rust-analyzer/crates/ra_hir/src/ty/method_resolution.rs

402 lines
14 KiB
Rust
Raw Normal View History

//! This module is concerned with finding methods that a given type provides.
//! For details about how this works in rustc, see the method lookup page in the
//! [rustc guide](https://rust-lang.github.io/rustc-guide/method-lookup.html)
//! and the corresponding code mostly in librustc_typeck/check/method/probe.rs.
use std::sync::Arc;
2019-06-24 17:17:44 +00:00
use arrayvec::ArrayVec;
2019-10-30 09:27:54 +00:00
use hir_def::CrateModuleId;
use rustc_hash::FxHashMap;
2019-07-09 19:34:23 +00:00
use super::{autoderef, lower, Canonical, InEnvironment, TraitEnvironment, TraitRef};
use crate::{
2019-09-08 06:53:49 +00:00
db::HirDatabase,
impl_block::{ImplBlock, ImplId},
resolve::Resolver,
ty::primitive::{FloatBitness, UncertainFloatTy, UncertainIntTy},
2019-08-02 19:46:00 +00:00
ty::{Ty, TypeCtor},
2019-10-30 14:28:30 +00:00
AssocItem, Crate, Function, Module, Mutability, Name, Trait,
};
/// This is used as a key for indexing impls.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum TyFingerprint {
2019-03-21 21:20:03 +00:00
Apply(TypeCtor),
}
impl TyFingerprint {
/// Creates a TyFingerprint for looking up an impl. Only certain types can
/// have impls: if we have some `struct S`, we can have an `impl S`, but not
/// `impl &S`. Hence, this will return `None` for reference types and such.
fn for_impl(ty: &Ty) -> Option<TyFingerprint> {
match ty {
2019-03-21 21:29:12 +00:00
Ty::Apply(a_ty) => Some(TyFingerprint::Apply(a_ty.ctor)),
_ => None,
}
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct CrateImplBlocks {
2019-03-16 15:57:53 +00:00
/// To make sense of the CrateModuleIds, we need the source root.
krate: Crate,
2019-03-16 15:57:53 +00:00
impls: FxHashMap<TyFingerprint, Vec<(CrateModuleId, ImplId)>>,
impls_by_trait: FxHashMap<Trait, Vec<(CrateModuleId, ImplId)>>,
}
impl CrateImplBlocks {
pub fn lookup_impl_blocks<'a>(&'a self, ty: &Ty) -> impl Iterator<Item = ImplBlock> + 'a {
let fingerprint = TyFingerprint::for_impl(ty);
2019-02-08 11:49:43 +00:00
fingerprint.and_then(|f| self.impls.get(&f)).into_iter().flat_map(|i| i.iter()).map(
move |(module_id, impl_id)| {
2019-10-30 09:27:54 +00:00
let module = Module::new(self.krate, *module_id);
ImplBlock::from_id(module, *impl_id)
2019-02-08 11:49:43 +00:00
},
)
}
2019-01-31 23:34:52 +00:00
pub fn lookup_impl_blocks_for_trait<'a>(
&'a self,
2019-07-05 16:02:32 +00:00
tr: Trait,
) -> impl Iterator<Item = ImplBlock> + 'a {
self.impls_by_trait.get(&tr).into_iter().flat_map(|i| i.iter()).map(
2019-02-08 11:49:43 +00:00
move |(module_id, impl_id)| {
2019-10-30 09:27:54 +00:00
let module = Module::new(self.krate, *module_id);
ImplBlock::from_id(module, *impl_id)
2019-02-08 11:49:43 +00:00
},
)
}
pub fn all_impls<'a>(&'a self) -> impl Iterator<Item = ImplBlock> + 'a {
self.impls.values().chain(self.impls_by_trait.values()).flat_map(|i| i.iter()).map(
move |(module_id, impl_id)| {
2019-10-30 09:27:54 +00:00
let module = Module::new(self.krate, *module_id);
ImplBlock::from_id(module, *impl_id)
},
2019-02-08 11:49:43 +00:00
)
2019-01-31 23:34:52 +00:00
}
2019-07-05 16:02:32 +00:00
fn collect_recursive(&mut self, db: &impl HirDatabase, module: Module) {
let module_impl_blocks = db.impls_in_module(module);
2019-01-26 21:52:04 +00:00
for (impl_id, _) in module_impl_blocks.impls.iter() {
let impl_block = ImplBlock::from_id(module_impl_blocks.module, impl_id);
2019-01-26 21:52:04 +00:00
let target_ty = impl_block.target_ty(db);
2019-01-31 23:34:52 +00:00
if impl_block.target_trait(db).is_some() {
if let Some(tr) = impl_block.target_trait_ref(db) {
self.impls_by_trait
.entry(tr.trait_)
.or_insert_with(Vec::new)
2019-10-30 09:27:54 +00:00
.push((module.id.module_id, impl_id));
}
2019-03-24 16:36:15 +00:00
} else {
if let Some(target_ty_fp) = TyFingerprint::for_impl(&target_ty) {
self.impls
.entry(target_ty_fp)
.or_insert_with(Vec::new)
2019-10-30 09:27:54 +00:00
.push((module.id.module_id, impl_id));
2019-03-24 16:36:15 +00:00
}
}
}
for child in module.children(db) {
2019-07-05 16:02:32 +00:00
self.collect_recursive(db, child);
}
}
pub(crate) fn impls_in_crate_query(
db: &impl HirDatabase,
krate: Crate,
2019-01-15 17:54:18 +00:00
) -> Arc<CrateImplBlocks> {
let mut crate_impl_blocks = CrateImplBlocks {
2019-02-06 20:50:26 +00:00
krate,
impls: FxHashMap::default(),
2019-01-31 23:34:52 +00:00
impls_by_trait: FxHashMap::default(),
};
2019-01-15 15:33:26 +00:00
if let Some(module) = krate.root_module(db) {
2019-07-05 16:02:32 +00:00
crate_impl_blocks.collect_recursive(db, module);
}
2019-01-15 17:54:18 +00:00
Arc::new(crate_impl_blocks)
}
}
2019-06-24 17:17:44 +00:00
fn def_crates(db: &impl HirDatabase, cur_crate: Crate, ty: &Ty) -> Option<ArrayVec<[Crate; 2]>> {
2019-06-25 11:57:42 +00:00
// Types like slice can have inherent impls in several crates, (core and alloc).
// The corresponding impls are marked with lang items, so we can use them to find the required crates.
2019-06-24 17:17:44 +00:00
macro_rules! lang_item_crate {
($db:expr, $cur_crate:expr, $($name:expr),+ $(,)?) => {{
let mut v = ArrayVec::<[Crate; 2]>::new();
$(
2019-09-25 02:29:46 +00:00
v.extend($db.lang_item($cur_crate, $name.into()).and_then(|item| item.krate($db)));
2019-06-24 17:17:44 +00:00
)+
Some(v)
}};
}
match ty {
2019-03-21 21:29:12 +00:00
Ty::Apply(a_ty) => match a_ty.ctor {
2019-06-24 17:17:44 +00:00
TypeCtor::Adt(def_id) => Some(std::iter::once(def_id.krate(db)?).collect()),
2019-06-25 11:57:42 +00:00
TypeCtor::Bool => lang_item_crate!(db, cur_crate, "bool"),
TypeCtor::Char => lang_item_crate!(db, cur_crate, "char"),
TypeCtor::Float(UncertainFloatTy::Known(f)) => match f.bitness {
// There are two lang items: one in libcore (fXX) and one in libstd (fXX_runtime)
FloatBitness::X32 => lang_item_crate!(db, cur_crate, "f32", "f32_runtime"),
FloatBitness::X64 => lang_item_crate!(db, cur_crate, "f64", "f64_runtime"),
},
2019-04-14 22:03:54 +00:00
TypeCtor::Int(UncertainIntTy::Known(i)) => {
2019-06-25 11:57:42 +00:00
lang_item_crate!(db, cur_crate, i.ty_to_string())
2019-04-14 22:03:54 +00:00
}
2019-09-25 02:29:46 +00:00
TypeCtor::Str => lang_item_crate!(db, cur_crate, "str_alloc", "str"),
2019-06-25 11:57:42 +00:00
TypeCtor::Slice => lang_item_crate!(db, cur_crate, "slice_alloc", "slice"),
2019-09-25 02:29:46 +00:00
TypeCtor::RawPtr(Mutability::Shared) => lang_item_crate!(db, cur_crate, "const_ptr"),
TypeCtor::RawPtr(Mutability::Mut) => lang_item_crate!(db, cur_crate, "mut_ptr"),
_ => None,
},
2019-01-15 16:18:52 +00:00
_ => None,
}
}
/// Look up the method with the given name, returning the actual autoderefed
/// receiver type (but without autoref applied yet).
pub(crate) fn lookup_method(
ty: &Canonical<Ty>,
db: &impl HirDatabase,
name: &Name,
resolver: &Resolver,
) -> Option<(Ty, Function)> {
iterate_method_candidates(ty, db, resolver, Some(name), LookupMode::MethodCall, |ty, f| {
if let AssocItem::Function(f) = f {
Some((ty.clone(), f))
} else {
None
}
})
}
2019-11-01 10:53:29 +00:00
/// Whether we're looking up a dotted method call (like `v.len()`) or a path
/// (like `Vec::new`).
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
2019-10-31 20:21:48 +00:00
pub enum LookupMode {
2019-11-01 10:53:29 +00:00
/// Looking up a method call like `v.len()`: We only consider candidates
/// that have a `self` parameter, and do autoderef.
MethodCall,
2019-11-01 10:53:29 +00:00
/// Looking up a path like `Vec::new` or `Vec::default`: We consider all
/// candidates including associated constants, but don't do autoderef.
Path,
}
2019-03-24 16:36:15 +00:00
// This would be nicer if it just returned an iterator, but that runs into
// lifetime problems, because we need to borrow temp `CrateImplBlocks`.
pub(crate) fn iterate_method_candidates<T>(
ty: &Canonical<Ty>,
db: &impl HirDatabase,
resolver: &Resolver,
name: Option<&Name>,
mode: LookupMode,
mut callback: impl FnMut(&Ty, AssocItem) -> Option<T>,
) -> Option<T> {
2019-10-31 19:01:46 +00:00
let krate = resolver.krate()?;
match mode {
LookupMode::MethodCall => {
// For method calls, rust first does any number of autoderef, and then one
// autoref (i.e. when the method takes &self or &mut self). We just ignore
// the autoref currently -- when we find a method matching the given name,
// we assume it fits.
2019-10-31 19:01:46 +00:00
// Also note that when we've got a receiver like &S, even if the method we
// find in the end takes &self, we still do the autoderef step (just as
// rustc does an autoderef and then autoref again).
2019-10-31 19:01:46 +00:00
for derefed_ty in autoderef::autoderef(db, resolver, ty.clone()) {
if let Some(result) =
iterate_inherent_methods(&derefed_ty, db, name, mode, krate, &mut callback)
{
return Some(result);
}
if let Some(result) = iterate_trait_method_candidates(
&derefed_ty,
db,
resolver,
name,
mode,
&mut callback,
) {
return Some(result);
}
}
}
2019-10-31 19:01:46 +00:00
LookupMode::Path => {
// No autoderef for path lookups
if let Some(result) =
iterate_inherent_methods(&ty, db, name, mode, krate, &mut callback)
{
return Some(result);
}
if let Some(result) =
iterate_trait_method_candidates(&ty, db, resolver, name, mode, &mut callback)
{
return Some(result);
}
}
}
None
}
fn iterate_trait_method_candidates<T>(
ty: &Canonical<Ty>,
db: &impl HirDatabase,
resolver: &Resolver,
name: Option<&Name>,
mode: LookupMode,
mut callback: impl FnMut(&Ty, AssocItem) -> Option<T>,
) -> Option<T> {
let krate = resolver.krate()?;
// FIXME: maybe put the trait_env behind a query (need to figure out good input parameters for that)
let env = lower::trait_env(db, resolver);
// if ty is `impl Trait` or `dyn Trait`, the trait doesn't need to be in scope
let inherent_trait = ty.value.inherent_trait().into_iter();
// if we have `T: Trait` in the param env, the trait doesn't need to be in scope
let traits_from_env = env
.trait_predicates_for_self_ty(&ty.value)
.map(|tr| tr.trait_)
.flat_map(|t| t.all_super_traits(db));
let traits = inherent_trait.chain(traits_from_env).chain(resolver.traits_in_scope(db));
'traits: for t in traits {
let data = t.trait_data(db);
// FIXME this is a bit of a hack, since Chalk should say the same thing
// anyway, but currently Chalk doesn't implement `dyn/impl Trait` yet
let inherently_implemented = ty.value.inherent_trait() == Some(t);
// we'll be lazy about checking whether the type implements the
// trait, but if we find out it doesn't, we'll skip the rest of the
// iteration
let mut known_implemented = inherently_implemented;
for &item in data.items() {
2019-10-31 19:37:46 +00:00
if !is_valid_candidate(db, name, mode, item) {
continue;
}
if !known_implemented {
let goal = generic_implements_goal(db, env.clone(), t, ty.clone());
if db.trait_solve(krate, goal).is_none() {
continue 'traits;
}
}
known_implemented = true;
if let Some(result) = callback(&ty.value, item) {
return Some(result);
2019-03-24 16:36:15 +00:00
}
}
}
None
}
fn iterate_inherent_methods<T>(
ty: &Canonical<Ty>,
db: &impl HirDatabase,
name: Option<&Name>,
mode: LookupMode,
krate: Crate,
mut callback: impl FnMut(&Ty, AssocItem) -> Option<T>,
) -> Option<T> {
2019-06-24 17:17:44 +00:00
for krate in def_crates(db, krate, &ty.value)? {
let impls = db.impls_in_crate(krate);
2019-06-24 17:17:44 +00:00
for impl_block in impls.lookup_impl_blocks(&ty.value) {
for item in impl_block.items(db) {
2019-10-31 19:37:46 +00:00
if !is_valid_candidate(db, name, mode, item) {
continue;
}
if let Some(result) = callback(&ty.value, item) {
return Some(result);
}
}
}
}
None
}
2019-10-31 19:37:46 +00:00
fn is_valid_candidate(
db: &impl HirDatabase,
name: Option<&Name>,
mode: LookupMode,
item: AssocItem,
) -> bool {
match item {
AssocItem::Function(m) => {
let data = m.data(db);
name.map_or(true, |name| data.name() == name)
&& (data.has_self_param() || mode == LookupMode::Path)
}
AssocItem::Const(c) => {
name.map_or(true, |name| Some(name) == c.name(db).as_ref())
&& (mode == LookupMode::Path)
}
_ => false,
}
}
2019-08-02 18:16:20 +00:00
pub(crate) fn implements_trait(
ty: &Canonical<Ty>,
db: &impl HirDatabase,
resolver: &Resolver,
krate: Crate,
trait_: Trait,
) -> bool {
if ty.value.inherent_trait() == Some(trait_) {
// FIXME this is a bit of a hack, since Chalk should say the same thing
// anyway, but currently Chalk doesn't implement `dyn/impl Trait` yet
return true;
}
let env = lower::trait_env(db, resolver);
2019-09-25 01:32:01 +00:00
let goal = generic_implements_goal(db, env, trait_, ty.clone());
let solution = db.trait_solve(krate, goal);
solution.is_some()
}
impl Ty {
// This would be nicer if it just returned an iterator, but that runs into
// lifetime problems, because we need to borrow temp `CrateImplBlocks`.
pub fn iterate_impl_items<T>(
self,
db: &impl HirDatabase,
2019-04-14 22:03:54 +00:00
krate: Crate,
mut callback: impl FnMut(AssocItem) -> Option<T>,
) -> Option<T> {
2019-06-24 17:17:44 +00:00
for krate in def_crates(db, krate, &self)? {
let impls = db.impls_in_crate(krate);
2019-06-24 17:17:44 +00:00
for impl_block in impls.lookup_impl_blocks(&self) {
for item in impl_block.items(db) {
if let Some(result) = callback(item) {
return Some(result);
}
}
}
}
None
}
}
2019-04-09 20:04:59 +00:00
/// This creates Substs for a trait with the given Self type and type variables
/// for all other parameters, to query Chalk with it.
fn generic_implements_goal(
db: &impl HirDatabase,
2019-07-09 19:34:23 +00:00
env: Arc<TraitEnvironment>,
trait_: Trait,
self_ty: Canonical<Ty>,
) -> Canonical<InEnvironment<super::Obligation>> {
let num_vars = self_ty.num_vars;
let substs = super::Substs::build_for_def(db, trait_)
.push(self_ty.value)
.fill_with_bound_vars(num_vars as u32)
.build();
let num_vars = substs.len() - 1 + self_ty.num_vars;
let trait_ref = TraitRef { trait_, substs };
let obligation = super::Obligation::Trait(trait_ref);
Canonical { num_vars, value: InEnvironment::new(env, obligation) }
}