rust-analyzer/crates/ra_hir/src/ty/lower.rs

812 lines
30 KiB
Rust
Raw Normal View History

//! Methods for lowering the HIR to types. There are two main cases here:
//!
//! - Lowering a type reference like `&usize` or `Option<foo::bar::Baz>` to a
//! type: The entry point for this is `Ty::from_hir`.
//! - Building the type for an item: This happens through the `type_for_def` query.
//!
//! This usually involves resolving names, collecting generic arguments etc.
2019-04-09 20:04:59 +00:00
use std::iter;
use std::sync::Arc;
2019-10-30 14:28:30 +00:00
use hir_def::{
2019-11-26 11:35:23 +00:00
builtin_type::BuiltinType,
2019-11-21 13:23:02 +00:00
generics::WherePredicate,
2019-10-30 14:28:30 +00:00
path::{GenericArg, PathSegment},
2019-11-21 12:39:09 +00:00
resolver::{HasResolver, Resolver, TypeNs},
2019-10-30 14:28:30 +00:00
type_ref::{TypeBound, TypeRef},
2019-11-25 13:26:52 +00:00
AdtId, AstItemDef, EnumVariantId, FunctionId, GenericDefId, HasModule, LocalStructFieldId,
2019-11-26 15:00:36 +00:00
Lookup, StructId, TraitId, VariantId,
2019-10-30 14:28:30 +00:00
};
use ra_arena::map::ArenaMap;
2019-11-25 13:26:52 +00:00
use ra_db::CrateId;
2019-10-30 14:24:36 +00:00
use super::{
FnSig, GenericPredicate, ProjectionPredicate, ProjectionTy, Substs, TraitEnvironment, TraitRef,
Ty, TypeCtor, TypeWalk,
};
use crate::{
2019-09-08 06:53:49 +00:00
db::HirDatabase,
2019-10-31 07:51:54 +00:00
ty::{
2019-11-26 11:35:23 +00:00
primitive::{FloatTy, IntTy},
2019-11-26 14:42:21 +00:00
utils::{all_super_traits, associated_type_by_name_including_super_traits},
2019-10-31 07:51:54 +00:00
Adt,
},
2019-10-14 10:50:12 +00:00
util::make_mut_slice,
2019-11-25 12:41:53 +00:00
Const, Enum, EnumVariant, Function, ImplBlock, ModuleDef, Path, Static, Struct, Trait,
TypeAlias, Union,
};
2019-11-04 20:02:35 +00:00
// FIXME: this is only really used in `type_for_def`, which contains a bunch of
// impossible cases. Perhaps we should recombine `TypeableDef` and `Namespace`
// into a `AsTypeDef`, `AsValueDef` enums?
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum Namespace {
Types,
Values,
// Note that only type inference uses this enum, and it doesn't care about macros.
// Macro,
}
impl Ty {
pub(crate) fn from_hir(db: &impl HirDatabase, resolver: &Resolver, type_ref: &TypeRef) -> Self {
match type_ref {
2019-03-21 21:20:03 +00:00
TypeRef::Never => Ty::simple(TypeCtor::Never),
TypeRef::Tuple(inner) => {
2019-10-14 04:06:05 +00:00
let inner_tys: Arc<[Ty]> =
inner.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect();
Ty::apply(
TypeCtor::Tuple { cardinality: inner_tys.len() as u16 },
2019-10-14 04:06:05 +00:00
Substs(inner_tys),
)
}
TypeRef::Path(path) => Ty::from_hir_path(db, resolver, path),
TypeRef::RawPtr(inner, mutability) => {
let inner_ty = Ty::from_hir(db, resolver, inner);
2019-03-21 21:20:03 +00:00
Ty::apply_one(TypeCtor::RawPtr(*mutability), inner_ty)
}
TypeRef::Array(inner) => {
let inner_ty = Ty::from_hir(db, resolver, inner);
2019-03-21 21:20:03 +00:00
Ty::apply_one(TypeCtor::Array, inner_ty)
}
TypeRef::Slice(inner) => {
let inner_ty = Ty::from_hir(db, resolver, inner);
2019-03-21 21:20:03 +00:00
Ty::apply_one(TypeCtor::Slice, inner_ty)
}
TypeRef::Reference(inner, mutability) => {
let inner_ty = Ty::from_hir(db, resolver, inner);
2019-03-21 21:20:03 +00:00
Ty::apply_one(TypeCtor::Ref(*mutability), inner_ty)
}
TypeRef::Placeholder => Ty::Unknown,
TypeRef::Fn(params) => {
2019-10-14 04:06:05 +00:00
let sig = Substs(params.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect());
Ty::apply(TypeCtor::FnPtr { num_args: sig.len() as u16 - 1 }, sig)
}
TypeRef::DynTrait(bounds) => {
let self_ty = Ty::Bound(0);
let predicates = bounds
.iter()
.flat_map(|b| {
GenericPredicate::from_type_bound(db, resolver, b, self_ty.clone())
})
2019-10-14 04:06:05 +00:00
.collect();
Ty::Dyn(predicates)
}
TypeRef::ImplTrait(bounds) => {
let self_ty = Ty::Bound(0);
let predicates = bounds
.iter()
.flat_map(|b| {
GenericPredicate::from_type_bound(db, resolver, b, self_ty.clone())
})
2019-10-14 04:06:05 +00:00
.collect();
Ty::Opaque(predicates)
}
TypeRef::Error => Ty::Unknown,
}
}
/// This is only for `generic_predicates_for_param`, where we can't just
/// lower the self types of the predicates since that could lead to cycles.
/// So we just check here if the `type_ref` resolves to a generic param, and which.
fn from_hir_only_param(
db: &impl HirDatabase,
resolver: &Resolver,
type_ref: &TypeRef,
) -> Option<u32> {
let path = match type_ref {
TypeRef::Path(path) => path,
_ => return None,
};
if let crate::PathKind::Type(_) = &path.kind {
return None;
}
if path.segments.len() > 1 {
return None;
}
let resolution = match resolver.resolve_path_in_type_ns(db, path) {
Some((it, None)) => it,
_ => return None,
};
if let TypeNs::GenericParam(idx) = resolution {
Some(idx)
} else {
None
}
}
pub(crate) fn from_type_relative_path(
db: &impl HirDatabase,
resolver: &Resolver,
ty: Ty,
remaining_segments: &[PathSegment],
) -> Ty {
if remaining_segments.len() == 1 {
// resolve unselected assoc types
let segment = &remaining_segments[0];
Ty::select_associated_type(db, resolver, ty, segment)
} else if remaining_segments.len() > 1 {
// FIXME report error (ambiguous associated type)
Ty::Unknown
} else {
ty
}
}
pub(crate) fn from_partly_resolved_hir_path(
db: &impl HirDatabase,
resolver: &Resolver,
resolution: TypeNs,
resolved_segment: &PathSegment,
remaining_segments: &[PathSegment],
) -> Ty {
let ty = match resolution {
2019-11-21 09:21:46 +00:00
TypeNs::TraitId(trait_) => {
let trait_ref = TraitRef::from_resolved_path(
db,
resolver,
trait_.into(),
resolved_segment,
None,
);
return if remaining_segments.len() == 1 {
let segment = &remaining_segments[0];
2019-11-26 14:42:21 +00:00
let associated_ty = associated_type_by_name_including_super_traits(
db,
2019-11-26 15:00:36 +00:00
trait_ref.trait_,
2019-11-26 14:42:21 +00:00
&segment.name,
);
match associated_ty {
Some(associated_ty) => {
// FIXME handle type parameters on the segment
Ty::Projection(ProjectionTy {
2019-11-26 14:42:21 +00:00
associated_ty,
parameters: trait_ref.substs,
})
}
None => {
2019-09-16 19:48:46 +00:00
// FIXME: report error (associated type not found)
Ty::Unknown
}
}
} else if remaining_segments.len() > 1 {
// FIXME report error (ambiguous associated type)
Ty::Unknown
} else {
2019-09-14 08:20:05 +00:00
Ty::Dyn(Arc::new([GenericPredicate::Implemented(trait_ref)]))
};
}
TypeNs::GenericParam(idx) => {
// FIXME: maybe return name in resolution?
let name = resolved_segment.name.clone();
Ty::Param { idx, name }
}
2019-11-21 09:21:46 +00:00
TypeNs::SelfType(impl_block) => ImplBlock::from(impl_block).target_ty(db),
TypeNs::AdtSelfType(adt) => Adt::from(adt).ty(db),
2019-11-21 09:21:46 +00:00
TypeNs::AdtId(it) => Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into()),
TypeNs::BuiltinType(it) => {
Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into())
}
2019-11-21 09:21:46 +00:00
TypeNs::TypeAliasId(it) => {
Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into())
}
// FIXME: report error
2019-11-21 09:21:46 +00:00
TypeNs::EnumVariantId(_) => return Ty::Unknown,
};
Ty::from_type_relative_path(db, resolver, ty, remaining_segments)
}
pub(crate) fn from_hir_path(db: &impl HirDatabase, resolver: &Resolver, path: &Path) -> Ty {
// Resolve the path (in type namespace)
if let crate::PathKind::Type(type_ref) = &path.kind {
let ty = Ty::from_hir(db, resolver, &type_ref);
let remaining_segments = &path.segments[..];
return Ty::from_type_relative_path(db, resolver, ty, remaining_segments);
}
let (resolution, remaining_index) = match resolver.resolve_path_in_type_ns(db, path) {
Some(it) => it,
None => return Ty::Unknown,
};
let (resolved_segment, remaining_segments) = match remaining_index {
None => (
path.segments.last().expect("resolved path has at least one element"),
&[] as &[PathSegment],
),
Some(i) => (&path.segments[i - 1], &path.segments[i..]),
};
Ty::from_partly_resolved_hir_path(
db,
resolver,
resolution,
resolved_segment,
remaining_segments,
)
}
fn select_associated_type(
db: &impl HirDatabase,
resolver: &Resolver,
self_ty: Ty,
segment: &PathSegment,
) -> Ty {
let param_idx = match self_ty {
Ty::Param { idx, .. } => idx,
_ => return Ty::Unknown, // Error: Ambiguous associated type
};
let def = match resolver.generic_def() {
Some(def) => def,
None => return Ty::Unknown, // this can't actually happen
};
2019-11-21 09:21:46 +00:00
let predicates = db.generic_predicates_for_param(def.into(), param_idx);
let traits_from_env = predicates.iter().filter_map(|pred| match pred {
GenericPredicate::Implemented(tr) if tr.self_ty() == &self_ty => Some(tr.trait_),
_ => None,
});
2019-11-26 15:00:36 +00:00
let traits = traits_from_env.flat_map(|t| all_super_traits(db, t)).map(Trait::from);
for t in traits {
2019-11-26 14:21:29 +00:00
if let Some(associated_ty) = db.trait_data(t.id).associated_type_by_name(&segment.name)
{
2019-11-25 12:41:53 +00:00
let substs = Substs::build_for_def(db, t.id)
.push(self_ty.clone())
.fill_with_unknown()
.build();
// FIXME handle type parameters on the segment
2019-11-26 14:21:29 +00:00
return Ty::Projection(ProjectionTy { associated_ty, parameters: substs });
}
}
2019-09-16 19:48:46 +00:00
Ty::Unknown
}
fn from_hir_path_inner(
db: &impl HirDatabase,
resolver: &Resolver,
segment: &PathSegment,
typable: TypableDef,
) -> Ty {
let ty = db.type_for_def(typable, Namespace::Types);
let substs = Ty::substs_from_path_segment(db, resolver, segment, typable);
ty.subst(&substs)
}
pub(super) fn substs_from_path_segment(
db: &impl HirDatabase,
resolver: &Resolver,
segment: &PathSegment,
resolved: TypableDef,
) -> Substs {
2019-11-25 12:41:53 +00:00
let def_generic: Option<GenericDefId> = match resolved {
TypableDef::Function(func) => Some(func.id.into()),
2019-09-12 21:34:52 +00:00
TypableDef::Adt(adt) => Some(adt.into()),
2019-11-25 12:41:53 +00:00
TypableDef::EnumVariant(var) => Some(var.parent_enum(db).id.into()),
TypableDef::TypeAlias(t) => Some(t.id.into()),
2019-05-30 11:05:35 +00:00
TypableDef::Const(_) | TypableDef::Static(_) | TypableDef::BuiltinType(_) => None,
};
2019-05-19 13:08:16 +00:00
substs_from_path_segment(db, resolver, segment, def_generic, false)
}
/// Collect generic arguments from a path into a `Substs`. See also
/// `create_substs_for_ast_path` and `def_to_ty` in rustc.
pub(super) fn substs_from_path(
db: &impl HirDatabase,
resolver: &Resolver,
path: &Path,
resolved: TypableDef,
) -> Substs {
let last = path.segments.last().expect("path should have at least one segment");
let segment = match resolved {
2019-02-24 16:25:41 +00:00
TypableDef::Function(_)
2019-09-12 21:34:52 +00:00
| TypableDef::Adt(_)
2019-02-25 07:27:47 +00:00
| TypableDef::Const(_)
2019-02-25 08:21:01 +00:00
| TypableDef::Static(_)
2019-05-30 11:05:35 +00:00
| TypableDef::TypeAlias(_)
| TypableDef::BuiltinType(_) => last,
TypableDef::EnumVariant(_) => {
// the generic args for an enum variant may be either specified
// on the segment referring to the enum, or on the segment
// referring to the variant. So `Option::<T>::None` and
// `Option::None::<T>` are both allowed (though the former is
// preferred). See also `def_ids_for_path_segments` in rustc.
let len = path.segments.len();
let segment = if len >= 2 && path.segments[len - 2].args_and_bindings.is_some() {
// Option::<T>::None
&path.segments[len - 2]
} else {
// Option::None::<T>
last
};
segment
}
};
Ty::substs_from_path_segment(db, resolver, segment, resolved)
}
}
pub(super) fn substs_from_path_segment(
db: &impl HirDatabase,
resolver: &Resolver,
segment: &PathSegment,
2019-11-25 12:41:53 +00:00
def_generic: Option<GenericDefId>,
add_self_param: bool,
) -> Substs {
let mut substs = Vec::new();
2019-11-21 13:23:02 +00:00
let def_generics = def_generic.map(|def| db.generic_params(def.into()));
2019-05-19 13:08:16 +00:00
let (parent_param_count, param_count) =
def_generics.map_or((0, 0), |g| (g.count_parent_params(), g.params.len()));
2019-04-09 20:04:59 +00:00
substs.extend(iter::repeat(Ty::Unknown).take(parent_param_count));
if add_self_param {
// FIXME this add_self_param argument is kind of a hack: Traits have the
// Self type as an implicit first type parameter, but it can't be
// actually provided in the type arguments
2019-04-09 20:04:59 +00:00
// (well, actually sometimes it can, in the form of type-relative paths: `<Foo as Default>::default()`)
substs.push(Ty::Unknown);
}
if let Some(generic_args) = &segment.args_and_bindings {
// if args are provided, it should be all of them, but we can't rely on that
2019-04-09 20:04:59 +00:00
let self_param_correction = if add_self_param { 1 } else { 0 };
let param_count = param_count - self_param_correction;
for arg in generic_args.args.iter().take(param_count) {
match arg {
GenericArg::Type(type_ref) => {
let ty = Ty::from_hir(db, resolver, type_ref);
substs.push(ty);
}
}
}
}
// add placeholders for args that were not provided
let supplied_params = substs.len();
for _ in supplied_params..parent_param_count + param_count {
substs.push(Ty::Unknown);
}
assert_eq!(substs.len(), parent_param_count + param_count);
2019-05-19 13:08:16 +00:00
// handle defaults
if let Some(def_generic) = def_generic {
2019-11-25 12:41:53 +00:00
let default_substs = db.generic_defaults(def_generic.into());
2019-05-19 13:08:16 +00:00
assert_eq!(substs.len(), default_substs.len());
for (i, default_ty) in default_substs.iter().enumerate() {
if substs[i] == Ty::Unknown {
substs[i] = default_ty.clone();
2019-05-19 13:08:16 +00:00
}
}
2019-05-19 13:08:16 +00:00
}
Substs(substs.into())
}
impl TraitRef {
2019-05-05 12:21:00 +00:00
pub(crate) fn from_path(
db: &impl HirDatabase,
resolver: &Resolver,
2019-05-05 12:21:00 +00:00
path: &Path,
explicit_self_ty: Option<Ty>,
) -> Option<Self> {
let resolved = match resolver.resolve_path_in_type_ns_fully(db, &path)? {
2019-11-21 09:21:46 +00:00
TypeNs::TraitId(tr) => tr,
_ => return None,
};
let segment = path.segments.last().expect("path should have at least one segment");
2019-11-21 09:21:46 +00:00
Some(TraitRef::from_resolved_path(db, resolver, resolved.into(), segment, explicit_self_ty))
}
pub(super) fn from_resolved_path(
db: &impl HirDatabase,
resolver: &Resolver,
resolved: Trait,
segment: &PathSegment,
explicit_self_ty: Option<Ty>,
) -> Self {
let mut substs = TraitRef::substs_from_path(db, resolver, segment, resolved);
if let Some(self_ty) = explicit_self_ty {
2019-10-14 10:50:12 +00:00
make_mut_slice(&mut substs.0)[0] = self_ty;
}
2019-11-26 15:00:36 +00:00
TraitRef { trait_: resolved.id, substs }
}
2019-05-05 12:21:00 +00:00
pub(crate) fn from_hir(
db: &impl HirDatabase,
resolver: &Resolver,
type_ref: &TypeRef,
explicit_self_ty: Option<Ty>,
) -> Option<Self> {
let path = match type_ref {
TypeRef::Path(path) => path,
_ => return None,
};
TraitRef::from_path(db, resolver, path, explicit_self_ty)
}
fn substs_from_path(
db: &impl HirDatabase,
resolver: &Resolver,
segment: &PathSegment,
resolved: Trait,
) -> Substs {
let has_self_param =
segment.args_and_bindings.as_ref().map(|a| a.has_self_type).unwrap_or(false);
2019-11-25 12:41:53 +00:00
substs_from_path_segment(db, resolver, segment, Some(resolved.id.into()), !has_self_param)
}
2019-11-26 15:00:36 +00:00
pub(crate) fn for_trait(db: &impl HirDatabase, trait_: TraitId) -> TraitRef {
let substs = Substs::identity(&db.generic_params(trait_.into()));
TraitRef { trait_, substs }
}
2019-05-05 12:21:00 +00:00
pub(crate) fn from_type_bound(
db: &impl HirDatabase,
resolver: &Resolver,
bound: &TypeBound,
self_ty: Ty,
) -> Option<TraitRef> {
match bound {
TypeBound::Path(path) => TraitRef::from_path(db, resolver, path, Some(self_ty)),
TypeBound::Error => None,
}
}
}
impl GenericPredicate {
pub(crate) fn from_where_predicate<'a>(
db: &'a impl HirDatabase,
resolver: &'a Resolver,
where_predicate: &'a WherePredicate,
) -> impl Iterator<Item = GenericPredicate> + 'a {
let self_ty = Ty::from_hir(db, resolver, &where_predicate.type_ref);
GenericPredicate::from_type_bound(db, resolver, &where_predicate.bound, self_ty)
}
pub(crate) fn from_type_bound<'a>(
db: &'a impl HirDatabase,
resolver: &'a Resolver,
bound: &'a TypeBound,
self_ty: Ty,
) -> impl Iterator<Item = GenericPredicate> + 'a {
let trait_ref = TraitRef::from_type_bound(db, &resolver, bound, self_ty);
iter::once(trait_ref.clone().map_or(GenericPredicate::Error, GenericPredicate::Implemented))
.chain(
trait_ref.into_iter().flat_map(move |tr| {
assoc_type_bindings_from_type_bound(db, resolver, bound, tr)
}),
)
2019-05-05 12:21:00 +00:00
}
}
fn assoc_type_bindings_from_type_bound<'a>(
db: &'a impl HirDatabase,
resolver: &'a Resolver,
bound: &'a TypeBound,
trait_ref: TraitRef,
) -> impl Iterator<Item = GenericPredicate> + 'a {
let last_segment = match bound {
TypeBound::Path(path) => path.segments.last(),
TypeBound::Error => None,
};
last_segment
.into_iter()
.flat_map(|segment| segment.args_and_bindings.iter())
.flat_map(|args_and_bindings| args_and_bindings.bindings.iter())
.map(move |(name, type_ref)| {
let associated_ty =
2019-11-26 15:00:36 +00:00
associated_type_by_name_including_super_traits(db, trait_ref.trait_, &name);
2019-11-26 14:42:21 +00:00
let associated_ty = match associated_ty {
None => return GenericPredicate::Error,
Some(t) => t,
};
let projection_ty =
ProjectionTy { associated_ty, parameters: trait_ref.substs.clone() };
let ty = Ty::from_hir(db, resolver, type_ref);
let projection_predicate = ProjectionPredicate { projection_ty, ty };
GenericPredicate::Projection(projection_predicate)
})
}
/// Build the declared type of an item. This depends on the namespace; e.g. for
/// `struct Foo(usize)`, we have two types: The type of the struct itself, and
/// the constructor function `(usize) -> Foo` which lives in the values
/// namespace.
pub(crate) fn type_for_def(db: &impl HirDatabase, def: TypableDef, ns: Namespace) -> Ty {
match (def, ns) {
(TypableDef::Function(f), Namespace::Values) => type_for_fn(db, f),
2019-09-12 21:34:52 +00:00
(TypableDef::Adt(Adt::Struct(s)), Namespace::Values) => type_for_struct_constructor(db, s),
(TypableDef::Adt(adt), Namespace::Types) => type_for_adt(db, adt),
(TypableDef::EnumVariant(v), Namespace::Values) => type_for_enum_variant_constructor(db, v),
2019-02-24 20:36:49 +00:00
(TypableDef::TypeAlias(t), Namespace::Types) => type_for_type_alias(db, t),
2019-02-25 07:27:47 +00:00
(TypableDef::Const(c), Namespace::Values) => type_for_const(db, c),
2019-02-25 08:21:01 +00:00
(TypableDef::Static(c), Namespace::Values) => type_for_static(db, c),
2019-05-30 11:05:35 +00:00
(TypableDef::BuiltinType(t), Namespace::Types) => type_for_builtin(t),
// 'error' cases:
(TypableDef::Function(_), Namespace::Types) => Ty::Unknown,
2019-09-12 21:34:52 +00:00
(TypableDef::Adt(Adt::Union(_)), Namespace::Values) => Ty::Unknown,
(TypableDef::Adt(Adt::Enum(_)), Namespace::Values) => Ty::Unknown,
(TypableDef::EnumVariant(_), Namespace::Types) => Ty::Unknown,
2019-02-24 20:36:49 +00:00
(TypableDef::TypeAlias(_), Namespace::Values) => Ty::Unknown,
2019-02-25 07:27:47 +00:00
(TypableDef::Const(_), Namespace::Types) => Ty::Unknown,
2019-02-25 08:21:01 +00:00
(TypableDef::Static(_), Namespace::Types) => Ty::Unknown,
2019-05-30 11:05:35 +00:00
(TypableDef::BuiltinType(_), Namespace::Values) => Ty::Unknown,
}
}
/// Build the signature of a callable item (function, struct or enum variant).
pub(crate) fn callable_item_sig(db: &impl HirDatabase, def: CallableDef) -> FnSig {
match def {
2019-11-25 13:26:52 +00:00
CallableDef::FunctionId(f) => fn_sig_for_fn(db, f),
CallableDef::StructId(s) => fn_sig_for_struct_constructor(db, s),
CallableDef::EnumVariantId(e) => fn_sig_for_enum_variant_constructor(db, e),
}
}
/// Build the type of all specific fields of a struct or enum variant.
pub(crate) fn field_types_query(
db: &impl HirDatabase,
variant_id: VariantId,
) -> Arc<ArenaMap<LocalStructFieldId, Ty>> {
let (resolver, var_data) = match variant_id {
2019-11-25 14:30:50 +00:00
VariantId::StructId(it) => (it.resolver(db), db.struct_data(it).variant_data.clone()),
2019-11-25 14:34:15 +00:00
VariantId::UnionId(it) => (it.resolver(db), db.union_data(it).variant_data.clone()),
VariantId::EnumVariantId(it) => (
it.parent.resolver(db),
db.enum_data(it.parent).variants[it.local_id].variant_data.clone(),
),
};
let mut res = ArenaMap::default();
for (field_id, field_data) in var_data.fields().iter() {
res.insert(field_id, Ty::from_hir(db, &resolver, &field_data.type_ref))
}
Arc::new(res)
}
/// This query exists only to be used when resolving short-hand associated types
/// like `T::Item`.
///
/// See the analogous query in rustc and its comment:
/// https://github.com/rust-lang/rust/blob/9150f844e2624eb013ec78ca08c1d416e6644026/src/librustc_typeck/astconv.rs#L46
/// This is a query mostly to handle cycles somewhat gracefully; e.g. the
/// following bounds are disallowed: `T: Foo<U::Item>, U: Foo<T::Item>`, but
/// these are fine: `T: Foo<U::Item>, U: Foo<()>`.
pub(crate) fn generic_predicates_for_param_query(
db: &impl HirDatabase,
2019-11-25 12:41:53 +00:00
def: GenericDefId,
param_idx: u32,
) -> Arc<[GenericPredicate]> {
2019-11-25 12:41:53 +00:00
let resolver = def.resolver(db);
2019-10-14 04:06:05 +00:00
resolver
.where_predicates_in_scope()
// we have to filter out all other predicates *first*, before attempting to lower them
.filter(|pred| Ty::from_hir_only_param(db, &resolver, &pred.type_ref) == Some(param_idx))
.flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred))
2019-10-14 04:06:05 +00:00
.collect()
}
impl TraitEnvironment {
pub(crate) fn lower(db: &impl HirDatabase, resolver: &Resolver) -> Arc<TraitEnvironment> {
let predicates = resolver
.where_predicates_in_scope()
.flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred))
.collect::<Vec<_>>();
Arc::new(TraitEnvironment { predicates })
}
}
2019-05-05 12:21:00 +00:00
/// Resolve the where clause(s) of an item with generics.
pub(crate) fn generic_predicates_query(
2019-05-05 12:21:00 +00:00
db: &impl HirDatabase,
2019-11-25 12:39:12 +00:00
def: GenericDefId,
2019-05-05 12:21:00 +00:00
) -> Arc<[GenericPredicate]> {
2019-11-25 12:39:12 +00:00
let resolver = def.resolver(db);
2019-10-14 04:06:05 +00:00
resolver
.where_predicates_in_scope()
.flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred))
2019-10-14 04:06:05 +00:00
.collect()
2019-05-05 12:21:00 +00:00
}
2019-05-19 13:08:16 +00:00
/// Resolve the default type params from generics
2019-11-25 12:41:53 +00:00
pub(crate) fn generic_defaults_query(db: &impl HirDatabase, def: GenericDefId) -> Substs {
let resolver = def.resolver(db);
2019-11-21 13:23:02 +00:00
let generic_params = db.generic_params(def.into());
2019-05-19 13:08:16 +00:00
let defaults = generic_params
.params_including_parent()
.into_iter()
2019-11-20 08:42:58 +00:00
.map(|p| p.default.as_ref().map_or(Ty::Unknown, |t| Ty::from_hir(db, &resolver, t)))
2019-10-14 04:06:05 +00:00
.collect();
2019-05-19 13:08:16 +00:00
2019-10-14 04:06:05 +00:00
Substs(defaults)
2019-05-19 13:08:16 +00:00
}
2019-11-25 13:16:41 +00:00
fn fn_sig_for_fn(db: &impl HirDatabase, def: FunctionId) -> FnSig {
let data = db.function_data(def);
let resolver = def.resolver(db);
2019-11-22 14:10:51 +00:00
let params = data.params.iter().map(|tr| Ty::from_hir(db, &resolver, tr)).collect::<Vec<_>>();
let ret = Ty::from_hir(db, &resolver, &data.ret_type);
2019-03-16 16:21:32 +00:00
FnSig::from_params_and_return(params, ret)
}
/// Build the declared type of a function. This should not need to look at the
/// function body.
fn type_for_fn(db: &impl HirDatabase, def: Function) -> Ty {
2019-11-21 13:23:02 +00:00
let generics = db.generic_params(def.id.into());
let substs = Substs::identity(&generics);
2019-11-25 13:26:52 +00:00
Ty::apply(TypeCtor::FnDef(def.id.into()), substs)
}
2019-02-25 07:27:47 +00:00
/// Build the declared type of a const.
fn type_for_const(db: &impl HirDatabase, def: Const) -> Ty {
2019-11-22 15:51:53 +00:00
let data = db.const_data(def.id);
2019-11-21 11:13:49 +00:00
let resolver = def.id.resolver(db);
2019-02-25 07:27:47 +00:00
2019-11-22 15:46:39 +00:00
Ty::from_hir(db, &resolver, &data.type_ref)
2019-02-25 07:27:47 +00:00
}
2019-02-25 08:21:01 +00:00
/// Build the declared type of a static.
fn type_for_static(db: &impl HirDatabase, def: Static) -> Ty {
2019-11-22 15:51:53 +00:00
let data = db.static_data(def.id);
2019-11-21 11:13:49 +00:00
let resolver = def.id.resolver(db);
2019-02-25 08:21:01 +00:00
2019-11-22 15:46:39 +00:00
Ty::from_hir(db, &resolver, &data.type_ref)
2019-02-25 08:21:01 +00:00
}
2019-05-30 11:05:35 +00:00
/// Build the declared type of a static.
fn type_for_builtin(def: BuiltinType) -> Ty {
Ty::simple(match def {
BuiltinType::Char => TypeCtor::Char,
BuiltinType::Bool => TypeCtor::Bool,
BuiltinType::Str => TypeCtor::Str,
2019-11-12 12:09:25 +00:00
BuiltinType::Int(t) => TypeCtor::Int(IntTy::from(t).into()),
BuiltinType::Float(t) => TypeCtor::Float(FloatTy::from(t).into()),
2019-05-30 11:05:35 +00:00
})
}
2019-11-25 13:16:41 +00:00
fn fn_sig_for_struct_constructor(db: &impl HirDatabase, def: StructId) -> FnSig {
let struct_data = db.struct_data(def.into());
2019-11-24 19:44:24 +00:00
let fields = struct_data.variant_data.fields();
2019-11-25 13:16:41 +00:00
let resolver = def.resolver(db);
2019-03-16 16:21:32 +00:00
let params = fields
.iter()
.map(|(_, field)| Ty::from_hir(db, &resolver, &field.type_ref))
.collect::<Vec<_>>();
2019-11-25 13:16:41 +00:00
let ret = type_for_adt(db, Struct::from(def));
2019-03-16 16:21:32 +00:00
FnSig::from_params_and_return(params, ret)
}
/// Build the type of a tuple struct constructor.
fn type_for_struct_constructor(db: &impl HirDatabase, def: Struct) -> Ty {
2019-11-09 12:34:00 +00:00
let struct_data = db.struct_data(def.id.into());
2019-11-24 19:44:24 +00:00
if struct_data.variant_data.is_unit() {
2019-05-20 22:02:29 +00:00
return type_for_adt(db, def); // Unit struct
2019-03-16 16:21:32 +00:00
}
2019-11-21 13:23:02 +00:00
let generics = db.generic_params(def.id.into());
let substs = Substs::identity(&generics);
2019-11-25 13:26:52 +00:00
Ty::apply(TypeCtor::FnDef(def.id.into()), substs)
}
2019-11-25 13:16:41 +00:00
fn fn_sig_for_enum_variant_constructor(db: &impl HirDatabase, def: EnumVariantId) -> FnSig {
let enum_data = db.enum_data(def.parent);
let var_data = &enum_data.variants[def.local_id];
let fields = var_data.variant_data.fields();
let resolver = def.parent.resolver(db);
2019-03-16 16:21:32 +00:00
let params = fields
.iter()
.map(|(_, field)| Ty::from_hir(db, &resolver, &field.type_ref))
.collect::<Vec<_>>();
2019-11-25 13:16:41 +00:00
let generics = db.generic_params(def.parent.into());
let substs = Substs::identity(&generics);
2019-11-25 13:16:41 +00:00
let ret = type_for_adt(db, Enum::from(def.parent)).subst(&substs);
2019-03-16 16:21:32 +00:00
FnSig::from_params_and_return(params, ret)
}
/// Build the type of a tuple enum variant constructor.
fn type_for_enum_variant_constructor(db: &impl HirDatabase, def: EnumVariant) -> Ty {
let var_data = def.variant_data(db);
2019-11-24 19:44:24 +00:00
if var_data.is_unit() {
2019-05-20 22:02:29 +00:00
return type_for_adt(db, def.parent_enum(db)); // Unit variant
2019-03-16 16:21:32 +00:00
}
2019-11-21 13:23:02 +00:00
let generics = db.generic_params(def.parent_enum(db).id.into());
let substs = Substs::identity(&generics);
2019-11-25 13:26:52 +00:00
Ty::apply(TypeCtor::FnDef(EnumVariantId::from(def).into()), substs)
}
2019-11-21 13:23:02 +00:00
fn type_for_adt(db: &impl HirDatabase, adt: impl Into<Adt>) -> Ty {
let adt = adt.into();
let adt_id: AdtId = adt.into();
let generics = db.generic_params(adt_id.into());
2019-11-26 11:29:12 +00:00
Ty::apply(TypeCtor::Adt(adt_id), Substs::identity(&generics))
}
2019-02-24 20:36:49 +00:00
fn type_for_type_alias(db: &impl HirDatabase, t: TypeAlias) -> Ty {
2019-11-21 13:23:02 +00:00
let generics = db.generic_params(t.id.into());
2019-11-21 11:13:49 +00:00
let resolver = t.id.resolver(db);
2019-02-24 16:25:41 +00:00
let type_ref = t.type_ref(db);
let substs = Substs::identity(&generics);
let inner = Ty::from_hir(db, &resolver, &type_ref.unwrap_or(TypeRef::Error));
2019-02-24 16:25:41 +00:00
inner.subst(&substs)
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum TypableDef {
Function(Function),
2019-09-12 21:34:52 +00:00
Adt(Adt),
EnumVariant(EnumVariant),
2019-02-24 20:36:49 +00:00
TypeAlias(TypeAlias),
2019-02-25 07:27:47 +00:00
Const(Const),
2019-02-25 08:21:01 +00:00
Static(Static),
2019-05-30 11:05:35 +00:00
BuiltinType(BuiltinType),
}
2019-09-12 21:31:04 +00:00
impl_froms!(
TypableDef: Function,
2019-09-12 21:34:52 +00:00
Adt(Struct, Enum, Union),
2019-09-12 21:31:04 +00:00
EnumVariant,
TypeAlias,
Const,
Static,
BuiltinType
);
impl From<ModuleDef> for Option<TypableDef> {
fn from(def: ModuleDef) -> Option<TypableDef> {
let res = match def {
ModuleDef::Function(f) => f.into(),
2019-09-12 21:34:52 +00:00
ModuleDef::Adt(adt) => adt.into(),
ModuleDef::EnumVariant(v) => v.into(),
2019-02-24 20:36:49 +00:00
ModuleDef::TypeAlias(t) => t.into(),
2019-02-25 07:27:47 +00:00
ModuleDef::Const(v) => v.into(),
2019-02-25 08:21:01 +00:00
ModuleDef::Static(v) => v.into(),
2019-05-30 11:05:35 +00:00
ModuleDef::BuiltinType(t) => t.into(),
2019-02-25 08:21:01 +00:00
ModuleDef::Module(_) | ModuleDef::Trait(_) => return None,
};
Some(res)
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum CallableDef {
2019-11-25 13:26:52 +00:00
FunctionId(FunctionId),
StructId(StructId),
EnumVariantId(EnumVariantId),
}
2019-11-25 13:26:52 +00:00
impl_froms!(CallableDef: FunctionId, StructId, EnumVariantId);
impl CallableDef {
2019-11-25 13:26:52 +00:00
pub fn krate(self, db: &impl HirDatabase) -> CrateId {
match self {
2019-11-25 13:26:52 +00:00
CallableDef::FunctionId(f) => f.lookup(db).module(db).krate,
2019-11-25 14:30:50 +00:00
CallableDef::StructId(s) => s.module(db).krate,
2019-11-25 13:26:52 +00:00
CallableDef::EnumVariantId(e) => e.parent.module(db).krate,
}
}
}
2019-11-25 12:39:12 +00:00
impl From<CallableDef> for GenericDefId {
fn from(def: CallableDef) -> GenericDefId {
match def {
2019-11-25 13:26:52 +00:00
CallableDef::FunctionId(f) => f.into(),
CallableDef::StructId(s) => s.into(),
CallableDef::EnumVariantId(e) => e.into(),
}
}
}