rust-analyzer/crates/ide_db/src/path_transform.rs

290 lines
11 KiB
Rust
Raw Normal View History

2021-05-22 13:53:47 +00:00
//! See [`PathTransform`].
use crate::helpers::mod_path_to_ast;
2021-12-29 13:35:59 +00:00
use either::Either;
use hir::{HirDisplay, SemanticsScope};
use rustc_hash::FxHashMap;
2020-08-12 16:26:51 +00:00
use syntax::{
ast::{self, AstNode},
ted, SyntaxNode,
};
2021-05-22 13:23:07 +00:00
/// `PathTransform` substitutes path in SyntaxNodes in bulk.
2020-09-21 10:36:51 +00:00
///
/// This is mostly useful for IDE code generation. If you paste some existing
/// code into a new context (for example, to add method overrides to an `impl`
/// block), you generally want to appropriately qualify the names, and sometimes
/// you might want to substitute generic parameters as well:
///
/// ```
/// mod x {
/// pub struct A<V>;
/// pub trait T<U> { fn foo(&self, _: U) -> A<U>; }
2020-09-21 10:36:51 +00:00
/// }
///
/// mod y {
/// use x::T;
///
/// impl T<()> for () {
/// // If we invoke **Add Missing Members** here, we want to copy-paste `foo`.
/// // But we want a slightly-modified version of it:
/// fn foo(&self, _: ()) -> x::A<()> {}
2020-09-21 10:36:51 +00:00
/// }
/// }
/// ```
pub struct PathTransform<'a> {
generic_def: hir::GenericDef,
substs: Vec<ast::Type>,
target_scope: &'a SemanticsScope<'a>,
source_scope: &'a SemanticsScope<'a>,
}
2021-05-22 13:23:07 +00:00
impl<'a> PathTransform<'a> {
pub fn trait_impl(
target_scope: &'a SemanticsScope<'a>,
source_scope: &'a SemanticsScope<'a>,
trait_: hir::Trait,
impl_: ast::Impl,
) -> PathTransform<'a> {
PathTransform {
source_scope,
target_scope,
generic_def: trait_.into(),
substs: get_syntactic_substs(impl_).unwrap_or_default(),
}
}
pub fn function_call(
target_scope: &'a SemanticsScope<'a>,
source_scope: &'a SemanticsScope<'a>,
function: hir::Function,
generic_arg_list: ast::GenericArgList,
) -> PathTransform<'a> {
PathTransform {
source_scope,
target_scope,
generic_def: function.into(),
substs: get_type_args_from_arg_list(generic_arg_list).unwrap_or_default(),
}
}
pub fn apply(&self, syntax: &SyntaxNode) {
if let Some(ctx) = self.build_ctx() {
ctx.apply(syntax)
}
}
fn build_ctx(&self) -> Option<Ctx<'a>> {
let db = self.source_scope.db;
let target_module = self.target_scope.module()?;
let source_module = self.source_scope.module()?;
let skip = match self.generic_def {
// this is a trait impl, so we need to skip the first type parameter -- this is a bit hacky
hir::GenericDef::Trait(_) => 1,
_ => 0,
};
let substs_by_param: FxHashMap<_, _> = self
.generic_def
.type_params(db)
.into_iter()
.skip(skip)
2020-05-13 13:06:42 +00:00
// The actual list of trait type parameters may be longer than the one
// used in the `impl` block due to trailing default type parameters.
2020-05-13 13:06:42 +00:00
// For that case we extend the `substs` with an empty iterator so we
// can still hit those trailing values and check if they actually have
// a default type. If they do, go for that type from `hir` to `ast` so
// the resulting change can be applied correctly.
.zip(self.substs.iter().map(Some).chain(std::iter::repeat(None)))
2021-12-29 13:35:59 +00:00
.filter_map(|(k, v)| match k.split(db) {
Either::Left(_) => None,
Either::Right(t) => match v {
Some(v) => Some((k, v.clone())),
None => {
let default = t.default(db)?;
Some((
k,
ast::make::ty(
&default.display_source_code(db, source_module.into()).ok()?,
),
))
}
},
2020-05-13 13:06:42 +00:00
})
.collect();
let res = Ctx { substs: substs_by_param, target_module, source_scope: self.source_scope };
Some(res)
}
2020-10-02 18:52:48 +00:00
}
struct Ctx<'a> {
2021-12-29 13:35:59 +00:00
substs: FxHashMap<hir::TypeOrConstParam, ast::Type>,
target_module: hir::Module,
2020-07-01 06:34:45 +00:00
source_scope: &'a SemanticsScope<'a>,
}
impl<'a> Ctx<'a> {
fn apply(&self, item: &SyntaxNode) {
// `transform_path` may update a node's parent and that would break the
// tree traversal. Thus all paths in the tree are collected into a vec
// so that such operation is safe.
let paths = item
.preorder()
.filter_map(|event| match event {
syntax::WalkEvent::Enter(_) => None,
syntax::WalkEvent::Leave(node) => Some(node),
})
.filter_map(ast::Path::cast)
.collect::<Vec<_>>();
for path in paths {
self.transform_path(path);
}
}
fn transform_path(&self, path: ast::Path) -> Option<()> {
if path.qualifier().is_some() {
return None;
}
if path.segment().map_or(false, |s| {
s.param_list().is_some() || (s.self_token().is_some() && path.parent_path().is_none())
}) {
// don't try to qualify `Fn(Foo) -> Bar` paths, they are in prelude anyway
2021-07-27 09:33:58 +00:00
// don't try to qualify sole `self` either, they are usually locals, but are returned as modules due to namespace clashing
return None;
}
2020-01-15 17:48:28 +00:00
let resolution = self.source_scope.speculative_resolve(&path)?;
2020-01-15 17:48:28 +00:00
match resolution {
hir::PathResolution::TypeParam(tp) => {
2021-12-29 13:35:59 +00:00
if let Some(subst) = self.substs.get(&tp.merge()) {
let parent = path.syntax().parent()?;
if let Some(parent) = ast::Path::cast(parent.clone()) {
// Path inside path means that there is an associated
// type/constant on the type parameter. It is necessary
// to fully qualify the type with `as Trait`. Even
// though it might be unnecessary if `subst` is generic
// type, always fully qualifying the path is safer
// because of potential clash of associated types from
// multiple traits
let trait_ref = find_trait_for_assoc_item(
self.source_scope,
tp,
parent.segment()?.name_ref()?,
)
.and_then(|trait_ref| {
let found_path = self.target_module.find_use_path(
self.source_scope.db.upcast(),
hir::ModuleDef::Trait(trait_ref),
)?;
match ast::make::ty_path(mod_path_to_ast(&found_path)) {
ast::Type::PathType(path_ty) => Some(path_ty),
_ => None,
}
});
let segment = ast::make::path_segment_ty(subst.clone(), trait_ref);
let qualified =
ast::make::path_from_segments(std::iter::once(segment), false);
ted::replace(path.syntax(), qualified.clone_for_update().syntax());
} else if let Some(path_ty) = ast::PathType::cast(parent) {
ted::replace(
path_ty.syntax(),
subst.clone_subtree().clone_for_update().syntax(),
);
} else {
ted::replace(
path.syntax(),
subst.clone_subtree().clone_for_update().syntax(),
);
}
}
}
hir::PathResolution::Def(def) => {
if let hir::ModuleDef::Trait(_) = def {
if matches!(path.segment()?.kind()?, ast::PathSegmentKind::Type { .. }) {
// `speculative_resolve` resolves segments like `<T as
// Trait>` into `Trait`, but just the trait name should
// not be used as the replacement of the original
// segment.
return None;
}
}
let found_path =
self.target_module.find_use_path(self.source_scope.db.upcast(), def)?;
let res = mod_path_to_ast(&found_path).clone_for_update();
if let Some(args) = path.segment().and_then(|it| it.generic_arg_list()) {
if let Some(segment) = res.segment() {
let old = segment.get_or_create_generic_arg_list();
ted::replace(old.syntax(), args.clone_subtree().syntax().clone_for_update())
}
}
ted::replace(path.syntax(), res.syntax())
}
hir::PathResolution::Local(_)
| hir::PathResolution::ConstParam(_)
| hir::PathResolution::SelfType(_)
| hir::PathResolution::AssocItem(_)
| hir::PathResolution::BuiltinAttr(_)
2021-12-03 16:15:19 +00:00
| hir::PathResolution::ToolModule(_) => (),
}
Some(())
}
}
// FIXME: It would probably be nicer if we could get this via HIR (i.e. get the
// trait ref, and then go from the types in the substs back to the syntax).
fn get_syntactic_substs(impl_def: ast::Impl) -> Option<Vec<ast::Type>> {
let target_trait = impl_def.trait_()?;
let path_type = match target_trait {
ast::Type::PathType(path) => path,
_ => return None,
};
let generic_arg_list = path_type.path()?.segment()?.generic_arg_list()?;
get_type_args_from_arg_list(generic_arg_list)
}
fn get_type_args_from_arg_list(generic_arg_list: ast::GenericArgList) -> Option<Vec<ast::Type>> {
let mut result = Vec::new();
for generic_arg in generic_arg_list.generic_args() {
if let ast::GenericArg::TypeArg(type_arg) = generic_arg {
result.push(type_arg.ty()?)
}
}
Some(result)
}
fn find_trait_for_assoc_item(
scope: &SemanticsScope,
type_param: hir::TypeParam,
assoc_item: ast::NameRef,
) -> Option<hir::Trait> {
let db = scope.db;
let trait_bounds = type_param.trait_bounds(db);
let assoc_item_name = assoc_item.text();
for trait_ in trait_bounds {
let names = trait_.items(db).into_iter().filter_map(|item| match item {
hir::AssocItem::TypeAlias(ta) => Some(ta.name(db)),
hir::AssocItem::Const(cst) => cst.name(db),
_ => None,
});
for name in names {
if assoc_item_name.as_str() == name.as_text()?.as_str() {
// It is fine to return the first match because in case of
// multiple possibilities, the exact trait must be disambiguated
// in the definition of trait being implemented, so this search
// should not be needed.
return Some(trait_);
}
}
}
None
}