rust-analyzer/crates/ra_cargo_watch/src/conv.rs

336 lines
11 KiB
Rust
Raw Normal View History

//! This module provides the functionality needed to convert diagnostics from
//! `cargo check` json format to the LSP diagnostic format.
use cargo_metadata::diagnostic::{
Diagnostic as RustDiagnostic, DiagnosticLevel, DiagnosticSpan, DiagnosticSpanMacroExpansion,
};
use lsp_types::{
CodeAction, Diagnostic, DiagnosticRelatedInformation, DiagnosticSeverity, DiagnosticTag,
Location, NumberOrString, Position, Range, TextEdit, Url, WorkspaceEdit,
};
use std::{
fmt::Write,
path::{Component, Path, PathBuf, Prefix},
str::FromStr,
};
#[cfg(test)]
mod test;
/// Converts a Rust level string to a LSP severity
fn map_level_to_severity(val: DiagnosticLevel) -> Option<DiagnosticSeverity> {
match val {
DiagnosticLevel::Ice => Some(DiagnosticSeverity::Error),
DiagnosticLevel::Error => Some(DiagnosticSeverity::Error),
DiagnosticLevel::Warning => Some(DiagnosticSeverity::Warning),
DiagnosticLevel::Note => Some(DiagnosticSeverity::Information),
DiagnosticLevel::Help => Some(DiagnosticSeverity::Hint),
DiagnosticLevel::Unknown => None,
}
}
/// Check whether a file name is from macro invocation
fn is_from_macro(file_name: &str) -> bool {
file_name.starts_with('<') && file_name.ends_with('>')
}
/// Converts a Rust macro span to a LSP location recursively
fn map_macro_span_to_location(
span_macro: &DiagnosticSpanMacroExpansion,
workspace_root: &PathBuf,
) -> Option<Location> {
if !is_from_macro(&span_macro.span.file_name) {
return Some(map_span_to_location(&span_macro.span, workspace_root));
}
if let Some(expansion) = &span_macro.span.expansion {
return map_macro_span_to_location(&expansion, workspace_root);
}
None
}
/// Converts a Rust span to a LSP location, resolving macro expansion site if neccesary
fn map_span_to_location(span: &DiagnosticSpan, workspace_root: &PathBuf) -> Location {
2019-12-29 18:14:18 +00:00
if span.expansion.is_some() {
let expansion = span.expansion.as_ref().unwrap();
if let Some(macro_range) = map_macro_span_to_location(&expansion, workspace_root) {
return macro_range;
}
}
map_span_to_location_naive(span, workspace_root)
}
/// Converts a Rust span to a LSP location
fn map_span_to_location_naive(span: &DiagnosticSpan, workspace_root: &PathBuf) -> Location {
let mut file_name = workspace_root.clone();
file_name.push(&span.file_name);
let uri = url_from_path_with_drive_lowercasing(file_name).unwrap();
let range = Range::new(
Position::new(span.line_start as u64 - 1, span.column_start as u64 - 1),
Position::new(span.line_end as u64 - 1, span.column_end as u64 - 1),
);
Location { uri, range }
}
/// Converts a secondary Rust span to a LSP related information
///
/// If the span is unlabelled this will return `None`.
fn map_secondary_span_to_related(
span: &DiagnosticSpan,
workspace_root: &PathBuf,
) -> Option<DiagnosticRelatedInformation> {
if let Some(label) = &span.label {
let location = map_span_to_location(span, workspace_root);
Some(DiagnosticRelatedInformation { location, message: label.clone() })
} else {
// Nothing to label this with
None
}
}
/// Determines if diagnostic is related to unused code
fn is_unused_or_unnecessary(rd: &RustDiagnostic) -> bool {
if let Some(code) = &rd.code {
match code.code.as_str() {
"dead_code" | "unknown_lints" | "unreachable_code" | "unused_attributes"
| "unused_imports" | "unused_macros" | "unused_variables" => true,
_ => false,
}
} else {
false
}
}
/// Determines if diagnostic is related to deprecated code
fn is_deprecated(rd: &RustDiagnostic) -> bool {
if let Some(code) = &rd.code {
match code.code.as_str() {
"deprecated" => true,
_ => false,
}
} else {
false
}
}
enum MappedRustChildDiagnostic {
Related(DiagnosticRelatedInformation),
SuggestedFix(CodeAction),
MessageLine(String),
}
fn map_rust_child_diagnostic(
rd: &RustDiagnostic,
workspace_root: &PathBuf,
) -> MappedRustChildDiagnostic {
let span: &DiagnosticSpan = match rd.spans.iter().find(|s| s.is_primary) {
Some(span) => span,
None => {
// `rustc` uses these spanless children as a way to print multi-line
// messages
return MappedRustChildDiagnostic::MessageLine(rd.message.clone());
}
};
// If we have a primary span use its location, otherwise use the parent
let location = map_span_to_location(&span, workspace_root);
if let Some(suggested_replacement) = &span.suggested_replacement {
// Include our replacement in the title unless it's empty
let title = if !suggested_replacement.is_empty() {
format!("{}: '{}'", rd.message, suggested_replacement)
} else {
rd.message.clone()
};
let edit = {
let edits = vec![TextEdit::new(location.range, suggested_replacement.clone())];
let mut edit_map = std::collections::HashMap::new();
edit_map.insert(location.uri, edits);
WorkspaceEdit::new(edit_map)
};
MappedRustChildDiagnostic::SuggestedFix(CodeAction {
title,
kind: Some("quickfix".to_string()),
diagnostics: None,
edit: Some(edit),
command: None,
is_preferred: None,
})
} else {
MappedRustChildDiagnostic::Related(DiagnosticRelatedInformation {
location,
message: rd.message.clone(),
})
}
}
#[derive(Debug)]
pub(crate) struct MappedRustDiagnostic {
pub location: Location,
pub diagnostic: Diagnostic,
pub fixes: Vec<CodeAction>,
}
/// Converts a Rust root diagnostic to LSP form
///
/// This flattens the Rust diagnostic by:
///
/// 1. Creating a LSP diagnostic with the root message and primary span.
/// 2. Adding any labelled secondary spans to `relatedInformation`
/// 3. Categorising child diagnostics as either `SuggestedFix`es,
/// `relatedInformation` or additional message lines.
///
/// If the diagnostic has no primary span this will return `None`
pub(crate) fn map_rust_diagnostic_to_lsp(
rd: &RustDiagnostic,
workspace_root: &PathBuf,
) -> Option<MappedRustDiagnostic> {
let primary_span = rd.spans.iter().find(|s| s.is_primary)?;
let location = map_span_to_location(&primary_span, workspace_root);
let severity = map_level_to_severity(rd.level);
let mut primary_span_label = primary_span.label.as_ref();
let mut source = String::from("rustc");
let mut code = rd.code.as_ref().map(|c| c.code.clone());
if let Some(code_val) = &code {
// See if this is an RFC #2103 scoped lint (e.g. from Clippy)
let scoped_code: Vec<&str> = code_val.split("::").collect();
if scoped_code.len() == 2 {
source = String::from(scoped_code[0]);
code = Some(String::from(scoped_code[1]));
}
}
let mut related_information = vec![];
let mut tags = vec![];
// If error occurs from macro expansion, add related info pointing to
// where the error originated
if !is_from_macro(&primary_span.file_name) && primary_span.expansion.is_some() {
let def_loc = map_span_to_location_naive(&primary_span, workspace_root);
related_information.push(DiagnosticRelatedInformation {
location: def_loc,
message: "Error originated from macro here".to_string(),
});
}
for secondary_span in rd.spans.iter().filter(|s| !s.is_primary) {
let related = map_secondary_span_to_related(secondary_span, workspace_root);
if let Some(related) = related {
related_information.push(related);
}
}
let mut fixes = vec![];
let mut message = rd.message.clone();
for child in &rd.children {
let child = map_rust_child_diagnostic(&child, workspace_root);
match child {
MappedRustChildDiagnostic::Related(related) => related_information.push(related),
MappedRustChildDiagnostic::SuggestedFix(code_action) => fixes.push(code_action.into()),
MappedRustChildDiagnostic::MessageLine(message_line) => {
write!(&mut message, "\n{}", message_line).unwrap();
// These secondary messages usually duplicate the content of the
// primary span label.
primary_span_label = None;
}
}
}
if let Some(primary_span_label) = primary_span_label {
write!(&mut message, "\n{}", primary_span_label).unwrap();
}
if is_unused_or_unnecessary(rd) {
tags.push(DiagnosticTag::Unnecessary);
}
if is_deprecated(rd) {
tags.push(DiagnosticTag::Deprecated);
}
let diagnostic = Diagnostic {
range: location.range,
severity,
code: code.map(NumberOrString::String),
source: Some(source),
message,
related_information: if !related_information.is_empty() {
Some(related_information)
} else {
None
},
tags: if !tags.is_empty() { Some(tags) } else { None },
};
Some(MappedRustDiagnostic { location, diagnostic, fixes })
}
/// Returns a `Url` object from a given path, will lowercase drive letters if present.
/// This will only happen when processing windows paths.
///
/// When processing non-windows path, this is essentially the same as `Url::from_file_path`.
pub fn url_from_path_with_drive_lowercasing(
path: impl AsRef<Path>,
) -> Result<Url, Box<dyn std::error::Error + Send + Sync>> {
let component_has_windows_drive = path.as_ref().components().any(|comp| {
if let Component::Prefix(c) = comp {
match c.kind() {
Prefix::Disk(_) | Prefix::VerbatimDisk(_) => return true,
_ => return false,
}
}
false
});
// VSCode expects drive letters to be lowercased, where rust will uppercase the drive letters.
if component_has_windows_drive {
let url_original = Url::from_file_path(&path)
.map_err(|_| format!("can't convert path to url: {}", path.as_ref().display()))?;
let drive_partition: Vec<&str> = url_original.as_str().rsplitn(2, ':').collect();
// There is a drive partition, but we never found a colon.
// This should not happen, but in this case we just pass it through.
if drive_partition.len() == 1 {
return Ok(url_original);
}
let joined = drive_partition[1].to_ascii_lowercase() + ":" + drive_partition[0];
let url = Url::from_str(&joined).expect("This came from a valid `Url`");
Ok(url)
} else {
Ok(Url::from_file_path(&path)
.map_err(|_| format!("can't convert path to url: {}", path.as_ref().display()))?)
}
}
// `Url` is not able to parse windows paths on unix machines.
#[cfg(target_os = "windows")]
#[cfg(test)]
mod path_conversion_windows_tests {
use super::url_from_path_with_drive_lowercasing;
#[test]
fn test_lowercase_drive_letter_with_drive() {
let url = url_from_path_with_drive_lowercasing("C:\\Test").unwrap();
assert_eq!(url.to_string(), "file:///c:/Test");
}
#[test]
fn test_drive_without_colon_passthrough() {
let url = url_from_path_with_drive_lowercasing(r#"\\localhost\C$\my_dir"#).unwrap();
assert_eq!(url.to_string(), "file://localhost/C$/my_dir");
}
}