rust-analyzer/crates/ra_hir/src/ty/lower.rs

784 lines
29 KiB
Rust
Raw Normal View History

//! Methods for lowering the HIR to types. There are two main cases here:
//!
//! - Lowering a type reference like `&usize` or `Option<foo::bar::Baz>` to a
//! type: The entry point for this is `Ty::from_hir`.
//! - Building the type for an item: This happens through the `type_for_def` query.
//!
//! This usually involves resolving names, collecting generic arguments etc.
2019-04-09 20:04:59 +00:00
use std::iter;
use std::sync::Arc;
use super::{
FnSig, GenericPredicate, ProjectionPredicate, ProjectionTy, Substs, TraitRef, Ty, TypeCtor,
TypeWalk,
};
use crate::{
2019-05-20 22:02:29 +00:00
adt::VariantDef,
2019-09-08 06:53:49 +00:00
db::HirDatabase,
generics::HasGenericParams,
generics::{GenericDef, WherePredicate},
nameres::Namespace,
path::{GenericArg, PathSegment},
resolve::{Resolver, TypeNs},
2019-09-12 21:34:52 +00:00
ty::Adt,
type_ref::{TypeBound, TypeRef},
2019-09-08 06:53:49 +00:00
BuiltinType, Const, Enum, EnumVariant, Function, ModuleDef, Path, Static, Struct, StructField,
Trait, TypeAlias, Union,
};
impl Ty {
pub(crate) fn from_hir(db: &impl HirDatabase, resolver: &Resolver, type_ref: &TypeRef) -> Self {
match type_ref {
2019-03-21 21:20:03 +00:00
TypeRef::Never => Ty::simple(TypeCtor::Never),
TypeRef::Tuple(inner) => {
let inner_tys =
inner.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect::<Vec<_>>();
Ty::apply(
TypeCtor::Tuple { cardinality: inner_tys.len() as u16 },
Substs(inner_tys.into()),
)
}
TypeRef::Path(path) => Ty::from_hir_path(db, resolver, path),
TypeRef::RawPtr(inner, mutability) => {
let inner_ty = Ty::from_hir(db, resolver, inner);
2019-03-21 21:20:03 +00:00
Ty::apply_one(TypeCtor::RawPtr(*mutability), inner_ty)
}
TypeRef::Array(inner) => {
let inner_ty = Ty::from_hir(db, resolver, inner);
2019-03-21 21:20:03 +00:00
Ty::apply_one(TypeCtor::Array, inner_ty)
}
TypeRef::Slice(inner) => {
let inner_ty = Ty::from_hir(db, resolver, inner);
2019-03-21 21:20:03 +00:00
Ty::apply_one(TypeCtor::Slice, inner_ty)
}
TypeRef::Reference(inner, mutability) => {
let inner_ty = Ty::from_hir(db, resolver, inner);
2019-03-21 21:20:03 +00:00
Ty::apply_one(TypeCtor::Ref(*mutability), inner_ty)
}
TypeRef::Placeholder => Ty::Unknown,
TypeRef::Fn(params) => {
2019-03-16 16:21:32 +00:00
let inner_tys =
params.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect::<Vec<_>>();
2019-03-16 17:14:41 +00:00
let sig = Substs(inner_tys.into());
Ty::apply(TypeCtor::FnPtr { num_args: sig.len() as u16 - 1 }, sig)
}
TypeRef::DynTrait(bounds) => {
let self_ty = Ty::Bound(0);
let predicates = bounds
.iter()
.flat_map(|b| {
GenericPredicate::from_type_bound(db, resolver, b, self_ty.clone())
})
.collect::<Vec<_>>();
Ty::Dyn(predicates.into())
}
TypeRef::ImplTrait(bounds) => {
let self_ty = Ty::Bound(0);
let predicates = bounds
.iter()
.flat_map(|b| {
GenericPredicate::from_type_bound(db, resolver, b, self_ty.clone())
})
.collect::<Vec<_>>();
Ty::Opaque(predicates.into())
}
TypeRef::Error => Ty::Unknown,
}
}
/// This is only for `generic_predicates_for_param`, where we can't just
/// lower the self types of the predicates since that could lead to cycles.
/// So we just check here if the `type_ref` resolves to a generic param, and which.
fn from_hir_only_param(
db: &impl HirDatabase,
resolver: &Resolver,
type_ref: &TypeRef,
) -> Option<u32> {
let path = match type_ref {
TypeRef::Path(path) => path,
_ => return None,
};
if let crate::PathKind::Type(_) = &path.kind {
return None;
}
if path.segments.len() > 1 {
return None;
}
let resolution = match resolver.resolve_path_in_type_ns(db, path) {
Some((it, None)) => it,
_ => return None,
};
if let TypeNs::GenericParam(idx) = resolution {
Some(idx)
} else {
None
}
}
pub(crate) fn from_type_relative_path(
db: &impl HirDatabase,
resolver: &Resolver,
ty: Ty,
remaining_segments: &[PathSegment],
) -> Ty {
if remaining_segments.len() == 1 {
// resolve unselected assoc types
let segment = &remaining_segments[0];
Ty::select_associated_type(db, resolver, ty, segment)
} else if remaining_segments.len() > 1 {
// FIXME report error (ambiguous associated type)
Ty::Unknown
} else {
ty
}
}
pub(crate) fn from_partly_resolved_hir_path(
db: &impl HirDatabase,
resolver: &Resolver,
resolution: TypeNs,
resolved_segment: &PathSegment,
remaining_segments: &[PathSegment],
) -> Ty {
let ty = match resolution {
TypeNs::Trait(trait_) => {
let trait_ref =
TraitRef::from_resolved_path(db, resolver, trait_, resolved_segment, None);
return if remaining_segments.len() == 1 {
let segment = &remaining_segments[0];
match trait_ref
.trait_
.associated_type_by_name_including_super_traits(db, &segment.name)
{
Some(associated_ty) => {
// FIXME handle type parameters on the segment
Ty::Projection(ProjectionTy {
associated_ty,
parameters: trait_ref.substs,
})
}
None => {
2019-09-16 19:48:46 +00:00
// FIXME: report error (associated type not found)
Ty::Unknown
}
}
} else if remaining_segments.len() > 1 {
// FIXME report error (ambiguous associated type)
Ty::Unknown
} else {
2019-09-14 08:20:05 +00:00
Ty::Dyn(Arc::new([GenericPredicate::Implemented(trait_ref)]))
};
}
TypeNs::GenericParam(idx) => {
// FIXME: maybe return name in resolution?
let name = resolved_segment.name.clone();
Ty::Param { idx, name }
}
TypeNs::SelfType(impl_block) => impl_block.target_ty(db),
TypeNs::Adt(it) => Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into()),
TypeNs::BuiltinType(it) => {
Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into())
}
TypeNs::TypeAlias(it) => {
Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into())
}
// FIXME: report error
TypeNs::EnumVariant(_) => return Ty::Unknown,
};
Ty::from_type_relative_path(db, resolver, ty, remaining_segments)
}
pub(crate) fn from_hir_path(db: &impl HirDatabase, resolver: &Resolver, path: &Path) -> Ty {
// Resolve the path (in type namespace)
if let crate::PathKind::Type(type_ref) = &path.kind {
let ty = Ty::from_hir(db, resolver, &type_ref);
let remaining_segments = &path.segments[..];
return Ty::from_type_relative_path(db, resolver, ty, remaining_segments);
}
let (resolution, remaining_index) = match resolver.resolve_path_in_type_ns(db, path) {
Some(it) => it,
None => return Ty::Unknown,
};
let (resolved_segment, remaining_segments) = match remaining_index {
None => (
path.segments.last().expect("resolved path has at least one element"),
&[] as &[PathSegment],
),
Some(i) => (&path.segments[i - 1], &path.segments[i..]),
};
Ty::from_partly_resolved_hir_path(
db,
resolver,
resolution,
resolved_segment,
remaining_segments,
)
}
fn select_associated_type(
db: &impl HirDatabase,
resolver: &Resolver,
self_ty: Ty,
segment: &PathSegment,
) -> Ty {
let param_idx = match self_ty {
Ty::Param { idx, .. } => idx,
_ => return Ty::Unknown, // Error: Ambiguous associated type
};
let def = match resolver.generic_def() {
Some(def) => def,
None => return Ty::Unknown, // this can't actually happen
};
let predicates = db.generic_predicates_for_param(def, param_idx);
let traits_from_env = predicates.iter().filter_map(|pred| match pred {
GenericPredicate::Implemented(tr) if tr.self_ty() == &self_ty => Some(tr.trait_),
_ => None,
});
let traits = traits_from_env.flat_map(|t| t.all_super_traits(db));
for t in traits {
if let Some(associated_ty) = t.associated_type_by_name(db, &segment.name) {
let substs =
Substs::build_for_def(db, t).push(self_ty.clone()).fill_with_unknown().build();
// FIXME handle type parameters on the segment
return Ty::Projection(ProjectionTy { associated_ty, parameters: substs });
}
}
2019-09-16 19:48:46 +00:00
Ty::Unknown
}
fn from_hir_path_inner(
db: &impl HirDatabase,
resolver: &Resolver,
segment: &PathSegment,
typable: TypableDef,
) -> Ty {
let ty = db.type_for_def(typable, Namespace::Types);
let substs = Ty::substs_from_path_segment(db, resolver, segment, typable);
ty.subst(&substs)
}
pub(super) fn substs_from_path_segment(
db: &impl HirDatabase,
resolver: &Resolver,
segment: &PathSegment,
resolved: TypableDef,
) -> Substs {
2019-05-19 13:08:16 +00:00
let def_generic: Option<GenericDef> = match resolved {
TypableDef::Function(func) => Some(func.into()),
2019-09-12 21:34:52 +00:00
TypableDef::Adt(adt) => Some(adt.into()),
2019-05-19 13:08:16 +00:00
TypableDef::EnumVariant(var) => Some(var.parent_enum(db).into()),
TypableDef::TypeAlias(t) => Some(t.into()),
2019-05-30 11:05:35 +00:00
TypableDef::Const(_) | TypableDef::Static(_) | TypableDef::BuiltinType(_) => None,
};
2019-05-19 13:08:16 +00:00
substs_from_path_segment(db, resolver, segment, def_generic, false)
}
/// Collect generic arguments from a path into a `Substs`. See also
/// `create_substs_for_ast_path` and `def_to_ty` in rustc.
pub(super) fn substs_from_path(
db: &impl HirDatabase,
resolver: &Resolver,
path: &Path,
resolved: TypableDef,
) -> Substs {
let last = path.segments.last().expect("path should have at least one segment");
let segment = match resolved {
2019-02-24 16:25:41 +00:00
TypableDef::Function(_)
2019-09-12 21:34:52 +00:00
| TypableDef::Adt(_)
2019-02-25 07:27:47 +00:00
| TypableDef::Const(_)
2019-02-25 08:21:01 +00:00
| TypableDef::Static(_)
2019-05-30 11:05:35 +00:00
| TypableDef::TypeAlias(_)
| TypableDef::BuiltinType(_) => last,
TypableDef::EnumVariant(_) => {
// the generic args for an enum variant may be either specified
// on the segment referring to the enum, or on the segment
// referring to the variant. So `Option::<T>::None` and
// `Option::None::<T>` are both allowed (though the former is
// preferred). See also `def_ids_for_path_segments` in rustc.
let len = path.segments.len();
let segment = if len >= 2 && path.segments[len - 2].args_and_bindings.is_some() {
// Option::<T>::None
&path.segments[len - 2]
} else {
// Option::None::<T>
last
};
segment
}
};
Ty::substs_from_path_segment(db, resolver, segment, resolved)
}
}
pub(super) fn substs_from_path_segment(
db: &impl HirDatabase,
resolver: &Resolver,
segment: &PathSegment,
2019-05-19 13:08:16 +00:00
def_generic: Option<GenericDef>,
add_self_param: bool,
) -> Substs {
let mut substs = Vec::new();
let def_generics = def_generic.map(|def| def.generic_params(db));
2019-05-19 13:08:16 +00:00
let (parent_param_count, param_count) =
def_generics.map_or((0, 0), |g| (g.count_parent_params(), g.params.len()));
2019-04-09 20:04:59 +00:00
substs.extend(iter::repeat(Ty::Unknown).take(parent_param_count));
if add_self_param {
// FIXME this add_self_param argument is kind of a hack: Traits have the
// Self type as an implicit first type parameter, but it can't be
// actually provided in the type arguments
2019-04-09 20:04:59 +00:00
// (well, actually sometimes it can, in the form of type-relative paths: `<Foo as Default>::default()`)
substs.push(Ty::Unknown);
}
if let Some(generic_args) = &segment.args_and_bindings {
// if args are provided, it should be all of them, but we can't rely on that
2019-04-09 20:04:59 +00:00
let self_param_correction = if add_self_param { 1 } else { 0 };
let param_count = param_count - self_param_correction;
for arg in generic_args.args.iter().take(param_count) {
match arg {
GenericArg::Type(type_ref) => {
let ty = Ty::from_hir(db, resolver, type_ref);
substs.push(ty);
}
}
}
}
// add placeholders for args that were not provided
let supplied_params = substs.len();
for _ in supplied_params..parent_param_count + param_count {
substs.push(Ty::Unknown);
}
assert_eq!(substs.len(), parent_param_count + param_count);
2019-05-19 13:08:16 +00:00
// handle defaults
if let Some(def_generic) = def_generic {
let default_substs = db.generic_defaults(def_generic);
assert_eq!(substs.len(), default_substs.len());
for (i, default_ty) in default_substs.iter().enumerate() {
if substs[i] == Ty::Unknown {
substs[i] = default_ty.clone();
2019-05-19 13:08:16 +00:00
}
}
2019-05-19 13:08:16 +00:00
}
Substs(substs.into())
}
impl TraitRef {
2019-05-05 12:21:00 +00:00
pub(crate) fn from_path(
db: &impl HirDatabase,
resolver: &Resolver,
2019-05-05 12:21:00 +00:00
path: &Path,
explicit_self_ty: Option<Ty>,
) -> Option<Self> {
let resolved = match resolver.resolve_path_in_type_ns_fully(db, &path)? {
TypeNs::Trait(tr) => tr,
_ => return None,
};
let segment = path.segments.last().expect("path should have at least one segment");
Some(TraitRef::from_resolved_path(db, resolver, resolved, segment, explicit_self_ty))
}
pub(super) fn from_resolved_path(
db: &impl HirDatabase,
resolver: &Resolver,
resolved: Trait,
segment: &PathSegment,
explicit_self_ty: Option<Ty>,
) -> Self {
let mut substs = TraitRef::substs_from_path(db, resolver, segment, resolved);
if let Some(self_ty) = explicit_self_ty {
// FIXME this could be nicer
let mut substs_vec = substs.0.to_vec();
substs_vec[0] = self_ty;
substs.0 = substs_vec.into();
}
TraitRef { trait_: resolved, substs }
}
2019-05-05 12:21:00 +00:00
pub(crate) fn from_hir(
db: &impl HirDatabase,
resolver: &Resolver,
type_ref: &TypeRef,
explicit_self_ty: Option<Ty>,
) -> Option<Self> {
let path = match type_ref {
TypeRef::Path(path) => path,
_ => return None,
};
TraitRef::from_path(db, resolver, path, explicit_self_ty)
}
fn substs_from_path(
db: &impl HirDatabase,
resolver: &Resolver,
segment: &PathSegment,
resolved: Trait,
) -> Substs {
let has_self_param =
segment.args_and_bindings.as_ref().map(|a| a.has_self_type).unwrap_or(false);
substs_from_path_segment(db, resolver, segment, Some(resolved.into()), !has_self_param)
}
pub(crate) fn for_trait(db: &impl HirDatabase, trait_: Trait) -> TraitRef {
let substs = Substs::identity(&trait_.generic_params(db));
TraitRef { trait_, substs }
}
2019-05-05 12:21:00 +00:00
pub(crate) fn from_type_bound(
db: &impl HirDatabase,
resolver: &Resolver,
bound: &TypeBound,
self_ty: Ty,
) -> Option<TraitRef> {
match bound {
TypeBound::Path(path) => TraitRef::from_path(db, resolver, path, Some(self_ty)),
TypeBound::Error => None,
}
}
}
impl GenericPredicate {
pub(crate) fn from_where_predicate<'a>(
db: &'a impl HirDatabase,
resolver: &'a Resolver,
where_predicate: &'a WherePredicate,
) -> impl Iterator<Item = GenericPredicate> + 'a {
let self_ty = Ty::from_hir(db, resolver, &where_predicate.type_ref);
GenericPredicate::from_type_bound(db, resolver, &where_predicate.bound, self_ty)
}
pub(crate) fn from_type_bound<'a>(
db: &'a impl HirDatabase,
resolver: &'a Resolver,
bound: &'a TypeBound,
self_ty: Ty,
) -> impl Iterator<Item = GenericPredicate> + 'a {
let trait_ref = TraitRef::from_type_bound(db, &resolver, bound, self_ty);
iter::once(trait_ref.clone().map_or(GenericPredicate::Error, GenericPredicate::Implemented))
.chain(
trait_ref.into_iter().flat_map(move |tr| {
assoc_type_bindings_from_type_bound(db, resolver, bound, tr)
}),
)
2019-05-05 12:21:00 +00:00
}
}
fn assoc_type_bindings_from_type_bound<'a>(
db: &'a impl HirDatabase,
resolver: &'a Resolver,
bound: &'a TypeBound,
trait_ref: TraitRef,
) -> impl Iterator<Item = GenericPredicate> + 'a {
let last_segment = match bound {
TypeBound::Path(path) => path.segments.last(),
TypeBound::Error => None,
};
last_segment
.into_iter()
.flat_map(|segment| segment.args_and_bindings.iter())
.flat_map(|args_and_bindings| args_and_bindings.bindings.iter())
.map(move |(name, type_ref)| {
let associated_ty =
match trait_ref.trait_.associated_type_by_name_including_super_traits(db, &name) {
None => return GenericPredicate::Error,
Some(t) => t,
};
let projection_ty =
ProjectionTy { associated_ty, parameters: trait_ref.substs.clone() };
let ty = Ty::from_hir(db, resolver, type_ref);
let projection_predicate = ProjectionPredicate { projection_ty, ty };
GenericPredicate::Projection(projection_predicate)
})
}
/// Build the declared type of an item. This depends on the namespace; e.g. for
/// `struct Foo(usize)`, we have two types: The type of the struct itself, and
/// the constructor function `(usize) -> Foo` which lives in the values
/// namespace.
pub(crate) fn type_for_def(db: &impl HirDatabase, def: TypableDef, ns: Namespace) -> Ty {
match (def, ns) {
(TypableDef::Function(f), Namespace::Values) => type_for_fn(db, f),
2019-09-12 21:34:52 +00:00
(TypableDef::Adt(Adt::Struct(s)), Namespace::Values) => type_for_struct_constructor(db, s),
(TypableDef::Adt(adt), Namespace::Types) => type_for_adt(db, adt),
(TypableDef::EnumVariant(v), Namespace::Values) => type_for_enum_variant_constructor(db, v),
2019-02-24 20:36:49 +00:00
(TypableDef::TypeAlias(t), Namespace::Types) => type_for_type_alias(db, t),
2019-02-25 07:27:47 +00:00
(TypableDef::Const(c), Namespace::Values) => type_for_const(db, c),
2019-02-25 08:21:01 +00:00
(TypableDef::Static(c), Namespace::Values) => type_for_static(db, c),
2019-05-30 11:05:35 +00:00
(TypableDef::BuiltinType(t), Namespace::Types) => type_for_builtin(t),
// 'error' cases:
(TypableDef::Function(_), Namespace::Types) => Ty::Unknown,
2019-09-12 21:34:52 +00:00
(TypableDef::Adt(Adt::Union(_)), Namespace::Values) => Ty::Unknown,
(TypableDef::Adt(Adt::Enum(_)), Namespace::Values) => Ty::Unknown,
(TypableDef::EnumVariant(_), Namespace::Types) => Ty::Unknown,
2019-02-24 20:36:49 +00:00
(TypableDef::TypeAlias(_), Namespace::Values) => Ty::Unknown,
2019-02-25 07:27:47 +00:00
(TypableDef::Const(_), Namespace::Types) => Ty::Unknown,
2019-02-25 08:21:01 +00:00
(TypableDef::Static(_), Namespace::Types) => Ty::Unknown,
2019-05-30 11:05:35 +00:00
(TypableDef::BuiltinType(_), Namespace::Values) => Ty::Unknown,
}
}
/// Build the signature of a callable item (function, struct or enum variant).
pub(crate) fn callable_item_sig(db: &impl HirDatabase, def: CallableDef) -> FnSig {
match def {
CallableDef::Function(f) => fn_sig_for_fn(db, f),
CallableDef::Struct(s) => fn_sig_for_struct_constructor(db, s),
CallableDef::EnumVariant(e) => fn_sig_for_enum_variant_constructor(db, e),
}
}
/// Build the type of a specific field of a struct or enum variant.
pub(crate) fn type_for_field(db: &impl HirDatabase, field: StructField) -> Ty {
let parent_def = field.parent_def(db);
let resolver = match parent_def {
VariantDef::Struct(it) => it.resolver(db),
VariantDef::EnumVariant(it) => it.parent_enum(db).resolver(db),
};
let var_data = parent_def.variant_data(db);
let type_ref = &var_data.fields().unwrap()[field.id].type_ref;
Ty::from_hir(db, &resolver, type_ref)
}
/// This query exists only to be used when resolving short-hand associated types
/// like `T::Item`.
///
/// See the analogous query in rustc and its comment:
/// https://github.com/rust-lang/rust/blob/9150f844e2624eb013ec78ca08c1d416e6644026/src/librustc_typeck/astconv.rs#L46
/// This is a query mostly to handle cycles somewhat gracefully; e.g. the
/// following bounds are disallowed: `T: Foo<U::Item>, U: Foo<T::Item>`, but
/// these are fine: `T: Foo<U::Item>, U: Foo<()>`.
pub(crate) fn generic_predicates_for_param_query(
db: &impl HirDatabase,
def: GenericDef,
param_idx: u32,
) -> Arc<[GenericPredicate]> {
let resolver = def.resolver(db);
let predicates = resolver
.where_predicates_in_scope()
// we have to filter out all other predicates *first*, before attempting to lower them
.filter(|pred| Ty::from_hir_only_param(db, &resolver, &pred.type_ref) == Some(param_idx))
.flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred))
.collect::<Vec<_>>();
predicates.into()
}
2019-07-09 19:34:23 +00:00
pub(crate) fn trait_env(
db: &impl HirDatabase,
resolver: &Resolver,
) -> Arc<super::TraitEnvironment> {
let predicates = resolver
.where_predicates_in_scope()
.flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred))
.collect::<Vec<_>>();
2019-07-09 19:34:23 +00:00
Arc::new(super::TraitEnvironment { predicates })
}
2019-05-05 12:21:00 +00:00
/// Resolve the where clause(s) of an item with generics.
pub(crate) fn generic_predicates_query(
2019-05-05 12:21:00 +00:00
db: &impl HirDatabase,
def: GenericDef,
) -> Arc<[GenericPredicate]> {
let resolver = def.resolver(db);
let predicates = resolver
.where_predicates_in_scope()
.flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred))
2019-05-05 12:21:00 +00:00
.collect::<Vec<_>>();
predicates.into()
}
2019-05-19 13:08:16 +00:00
/// Resolve the default type params from generics
pub(crate) fn generic_defaults_query(db: &impl HirDatabase, def: GenericDef) -> Substs {
2019-05-19 13:08:16 +00:00
let resolver = def.resolver(db);
let generic_params = def.generic_params(db);
let defaults = generic_params
.params_including_parent()
.into_iter()
.map(|p| {
p.default.as_ref().map_or(Ty::Unknown, |path| Ty::from_hir_path(db, &resolver, path))
})
.collect::<Vec<_>>();
Substs(defaults.into())
}
2019-03-16 16:21:32 +00:00
fn fn_sig_for_fn(db: &impl HirDatabase, def: Function) -> FnSig {
2019-06-18 17:07:35 +00:00
let data = def.data(db);
2019-03-16 16:21:32 +00:00
let resolver = def.resolver(db);
2019-06-18 17:07:35 +00:00
let params = data.params().iter().map(|tr| Ty::from_hir(db, &resolver, tr)).collect::<Vec<_>>();
let ret = Ty::from_hir(db, &resolver, data.ret_type());
2019-03-16 16:21:32 +00:00
FnSig::from_params_and_return(params, ret)
}
/// Build the declared type of a function. This should not need to look at the
/// function body.
fn type_for_fn(db: &impl HirDatabase, def: Function) -> Ty {
let generics = def.generic_params(db);
let substs = Substs::identity(&generics);
2019-03-21 21:20:03 +00:00
Ty::apply(TypeCtor::FnDef(def.into()), substs)
}
2019-02-25 07:27:47 +00:00
/// Build the declared type of a const.
fn type_for_const(db: &impl HirDatabase, def: Const) -> Ty {
2019-06-18 17:07:35 +00:00
let data = def.data(db);
2019-02-25 07:27:47 +00:00
let resolver = def.resolver(db);
2019-06-18 17:07:35 +00:00
Ty::from_hir(db, &resolver, data.type_ref())
2019-02-25 07:27:47 +00:00
}
2019-02-25 08:21:01 +00:00
/// Build the declared type of a static.
fn type_for_static(db: &impl HirDatabase, def: Static) -> Ty {
2019-06-18 17:07:35 +00:00
let data = def.data(db);
2019-02-25 08:21:01 +00:00
let resolver = def.resolver(db);
2019-06-18 17:07:35 +00:00
Ty::from_hir(db, &resolver, data.type_ref())
2019-02-25 08:21:01 +00:00
}
2019-05-30 11:05:35 +00:00
/// Build the declared type of a static.
fn type_for_builtin(def: BuiltinType) -> Ty {
Ty::simple(match def {
BuiltinType::Char => TypeCtor::Char,
BuiltinType::Bool => TypeCtor::Bool,
BuiltinType::Str => TypeCtor::Str,
BuiltinType::Int(ty) => TypeCtor::Int(ty.into()),
BuiltinType::Float(ty) => TypeCtor::Float(ty.into()),
})
}
2019-03-16 16:21:32 +00:00
fn fn_sig_for_struct_constructor(db: &impl HirDatabase, def: Struct) -> FnSig {
let var_data = def.variant_data(db);
let fields = match var_data.fields() {
Some(fields) => fields,
2019-03-16 16:21:32 +00:00
None => panic!("fn_sig_for_struct_constructor called on unit struct"),
};
let resolver = def.resolver(db);
2019-03-16 16:21:32 +00:00
let params = fields
.iter()
.map(|(_, field)| Ty::from_hir(db, &resolver, &field.type_ref))
.collect::<Vec<_>>();
2019-05-20 22:02:29 +00:00
let ret = type_for_adt(db, def);
2019-03-16 16:21:32 +00:00
FnSig::from_params_and_return(params, ret)
}
/// Build the type of a tuple struct constructor.
fn type_for_struct_constructor(db: &impl HirDatabase, def: Struct) -> Ty {
let var_data = def.variant_data(db);
if var_data.fields().is_none() {
2019-05-20 22:02:29 +00:00
return type_for_adt(db, def); // Unit struct
2019-03-16 16:21:32 +00:00
}
let generics = def.generic_params(db);
let substs = Substs::identity(&generics);
2019-03-21 21:20:03 +00:00
Ty::apply(TypeCtor::FnDef(def.into()), substs)
}
2019-03-16 16:21:32 +00:00
fn fn_sig_for_enum_variant_constructor(db: &impl HirDatabase, def: EnumVariant) -> FnSig {
let var_data = def.variant_data(db);
let fields = match var_data.fields() {
Some(fields) => fields,
2019-03-16 16:21:32 +00:00
None => panic!("fn_sig_for_enum_variant_constructor called for unit variant"),
};
let resolver = def.parent_enum(db).resolver(db);
2019-03-16 16:21:32 +00:00
let params = fields
.iter()
.map(|(_, field)| Ty::from_hir(db, &resolver, &field.type_ref))
.collect::<Vec<_>>();
2019-03-16 16:21:32 +00:00
let generics = def.parent_enum(db).generic_params(db);
let substs = Substs::identity(&generics);
2019-05-20 22:02:29 +00:00
let ret = type_for_adt(db, def.parent_enum(db)).subst(&substs);
2019-03-16 16:21:32 +00:00
FnSig::from_params_and_return(params, ret)
}
/// Build the type of a tuple enum variant constructor.
fn type_for_enum_variant_constructor(db: &impl HirDatabase, def: EnumVariant) -> Ty {
let var_data = def.variant_data(db);
if var_data.fields().is_none() {
2019-05-20 22:02:29 +00:00
return type_for_adt(db, def.parent_enum(db)); // Unit variant
2019-03-16 16:21:32 +00:00
}
let generics = def.parent_enum(db).generic_params(db);
let substs = Substs::identity(&generics);
2019-03-21 21:20:03 +00:00
Ty::apply(TypeCtor::FnDef(def.into()), substs)
}
2019-09-12 21:34:52 +00:00
fn type_for_adt(db: &impl HirDatabase, adt: impl Into<Adt> + HasGenericParams) -> Ty {
2019-05-20 22:02:29 +00:00
let generics = adt.generic_params(db);
Ty::apply(TypeCtor::Adt(adt.into()), Substs::identity(&generics))
}
2019-02-24 20:36:49 +00:00
fn type_for_type_alias(db: &impl HirDatabase, t: TypeAlias) -> Ty {
2019-02-24 16:25:41 +00:00
let generics = t.generic_params(db);
let resolver = t.resolver(db);
let type_ref = t.type_ref(db);
let substs = Substs::identity(&generics);
let inner = Ty::from_hir(db, &resolver, &type_ref.unwrap_or(TypeRef::Error));
2019-02-24 16:25:41 +00:00
inner.subst(&substs)
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum TypableDef {
Function(Function),
2019-09-12 21:34:52 +00:00
Adt(Adt),
EnumVariant(EnumVariant),
2019-02-24 20:36:49 +00:00
TypeAlias(TypeAlias),
2019-02-25 07:27:47 +00:00
Const(Const),
2019-02-25 08:21:01 +00:00
Static(Static),
2019-05-30 11:05:35 +00:00
BuiltinType(BuiltinType),
}
2019-09-12 21:31:04 +00:00
impl_froms!(
TypableDef: Function,
2019-09-12 21:34:52 +00:00
Adt(Struct, Enum, Union),
2019-09-12 21:31:04 +00:00
EnumVariant,
TypeAlias,
Const,
Static,
BuiltinType
);
impl From<ModuleDef> for Option<TypableDef> {
fn from(def: ModuleDef) -> Option<TypableDef> {
let res = match def {
ModuleDef::Function(f) => f.into(),
2019-09-12 21:34:52 +00:00
ModuleDef::Adt(adt) => adt.into(),
ModuleDef::EnumVariant(v) => v.into(),
2019-02-24 20:36:49 +00:00
ModuleDef::TypeAlias(t) => t.into(),
2019-02-25 07:27:47 +00:00
ModuleDef::Const(v) => v.into(),
2019-02-25 08:21:01 +00:00
ModuleDef::Static(v) => v.into(),
2019-05-30 11:05:35 +00:00
ModuleDef::BuiltinType(t) => t.into(),
2019-02-25 08:21:01 +00:00
ModuleDef::Module(_) | ModuleDef::Trait(_) => return None,
};
Some(res)
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum CallableDef {
Function(Function),
Struct(Struct),
EnumVariant(EnumVariant),
}
impl_froms!(CallableDef: Function, Struct, EnumVariant);
impl CallableDef {
pub fn krate(self, db: &impl HirDatabase) -> Option<crate::Crate> {
match self {
CallableDef::Function(f) => f.krate(db),
CallableDef::Struct(s) => s.krate(db),
CallableDef::EnumVariant(e) => e.parent_enum(db).krate(db),
}
}
}
impl From<CallableDef> for GenericDef {
fn from(def: CallableDef) -> GenericDef {
match def {
CallableDef::Function(f) => f.into(),
CallableDef::Struct(s) => s.into(),
CallableDef::EnumVariant(e) => e.into(),
}
}
}