rust-analyzer/crates/hir_ty/src/utils.rs

304 lines
11 KiB
Rust
Raw Normal View History

2019-11-26 14:26:08 +00:00
//! Helper functions for working with def, which don't need to be a separate
//! query, but can't be computed directly from `*Data` (ie, which need a `db`).
2021-10-22 06:23:29 +00:00
use std::iter;
use base_db::CrateId;
2021-04-07 19:26:24 +00:00
use chalk_ir::{fold::Shift, BoundVar, DebruijnIndex};
2019-11-26 13:59:24 +00:00
use hir_def::{
db::DefDatabase,
generics::{
GenericParams, TypeParamData, TypeParamProvenance, WherePredicate, WherePredicateTypeTarget,
},
intern::Interned,
path::Path,
2019-11-26 13:59:24 +00:00
resolver::{HasResolver, TypeNs},
2021-06-14 12:36:56 +00:00
type_ref::{TraitBoundModifier, TypeRef},
AssocContainerId, GenericDefId, Lookup, TraitId, TypeAliasId, TypeParamId,
2019-11-26 13:59:24 +00:00
};
2019-12-13 21:01:06 +00:00
use hir_expand::name::{name, Name};
use rustc_hash::FxHashSet;
2019-11-26 13:59:24 +00:00
use crate::{
db::HirDatabase, ChalkTraitId, Interner, Substitution, TraitRef, TraitRefExt, TyKind,
WhereClause,
};
pub(crate) fn fn_traits(db: &dyn DefDatabase, krate: CrateId) -> impl Iterator<Item = TraitId> {
2021-10-22 06:23:29 +00:00
[
db.lang_item(krate, "fn".into()),
db.lang_item(krate, "fn_mut".into()),
db.lang_item(krate, "fn_once".into()),
2021-10-22 06:23:29 +00:00
]
.into_iter()
.flatten()
.flat_map(|it| it.as_trait())
}
fn direct_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> Vec<TraitId> {
2019-11-26 13:59:24 +00:00
let resolver = trait_.resolver(db);
// returning the iterator directly doesn't easily work because of
// lifetime problems, but since there usually shouldn't be more than a
// few direct traits this should be fine (we could even use some kind of
// SmallVec if performance is a concern)
let generic_params = db.generic_params(trait_.into());
let trait_self = generic_params.find_trait_self_param();
generic_params
2019-11-26 13:59:24 +00:00
.where_predicates
.iter()
2020-12-11 12:49:32 +00:00
.filter_map(|pred| match pred {
WherePredicate::ForLifetime { target, bound, .. }
| WherePredicate::TypeBound { target, bound } => match target {
WherePredicateTypeTarget::TypeRef(type_ref) => match &**type_ref {
TypeRef::Path(p) if p == &Path::from(name![Self]) => bound.as_path(),
_ => None,
},
2020-12-11 12:49:32 +00:00
WherePredicateTypeTarget::TypeParam(local_id) if Some(*local_id) == trait_self => {
bound.as_path()
}
_ => None,
},
WherePredicate::Lifetime { .. } => None,
2019-11-26 13:59:24 +00:00
})
2021-06-14 12:36:56 +00:00
.filter_map(|(path, bound_modifier)| match bound_modifier {
TraitBoundModifier::None => Some(path),
TraitBoundModifier::Maybe => None,
})
.filter_map(|path| match resolver.resolve_path_in_type_ns_fully(db, path.mod_path()) {
2019-11-26 13:59:24 +00:00
Some(TypeNs::TraitId(t)) => Some(t),
_ => None,
})
.collect()
}
fn direct_super_trait_refs(db: &dyn HirDatabase, trait_ref: &TraitRef) -> Vec<TraitRef> {
// returning the iterator directly doesn't easily work because of
// lifetime problems, but since there usually shouldn't be more than a
// few direct traits this should be fine (we could even use some kind of
// SmallVec if performance is a concern)
2021-03-18 20:53:19 +00:00
let generic_params = db.generic_params(trait_ref.hir_trait_id().into());
let trait_self = match generic_params.find_trait_self_param() {
2021-03-18 20:53:19 +00:00
Some(p) => TypeParamId { parent: trait_ref.hir_trait_id().into(), local_id: p },
None => return Vec::new(),
};
db.generic_predicates_for_param(trait_self, None)
.iter()
.filter_map(|pred| {
pred.as_ref().filter_map(|pred| match pred.skip_binders() {
2021-03-24 22:07:54 +00:00
// FIXME: how to correctly handle higher-ranked bounds here?
WhereClause::Implemented(tr) => Some(
tr.clone()
2021-04-07 19:26:24 +00:00
.shifted_out_to(&Interner, DebruijnIndex::ONE)
.expect("FIXME unexpected higher-ranked trait bound"),
),
_ => None,
})
})
.map(|pred| pred.substitute(&Interner, &trait_ref.substitution))
.collect()
}
2019-11-26 13:59:24 +00:00
/// Returns an iterator over the whole super trait hierarchy (including the
/// trait itself).
pub fn all_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> Vec<TraitId> {
2019-11-26 13:59:24 +00:00
// we need to take care a bit here to avoid infinite loops in case of cycles
// (i.e. if we have `trait A: B; trait B: A;`)
let mut result = vec![trait_];
let mut i = 0;
while i < result.len() {
let t = result[i];
// yeah this is quadratic, but trait hierarchies should be flat
// enough that this doesn't matter
for tt in direct_super_traits(db, t) {
if !result.contains(&tt) {
result.push(tt);
}
}
i += 1;
}
result
}
2019-11-26 14:42:21 +00:00
/// Given a trait ref (`Self: Trait`), builds all the implied trait refs for
/// super traits. The original trait ref will be included. So the difference to
/// `all_super_traits` is that we keep track of type parameters; for example if
/// we have `Self: Trait<u32, i32>` and `Trait<T, U>: OtherTrait<U>` we'll get
/// `Self: OtherTrait<i32>`.
pub(super) fn all_super_trait_refs(db: &dyn HirDatabase, trait_ref: TraitRef) -> SuperTraits {
SuperTraits { db, seen: iter::once(trait_ref.trait_id).collect(), stack: vec![trait_ref] }
}
pub(super) struct SuperTraits<'a> {
db: &'a dyn HirDatabase,
stack: Vec<TraitRef>,
seen: FxHashSet<ChalkTraitId>,
}
impl<'a> SuperTraits<'a> {
fn elaborate(&mut self, trait_ref: &TraitRef) {
let mut trait_refs = direct_super_trait_refs(self.db, trait_ref);
trait_refs.retain(|tr| !self.seen.contains(&tr.trait_id));
self.stack.extend(trait_refs);
}
}
impl<'a> Iterator for SuperTraits<'a> {
type Item = TraitRef;
fn next(&mut self) -> Option<Self::Item> {
if let Some(next) = self.stack.pop() {
self.elaborate(&next);
Some(next)
} else {
None
}
}
}
2019-11-26 15:02:50 +00:00
pub(super) fn associated_type_by_name_including_super_traits(
db: &dyn HirDatabase,
trait_ref: TraitRef,
2019-11-26 14:42:21 +00:00
name: &Name,
) -> Option<(TraitRef, TypeAliasId)> {
all_super_trait_refs(db, trait_ref).find_map(|t| {
2021-03-18 20:53:19 +00:00
let assoc_type = db.trait_data(t.hir_trait_id()).associated_type_by_name(name)?;
Some((t, assoc_type))
})
2019-11-26 14:42:21 +00:00
}
2019-11-27 13:25:01 +00:00
pub(crate) fn generics(db: &dyn DefDatabase, def: GenericDefId) -> Generics {
let parent_generics = parent_generic_def(db, def).map(|def| Box::new(generics(db, def)));
Generics { def, params: db.generic_params(def), parent_generics }
}
#[derive(Debug)]
pub(crate) struct Generics {
def: GenericDefId,
pub(crate) params: Interned<GenericParams>,
parent_generics: Option<Box<Generics>>,
}
impl Generics {
2020-02-07 14:13:15 +00:00
pub(crate) fn iter<'a>(
&'a self,
) -> impl Iterator<Item = (TypeParamId, &'a TypeParamData)> + 'a {
self.parent_generics
.as_ref()
.into_iter()
2020-02-07 14:13:15 +00:00
.flat_map(|it| {
it.params
.types
.iter()
.map(move |(local_id, p)| (TypeParamId { parent: it.def, local_id }, p))
})
.chain(
self.params
.types
.iter()
.map(move |(local_id, p)| (TypeParamId { parent: self.def, local_id }, p)),
)
}
2020-02-07 14:13:15 +00:00
pub(crate) fn iter_parent<'a>(
&'a self,
) -> impl Iterator<Item = (TypeParamId, &'a TypeParamData)> + 'a {
self.parent_generics.as_ref().into_iter().flat_map(|it| {
it.params
.types
.iter()
.map(move |(local_id, p)| (TypeParamId { parent: it.def, local_id }, p))
})
}
2019-12-07 12:05:05 +00:00
pub(crate) fn len(&self) -> usize {
self.len_split().0
}
2019-12-07 12:05:05 +00:00
/// (total, parents, child)
pub(crate) fn len_split(&self) -> (usize, usize, usize) {
let parent = self.parent_generics.as_ref().map_or(0, |p| p.len());
let child = self.params.types.len();
2019-12-07 12:05:05 +00:00
(parent + child, parent, child)
}
/// (parent total, self param, type param list, impl trait)
pub(crate) fn provenance_split(&self) -> (usize, usize, usize, usize) {
let parent = self.parent_generics.as_ref().map_or(0, |p| p.len());
2020-02-07 14:13:15 +00:00
let self_params = self
.params
.types
.iter()
.filter(|(_, p)| p.provenance == TypeParamProvenance::TraitSelf)
.count();
let list_params = self
.params
.types
.iter()
.filter(|(_, p)| p.provenance == TypeParamProvenance::TypeParamList)
.count();
let impl_trait_params = self
.params
.types
.iter()
.filter(|(_, p)| p.provenance == TypeParamProvenance::ArgumentImplTrait)
.count();
(parent, self_params, list_params, impl_trait_params)
}
pub(crate) fn param_idx(&self, param: TypeParamId) -> Option<usize> {
2020-01-31 15:52:43 +00:00
Some(self.find_param(param)?.0)
}
fn find_param(&self, param: TypeParamId) -> Option<(usize, &TypeParamData)> {
if param.parent == self.def {
let (idx, (_local_id, data)) = self
.params
.types
.iter()
.enumerate()
.find(|(_, (idx, _))| *idx == param.local_id)
.unwrap();
2019-12-07 12:05:05 +00:00
let (_total, parent_len, _child) = self.len_split();
Some((parent_len + idx, data))
2020-01-31 15:52:43 +00:00
} else {
self.parent_generics.as_ref().and_then(|g| g.find_param(param))
}
}
/// Returns a Substitution that replaces each parameter by a bound variable.
pub(crate) fn bound_vars_subst(&self, debruijn: DebruijnIndex) -> Substitution {
Substitution::from_iter(
&Interner,
self.iter()
.enumerate()
.map(|(idx, _)| TyKind::BoundVar(BoundVar::new(debruijn, idx)).intern(&Interner)),
)
}
/// Returns a Substitution that replaces each parameter by itself (i.e. `Ty::Param`).
pub(crate) fn type_params_subst(&self, db: &dyn HirDatabase) -> Substitution {
Substitution::from_iter(
&Interner,
self.iter().map(|(id, _)| {
TyKind::Placeholder(crate::to_placeholder_idx(db, id)).intern(&Interner)
}),
)
}
}
fn parent_generic_def(db: &dyn DefDatabase, def: GenericDefId) -> Option<GenericDefId> {
let container = match def {
GenericDefId::FunctionId(it) => it.lookup(db).container,
GenericDefId::TypeAliasId(it) => it.lookup(db).container,
GenericDefId::ConstId(it) => it.lookup(db).container,
GenericDefId::EnumVariantId(it) => return Some(it.parent.into()),
GenericDefId::AdtId(_) | GenericDefId::TraitId(_) | GenericDefId::ImplId(_) => return None,
};
match container {
2019-12-20 10:59:50 +00:00
AssocContainerId::ImplId(it) => Some(it.into()),
AssocContainerId::TraitId(it) => Some(it.into()),
AssocContainerId::ModuleId(_) => None,
}
}