rust-analyzer/crates/ra_hir/src/ty/method_resolution.rs

301 lines
11 KiB
Rust
Raw Normal View History

//! This module is concerned with finding methods that a given type provides.
//! For details about how this works in rustc, see the method lookup page in the
//! [rustc guide](https://rust-lang.github.io/rustc-guide/method-lookup.html)
//! and the corresponding code mostly in librustc_typeck/check/method/probe.rs.
use std::sync::Arc;
use rustc_hash::FxHashMap;
use crate::{
2019-03-13 13:38:02 +00:00
HirDatabase, Module, Crate, Name, Function, Trait,
impl_block::{ImplId, ImplBlock, ImplItem},
2019-03-21 21:20:03 +00:00
ty::{Ty, TypeCtor},
nameres::CrateModuleId,
resolve::Resolver,
traits::TraitItem,
generics::HasGenericParams,
2019-04-14 22:03:54 +00:00
lang_item::lang_item_lookup,
ty::primitive::{UncertainIntTy, UncertainFloatTy}
};
use super::{TraitRef, Substs};
/// This is used as a key for indexing impls.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum TyFingerprint {
2019-03-21 21:20:03 +00:00
Apply(TypeCtor),
}
impl TyFingerprint {
/// Creates a TyFingerprint for looking up an impl. Only certain types can
/// have impls: if we have some `struct S`, we can have an `impl S`, but not
/// `impl &S`. Hence, this will return `None` for reference types and such.
fn for_impl(ty: &Ty) -> Option<TyFingerprint> {
match ty {
2019-03-21 21:29:12 +00:00
Ty::Apply(a_ty) => Some(TyFingerprint::Apply(a_ty.ctor)),
_ => None,
}
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct CrateImplBlocks {
2019-03-16 15:57:53 +00:00
/// To make sense of the CrateModuleIds, we need the source root.
krate: Crate,
2019-03-16 15:57:53 +00:00
impls: FxHashMap<TyFingerprint, Vec<(CrateModuleId, ImplId)>>,
impls_by_trait: FxHashMap<Trait, Vec<(CrateModuleId, ImplId)>>,
}
impl CrateImplBlocks {
pub fn lookup_impl_blocks<'a>(&'a self, ty: &Ty) -> impl Iterator<Item = ImplBlock> + 'a {
let fingerprint = TyFingerprint::for_impl(ty);
2019-02-08 11:49:43 +00:00
fingerprint.and_then(|f| self.impls.get(&f)).into_iter().flat_map(|i| i.iter()).map(
move |(module_id, impl_id)| {
let module = Module { krate: self.krate, module_id: *module_id };
ImplBlock::from_id(module, *impl_id)
2019-02-08 11:49:43 +00:00
},
)
}
2019-01-31 23:34:52 +00:00
pub fn lookup_impl_blocks_for_trait<'a>(
&'a self,
tr: &Trait,
) -> impl Iterator<Item = ImplBlock> + 'a {
self.impls_by_trait.get(&tr).into_iter().flat_map(|i| i.iter()).map(
2019-02-08 11:49:43 +00:00
move |(module_id, impl_id)| {
let module = Module { krate: self.krate, module_id: *module_id };
ImplBlock::from_id(module, *impl_id)
2019-02-08 11:49:43 +00:00
},
)
2019-01-31 23:34:52 +00:00
}
fn collect_recursive(&mut self, db: &impl HirDatabase, module: &Module) {
let module_impl_blocks = db.impls_in_module(module.clone());
2019-01-26 21:52:04 +00:00
for (impl_id, _) in module_impl_blocks.impls.iter() {
let impl_block = ImplBlock::from_id(module_impl_blocks.module, impl_id);
2019-01-26 21:52:04 +00:00
let target_ty = impl_block.target_ty(db);
2019-01-31 23:34:52 +00:00
if let Some(tr) = impl_block.target_trait_ref(db) {
2019-01-26 21:52:04 +00:00
self.impls_by_trait
.entry(tr.trait_)
2019-01-26 21:52:04 +00:00
.or_insert_with(Vec::new)
.push((module.module_id, impl_id));
2019-03-24 16:36:15 +00:00
} else {
if let Some(target_ty_fp) = TyFingerprint::for_impl(&target_ty) {
self.impls
.entry(target_ty_fp)
.or_insert_with(Vec::new)
.push((module.module_id, impl_id));
}
}
}
for child in module.children(db) {
self.collect_recursive(db, &child);
}
}
pub(crate) fn impls_in_crate_query(
db: &impl HirDatabase,
krate: Crate,
2019-01-15 17:54:18 +00:00
) -> Arc<CrateImplBlocks> {
let mut crate_impl_blocks = CrateImplBlocks {
2019-02-06 20:50:26 +00:00
krate,
impls: FxHashMap::default(),
2019-01-31 23:34:52 +00:00
impls_by_trait: FxHashMap::default(),
};
2019-01-15 15:33:26 +00:00
if let Some(module) = krate.root_module(db) {
crate_impl_blocks.collect_recursive(db, &module);
}
2019-01-15 17:54:18 +00:00
Arc::new(crate_impl_blocks)
}
}
2019-04-14 22:03:54 +00:00
/// Rudimentary check whether an impl exists for a given type and trait; this
/// will actually be done by chalk.
pub(crate) fn implements(db: &impl HirDatabase, trait_ref: TraitRef) -> bool {
// FIXME use all trait impls in the whole crate graph
let krate = trait_ref.trait_.module(db).krate(db);
let krate = match krate {
Some(krate) => krate,
None => return false,
};
let crate_impl_blocks = db.impls_in_crate(krate);
let mut impl_blocks = crate_impl_blocks.lookup_impl_blocks_for_trait(&trait_ref.trait_);
impl_blocks.any(|impl_block| &impl_block.target_ty(db) == trait_ref.self_ty())
}
fn def_crate(db: &impl HirDatabase, cur_krate: Crate, ty: &Ty) -> Option<Crate> {
match ty {
2019-03-21 21:29:12 +00:00
Ty::Apply(a_ty) => match a_ty.ctor {
2019-03-21 21:20:03 +00:00
TypeCtor::Adt(def_id) => def_id.krate(db),
2019-04-14 22:03:54 +00:00
TypeCtor::Bool => lang_item_lookup(db, cur_krate, "bool")?.krate(db),
TypeCtor::Char => lang_item_lookup(db, cur_krate, "char")?.krate(db),
TypeCtor::Float(UncertainFloatTy::Known(f)) => {
lang_item_lookup(db, cur_krate, f.ty_to_string())?.krate(db)
}
TypeCtor::Int(UncertainIntTy::Known(i)) => {
lang_item_lookup(db, cur_krate, i.ty_to_string())?.krate(db)
}
TypeCtor::Str => lang_item_lookup(db, cur_krate, "str")?.krate(db),
_ => None,
},
2019-01-15 16:18:52 +00:00
_ => None,
}
}
impl Ty {
/// Look up the method with the given name, returning the actual autoderefed
/// receiver type (but without autoref applied yet).
2019-04-13 08:02:23 +00:00
pub(crate) fn lookup_method(
2019-03-24 16:36:15 +00:00
self,
db: &impl HirDatabase,
name: &Name,
resolver: &Resolver,
) -> Option<(Ty, Function)> {
self.iterate_method_candidates(db, resolver, Some(name), |ty, f| Some((ty.clone(), f)))
2019-03-24 16:36:15 +00:00
}
// This would be nicer if it just returned an iterator, but that runs into
// lifetime problems, because we need to borrow temp `CrateImplBlocks`.
pub(crate) fn iterate_method_candidates<T>(
2019-03-24 16:36:15 +00:00
self,
db: &impl HirDatabase,
resolver: &Resolver,
name: Option<&Name>,
mut callback: impl FnMut(&Ty, Function) -> Option<T>,
) -> Option<T> {
// For method calls, rust first does any number of autoderef, and then one
// autoref (i.e. when the method takes &self or &mut self). We just ignore
// the autoref currently -- when we find a method matching the given name,
// we assume it fits.
// Also note that when we've got a receiver like &S, even if the method we
// find in the end takes &self, we still do the autoderef step (just as
// rustc does an autoderef and then autoref again).
2019-04-14 22:03:54 +00:00
let krate = resolver.module().map(|t| t.0.krate())?;
for derefed_ty in self.autoderef(db) {
2019-04-14 22:03:54 +00:00
if let Some(result) =
derefed_ty.iterate_inherent_methods(db, name, krate, &mut callback)
{
return Some(result);
}
if let Some(result) =
derefed_ty.iterate_trait_method_candidates(db, resolver, name, &mut callback)
{
return Some(result);
}
}
None
}
fn iterate_trait_method_candidates<T>(
&self,
db: &impl HirDatabase,
resolver: &Resolver,
name: Option<&Name>,
mut callback: impl FnMut(&Ty, Function) -> Option<T>,
) -> Option<T> {
'traits: for t in resolver.traits_in_scope() {
2019-03-24 16:36:15 +00:00
let data = t.trait_data(db);
// we'll be lazy about checking whether the type implements the
// trait, but if we find out it doesn't, we'll skip the rest of the
// iteration
let mut known_implemented = false;
2019-03-24 16:36:15 +00:00
for item in data.items() {
match item {
&TraitItem::Function(m) => {
let sig = m.signature(db);
if name.map_or(true, |name| sig.name() == name) && sig.has_self_param() {
if !known_implemented {
let trait_ref = TraitRef {
trait_: t,
substs: fresh_substs_for_trait(db, t, self.clone()),
};
let (trait_ref, _) = super::traits::canonicalize(trait_ref);
if db.implements(trait_ref).is_none() {
continue 'traits;
}
}
known_implemented = true;
if let Some(result) = callback(self, m) {
return Some(result);
}
2019-03-24 16:36:15 +00:00
}
}
_ => {}
}
}
}
None
}
fn iterate_inherent_methods<T>(
&self,
db: &impl HirDatabase,
name: Option<&Name>,
2019-04-14 22:03:54 +00:00
krate: Crate,
mut callback: impl FnMut(&Ty, Function) -> Option<T>,
2019-01-15 17:54:18 +00:00
) -> Option<T> {
2019-04-14 22:03:54 +00:00
let krate = match def_crate(db, krate, self) {
Some(krate) => krate,
None => return None,
};
let impls = db.impls_in_crate(krate);
for impl_block in impls.lookup_impl_blocks(self) {
for item in impl_block.items(db) {
match item {
ImplItem::Method(f) => {
let sig = f.signature(db);
if name.map_or(true, |name| sig.name() == name) && sig.has_self_param() {
if let Some(result) = callback(self, f) {
2019-01-15 17:54:18 +00:00
return Some(result);
}
}
}
_ => {}
}
}
}
2019-01-15 17:54:18 +00:00
None
}
// This would be nicer if it just returned an iterator, but that runs into
// lifetime problems, because we need to borrow temp `CrateImplBlocks`.
pub fn iterate_impl_items<T>(
self,
db: &impl HirDatabase,
2019-04-14 22:03:54 +00:00
krate: Crate,
mut callback: impl FnMut(ImplItem) -> Option<T>,
) -> Option<T> {
2019-04-14 22:03:54 +00:00
let krate = def_crate(db, krate, &self)?;
let impls = db.impls_in_crate(krate);
for impl_block in impls.lookup_impl_blocks(&self) {
for item in impl_block.items(db) {
if let Some(result) = callback(item) {
return Some(result);
}
}
}
None
}
}
2019-04-09 20:04:59 +00:00
/// This creates Substs for a trait with the given Self type and type variables
/// for all other parameters. This is kind of a hack since these aren't 'real'
/// type variables; the resulting trait reference is just used for the
/// preliminary method candidate check.
fn fresh_substs_for_trait(db: &impl HirDatabase, tr: Trait, self_ty: Ty) -> Substs {
let mut substs = Vec::new();
let generics = tr.generic_params(db);
substs.push(self_ty);
2019-04-09 20:04:59 +00:00
substs.extend(generics.params_including_parent().into_iter().skip(1).enumerate().map(
|(i, _p)| Ty::Infer(super::infer::InferTy::TypeVar(super::infer::TypeVarId(i as u32))),
));
substs.into()
}