok(Layout {
|
|
|
|
variants: Variants::Single,
|
|
|
|
fields: FieldsShape::Arbitrary { offsets, memory_index },
|
|
|
|
abi,
|
|
|
|
largest_niche,
|
|
|
|
align,
|
|
|
|
size,
|
|
|
|
})
|
|
|
|
}
|
|
|
|
|
|
|
|
fn layout_of_union(
|
|
|
|
db: &dyn HirDatabase,
|
|
|
|
id: UnionId,
|
|
|
|
subst: &Substitution,
|
|
|
|
) -> Result<Layout, LayoutError> {
|
|
|
|
let dl = &*db.current_target_data_layout();
|
|
|
|
|
|
|
|
let union_data = db.union_data(id);
|
|
|
|
|
|
|
|
let repr = union_data.repr.unwrap_or_default();
|
|
|
|
let fields = union_data.variant_data.fields();
|
|
|
|
|
|
|
|
if repr.pack.is_some() && repr.align.is_some() {
|
|
|
|
user_error!("union cannot be packed and aligned");
|
|
|
|
}
|
|
|
|
|
|
|
|
let mut align = if repr.pack.is_some() { dl.i8_align } else { dl.aggregate_align };
|
|
|
|
if let Some(repr_align) = repr.align {
|
|
|
|
align = align.max(AbiAndPrefAlign::new(repr_align));
|
|
|
|
}
|
|
|
|
|
|
|
|
let optimize = !repr.inhibit_union_abi_opt();
|
|
|
|
let mut size = Size::ZERO;
|
|
|
|
let mut abi = Abi::Aggregate { sized: true };
|
|
|
|
for (fd, _) in fields.iter() {
|
|
|
|
let field_ty = field_ty(db, id.into(), fd, subst);
|
|
|
|
let field = layout_of_ty(db, &field_ty)?;
|
|
|
|
if field.is_unsized() {
|
|
|
|
user_error!("unsized union field");
|
|
|
|
}
|
|
|
|
// If all non-ZST fields have the same ABI, forward this ABI
|
|
|
|
if optimize && !field.is_zst() {
|
|
|
|
// Discard valid range information and allow undef
|
|
|
|
let field_abi = match field.abi {
|
|
|
|
Abi::Scalar(x) => Abi::Scalar(x.to_union()),
|
|
|
|
Abi::ScalarPair(x, y) => Abi::ScalarPair(x.to_union(), y.to_union()),
|
|
|
|
Abi::Vector { element: x, count } => Abi::Vector { element: x.to_union(), count },
|
|
|
|
Abi::Uninhabited | Abi::Aggregate { .. } => Abi::Aggregate { sized: true },
|
|
|
|
};
|
|
|
|
|
|
|
|
if size == Size::ZERO {
|
|
|
|
// first non ZST: initialize 'abi'
|
|
|
|
abi = field_abi;
|
|
|
|
} else if abi != field_abi {
|
|
|
|
// different fields have different ABI: reset to Aggregate
|
|
|
|
abi = Abi::Aggregate { sized: true };
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
size = cmp::max(size, field.size);
|
|
|
|
}
|
|
|
|
|
|
|
|
if let Some(pack) = repr.pack {
|
|
|
|
align = align.min(AbiAndPrefAlign::new(pack));
|
|
|
|
}
|
|
|
|
|
|
|
|
Ok(Layout {
|
|
|
|
variants: Variants::Single,
|
|
|
|
fields: FieldsShape::Union(
|
|
|
|
NonZeroUsize::new(fields.len())
|
|
|
|
.ok_or(LayoutError::UserError("union with zero fields".to_string()))?,
|
|
|
|
),
|
|
|
|
abi,
|
|
|
|
largest_niche: None,
|
|
|
|
align,
|
|
|
|
size: size.align_to(align.abi),
|
|
|
|
})
|
|
|
|
}
|
|
|
|
|
|
|
|
// Invert a bijective mapping, i.e. `invert(map)[y] = x` if `map[x] = y`.
|
|
|
|
// This is used to go between `memory_index` (source field order to memory order)
|
|
|
|
// and `inverse_memory_index` (memory order to source field order).
|
|
|
|
// See also `FieldsShape::Arbitrary::memory_index` for more details.
|
|
|
|
// FIXME(eddyb) build a better abstraction for permutations, if possible.
|
|
|
|
fn invert_mapping(map: &[u32]) -> Vec<u32> {
|
|
|
|
let mut inverse = vec![0; map.len()];
|
|
|
|
for i in 0..map.len() {
|
|
|
|
inverse[map[i] as usize] = i as u32;
|
|
|
|
}
|
|
|
|
inverse
|
|
|
|
}
|
|
|
|
|
|
|
|
fn scalar_pair(dl: &TargetDataLayout, a: Scalar, b: Scalar) -> Layout {
|
|
|
|
let b_align = b.align(dl);
|
|
|
|
let align = a.align(dl).max(b_align).max(dl.aggregate_align);
|
|
|
|
let b_offset = a.size(dl).align_to(b_align.abi);
|
|
|
|
let size = b_offset.checked_add(b.size(dl), dl).unwrap().align_to(align.abi);
|
|
|
|
|
|
|
|
// HACK(nox): We iter on `b` and then `a` because `max_by_key`
|
|
|
|
// returns the last maximum.
|
|
|
|
let largest_niche = Niche::from_scalar(dl, b_offset, b)
|
|
|
|
.into_iter()
|
|
|
|
.chain(Niche::from_scalar(dl, Size::ZERO, a))
|
|
|
|
.max_by_key(|niche| niche.available(dl));
|
|
|
|
|
|
|
|
Layout {
|
|
|
|
variants: Variants::Single,
|
|
|
|
fields: FieldsShape::Arbitrary {
|
|
|
|
offsets: vec![Size::ZERO, b_offset],
|
|
|
|
memory_index: vec![0, 1],
|
|
|
|
},
|
|
|
|
abi: Abi::ScalarPair(a, b),
|
|
|
|
largest_niche,
|
|
|
|
align,
|
|
|
|
size,
|
|
|
|
}
|
|
|
|
}
|