rust-analyzer/crates/ide_assists/src/handlers/generate_documentation_template.rs

971 lines
24 KiB
Rust
Raw Normal View History

use ide_db::assists::{AssistId, AssistKind};
use stdx::to_lower_snake_case;
use syntax::{
ast::{self, edit::IndentLevel, HasDocComments, HasName},
AstNode,
};
use crate::assist_context::{AssistContext, Assists};
/// Assist: generate_documentation_template
///
/// Adds a documentation template above a function definition / declaration
///
/// ```
/// fn my_func(a: i32, b: i32) -> Result<(), std::io::Error> {
/// unimplemented!()
/// }
/// ```
/// ->
/// ```
/// /// .
/// ///
/// /// # Examples
/// ///
/// /// ```rust
/// /// use my_crate::my_func;
/// ///
/// /// let result = my_func(a, b);
/// /// assert_eq!(result, );
/// /// ```
/// ///
/// /// # Errors
/// ///
/// /// This function will return an error if .
/// fn my_func(a: i32, b: i32) -> Result<(), std::io::Error> {
/// unimplemented!()
/// }
/// ```
pub(crate) fn generate_documentation_template(
acc: &mut Assists,
ctx: &AssistContext,
) -> Option<()> {
let name = ctx.find_node_at_offset::<ast::Name>()?;
let ast_func = ast::Fn::cast(name.syntax().parent()?)?;
if is_in_trait_impl(&ast_func) {
return None;
}
// TODO disable at least examples if function not public, as the example will fail to build on
// `cargo test`. What is the exact criteria of `pub`ness? All parent modules must be `pub`, for
// `impl { fn }` both `fn` and `struct`* must be public.
//
// What about `pub(crate)`?
//
// *: Seems complex but maybe ignoring this criteria can be ignored.
let parent_syntax = ast_func.syntax();
let text_range = parent_syntax.text_range();
let indent_level = IndentLevel::from_node(&parent_syntax);
let krate_name =
ctx.sema.scope(&parent_syntax).module()?.krate().display_name(ctx.db())?.to_string();
acc.add(
AssistId("generate_documentation_template", AssistKind::Generate),
"Generate a documentation template",
text_range,
|builder| {
let mut doc_lines = Vec::new();
// Introduction / short function description before the sections
doc_lines.push(introduction_builder(&ast_func));
// Then come the sections
if let Some(mut lines) = examples_builder(&ast_func, krate_name) {
doc_lines.push("".into());
doc_lines.append(&mut lines);
}
for section_builder in [panics_builder, errors_builder, safety_builder] {
if let Some(mut lines) = section_builder(&ast_func) {
doc_lines.push("".into());
doc_lines.append(&mut lines);
}
}
if ast_func.doc_comments().next().is_some() {
doc_lines.push("--- OLD VERSION BELOW ---".into());
}
builder.insert(text_range.start(), documentation_from_lines(doc_lines, indent_level));
},
)
}
/// Builds an introduction, trying to be smart if the function is `::new()`
fn introduction_builder(ast_func: &ast::Fn) -> String {
let is_new = ast_func.name().map(|name| &name.to_string() == "new").unwrap_or(false);
if is_new {
let ret_type = return_type(ast_func).map(|ret_type| ret_type.to_string());
let self_type = self_type(ast_func);
if ret_type.as_deref() == Some("Self") || ret_type == self_type {
if let Some(self_type) = self_type {
return format!("Creates a new [`{}`].", self_type);
}
}
}
".".into()
}
/// Builds an `# Examples` section. An option is returned to be able to manage an error in the AST.
fn examples_builder(ast_func: &ast::Fn, krate_name: String) -> Option<Vec<String>> {
let (no_panic_ex, panic_ex) = if is_in_trait_def(ast_func) {
let message = "// Example template not implemented for trait functions";
(Some(vec![message.into()]), Some(vec![message.into()]))
} else {
let panic_ex = match can_panic(ast_func) {
Some(true) => gen_panic_ex_template(ast_func, krate_name.clone()),
_ => None,
};
let no_panic_ex = gen_ex_template(ast_func, krate_name);
(no_panic_ex, panic_ex)
};
let mut lines = string_vec_from(&["# Examples", "", "```"]);
lines.append(&mut no_panic_ex?);
lines.push("```".into());
if let Some(mut ex) = panic_ex {
lines.push("".into());
lines.push("```should_panic".into());
lines.append(&mut ex);
lines.push("```".into());
}
Some(lines)
}
/// Builds an optional `# Panics` section
fn panics_builder(ast_func: &ast::Fn) -> Option<Vec<String>> {
match can_panic(ast_func) {
Some(true) => Some(string_vec_from(&["# Panics", "", "Panics if ."])),
_ => None,
}
}
/// Builds an optional `# Errors` section
fn errors_builder(ast_func: &ast::Fn) -> Option<Vec<String>> {
match return_type(ast_func)?.to_string().contains("Result") {
true => Some(string_vec_from(&["# Errors", "", "This function will return an error if ."])),
false => None,
}
}
/// Builds an optional `# Safety` section
fn safety_builder(ast_func: &ast::Fn) -> Option<Vec<String>> {
let is_unsafe = ast_func.unsafe_token().is_some();
match is_unsafe {
true => Some(string_vec_from(&["# Safety", "", "."])),
false => None,
}
}
/// Generate an example template which should not panic
/// `None` if the function has a `self` parameter but is not in an `impl`.
fn gen_ex_template(ast_func: &ast::Fn, krate_name: String) -> Option<Vec<String>> {
let (mut lines, ex_helper) = gen_ex_start_helper(ast_func, krate_name)?;
// Call the function, check result
if returns_a_value(ast_func) {
if count_parameters(&ex_helper.param_list) < 3 {
lines.push(format!("assert_eq!({}, );", ex_helper.function_call));
} else {
lines.push(format!("let result = {};", ex_helper.function_call));
lines.push("assert_eq!(result, );".into());
}
} else {
lines.push(format!("{};", ex_helper.function_call));
}
// Check the mutated values
if is_ref_mut_self(ast_func) == Some(true) {
lines.push(format!("assert_eq!({}, );", ex_helper.self_name?));
}
for param_name in &ex_helper.ref_mut_params {
lines.push(format!("assert_eq!({}, );", param_name));
}
Some(lines)
}
/// Generate an example template which should panic
/// `None` if the function has a `self` parameter but is not in an `impl`.
fn gen_panic_ex_template(ast_func: &ast::Fn, krate_name: String) -> Option<Vec<String>> {
let (mut lines, ex_helper) = gen_ex_start_helper(ast_func, krate_name)?;
match returns_a_value(ast_func) {
true => lines.push(format!("let _ = {}; // panics", ex_helper.function_call)),
false => lines.push(format!("{}; // panics", ex_helper.function_call)),
}
Some(lines)
}
/// Intermediary results of the start of example generation
struct ExHelper {
function_call: String,
param_list: ast::ParamList,
ref_mut_params: Vec<String>,
self_name: Option<String>,
}
/// Build the start of the example and transmit the useful intermediary results.
/// `None` if the function has a `self` parameter but is not in an `impl`.
fn gen_ex_start_helper(ast_func: &ast::Fn, krate_name: String) -> Option<(Vec<String>, ExHelper)> {
let mut lines = Vec::new();
let is_unsafe = ast_func.unsafe_token().is_some();
let param_list = ast_func.param_list()?;
let ref_mut_params = ref_mut_params(&param_list);
let self_name: Option<String> = self_name(ast_func);
lines.push(format!("use {};", build_path(ast_func, krate_name)));
lines.push("".into());
if let Some(self_definition) = self_definition(ast_func, self_name.as_deref()) {
lines.push(self_definition);
}
for param_name in &ref_mut_params {
lines.push(format!("let mut {} = ;", param_name))
}
let function_call = function_call(ast_func, &param_list, self_name.as_deref(), is_unsafe)?;
let ex_helper = ExHelper { function_call, param_list, ref_mut_params, self_name };
Some((lines, ex_helper))
}
/// `None` if function without a body; some bool to guess if function can panic
fn can_panic(ast_func: &ast::Fn) -> Option<bool> {
let body = ast_func.body()?.to_string();
let can_panic = body.contains("panic!(")
|| body.contains("assert!(")
|| body.contains(".unwrap()")
|| body.contains(".expect(");
Some(can_panic)
}
/// Helper function to get the name that should be given to `self` arguments
fn self_name(ast_func: &ast::Fn) -> Option<String> {
self_partial_type(ast_func).map(|name| to_lower_snake_case(&name))
}
/// Heper function to get the name of the type of `self`
fn self_type(ast_func: &ast::Fn) -> Option<String> {
ast_func
.syntax()
.ancestors()
.find_map(ast::Impl::cast)
.and_then(|i| i.self_ty())
.map(|t| (t.to_string()))
}
/// Heper function to get the name of the type of `self` without generic arguments
fn self_partial_type(ast_func: &ast::Fn) -> Option<String> {
let mut self_type = self_type(ast_func)?;
if let Some(idx) = self_type.find(|c| ['<', ' '].contains(&c)) {
self_type.truncate(idx);
}
Some(self_type)
}
/// Helper function to determine if the function is in a trait implementation
fn is_in_trait_impl(ast_func: &ast::Fn) -> bool {
ast_func
.syntax()
.ancestors()
.find_map(ast::Impl::cast)
.and_then(|impl_| impl_.trait_())
.is_some()
}
/// Helper function to determine if the function definition is in a trait definition
fn is_in_trait_def(ast_func: &ast::Fn) -> bool {
ast_func.syntax().ancestors().find_map(ast::Trait::cast).is_some()
}
/// Returns `None` if no `self` at all, `Some(true)` if there is `&mut self` else `Some(false)`
fn is_ref_mut_self(ast_func: &ast::Fn) -> Option<bool> {
let self_param = ast_func.param_list()?.self_param()?;
Some(self_param.mut_token().is_some() && self_param.amp_token().is_some())
}
/// Helper function to define an variable to be the `self` argument
fn self_definition(ast_func: &ast::Fn, self_name: Option<&str>) -> Option<String> {
let definition = match is_ref_mut_self(ast_func)? {
true => format!("let mut {} = ;", self_name?),
false => format!("let {} = ;", self_name?),
};
Some(definition)
}
/// Helper function to determine if a parameter is `&mut`
fn is_a_ref_mut_param(param: &ast::Param) -> bool {
match param.ty() {
Some(ast::Type::RefType(param_ref)) => param_ref.mut_token().is_some(),
_ => false,
}
}
/// Helper function to build the list of `&mut` parameters
fn ref_mut_params(param_list: &ast::ParamList) -> Vec<String> {
param_list
.params()
.filter_map(|param| match is_a_ref_mut_param(&param) {
// Maybe better filter the param name (to do this maybe extract a function from
// `arguments_from_params`?) in case of a `mut a: &mut T`. Anyway managing most (not
// all) cases might be enough, the goal is just to produce a template.
true => Some(param.pat()?.to_string()),
false => None,
})
.collect()
}
/// Helper function to build the comma-separated list of arguments of the function
fn arguments_from_params(param_list: &ast::ParamList) -> String {
let args_iter = param_list.params().map(|param| match param.pat() {
// To avoid `mut` in the function call (which would be a nonsense), `Pat` should not be
// written as is so its variants must be managed independently. Other variants (for
// instance `TuplePat`) could be managed later.
Some(ast::Pat::IdentPat(ident_pat)) => match ident_pat.name() {
Some(name) => match is_a_ref_mut_param(&param) {
true => format!("&mut {}", name.to_string()),
false => name.to_string(),
},
None => "_".to_string(),
},
_ => "_".to_string(),
});
intersperse_string(args_iter, ", ")
}
/// Helper function to build a function call. `None` if expected `self_name` was not provided
fn function_call(
ast_func: &ast::Fn,
param_list: &ast::ParamList,
self_name: Option<&str>,
is_unsafe: bool,
) -> Option<String> {
let name = ast_func.name()?;
let arguments = arguments_from_params(&param_list);
let function_call = if param_list.self_param().is_some() {
format!("{}.{}({})", self_name?, name, arguments)
} else if let Some(implementation) = self_partial_type(ast_func) {
format!("{}::{}({})", implementation, name, arguments)
} else {
format!("{}({})", name, arguments)
};
match is_unsafe {
true => Some(format!("unsafe {{ {} }}", function_call)),
false => Some(function_call),
}
}
/// Helper function to count the parameters including `self`
fn count_parameters(param_list: &ast::ParamList) -> usize {
param_list.params().count() + if param_list.self_param().is_some() { 1 } else { 0 }
}
/// Helper function to transform lines of documentation into a Rust code documentation
fn documentation_from_lines(doc_lines: Vec<String>, indent_level: IndentLevel) -> String {
let mut result = String::new();
for doc_line in doc_lines {
result.push_str("///");
if !doc_line.is_empty() {
result.push(' ');
result.push_str(&doc_line);
}
result.push('\n');
result.push_str(&indent_level.to_string());
}
result
}
/// Helper function to transform an array of borrowed strings to an owned `Vec<String>`
fn string_vec_from(string_array: &[&str]) -> Vec<String> {
string_array.iter().map(|&s| s.to_owned()).collect()
}
/// Helper function to build the path of the module in the which is the node
fn build_path(ast_func: &ast::Fn, krate_name: String) -> String {
let mut path: Vec<String> = ast_func
.syntax()
.ancestors()
.filter_map(|m| ast::Module::cast(m).and_then(|m| m.name()))
.map(|m| m.to_string())
.collect();
path.push(krate_name);
path.reverse();
path.push(
self_partial_type(ast_func)
.or_else(|| ast_func.name().map(|n| n.to_string()))
.unwrap_or_else(|| "*".into()),
);
intersperse_string(path.into_iter(), "::")
}
/// Helper function to get the return type of a function
fn return_type(ast_func: &ast::Fn) -> Option<ast::Type> {
ast_func.ret_type()?.ty()
}
/// Helper function to determine if the function returns some data
fn returns_a_value(ast_func: &ast::Fn) -> bool {
match return_type(ast_func) {
Some(ret_type) => !["()", "!"].contains(&ret_type.to_string().as_str()),
None => false,
}
}
/// Helper function to concatenate string with a separator between them
fn intersperse_string(mut iter: impl Iterator<Item = String>, separator: &str) -> String {
let mut result = String::new();
if let Some(first) = iter.next() {
result.push_str(&first);
}
for string in iter {
result.push_str(separator);
result.push_str(&string);
}
result
}
#[cfg(test)]
mod tests {
use crate::tests::{check_assist, check_assist_not_applicable};
use super::*;
#[test]
fn not_applicable_on_function_calls() {
check_assist_not_applicable(
generate_documentation_template,
r#"
fn hello_world() {}
fn calls_hello_world() {
hello_world$0();
}
"#,
)
}
#[test]
fn not_applicable_in_trait_impl() {
check_assist_not_applicable(
generate_documentation_template,
r#"
trait MyTrait {}
struct MyStruct;
impl MyTrait for MyStruct {
fn hello_world$0();
}
"#,
)
}
#[test]
fn supports_noop_function() {
check_assist(
generate_documentation_template,
r#"
fn no$0op() {}
"#,
r#"
/// .
///
/// # Examples
///
/// ```
/// use test::noop;
///
/// noop();
/// ```
fn noop() {}
"#,
);
}
#[test]
fn supports_a_parameter() {
check_assist(
generate_documentation_template,
r#"
fn no$0op_with_param(_a: i32) {}
"#,
r#"
/// .
///
/// # Examples
///
/// ```
/// use test::noop_with_param;
///
/// noop_with_param(_a);
/// ```
fn noop_with_param(_a: i32) {}
"#,
);
}
#[test]
fn detects_unsafe_function() {
check_assist(
generate_documentation_template,
r#"
unsafe fn no$0op_unsafe() {}
"#,
r#"
/// .
///
/// # Examples
///
/// ```
/// use test::noop_unsafe;
///
/// unsafe { noop_unsafe() };
/// ```
///
/// # Safety
///
/// .
unsafe fn noop_unsafe() {}
"#,
);
}
#[test]
fn guesses_panic_macro_can_panic() {
check_assist(
generate_documentation_template,
r#"
fn panic$0s_if(a: bool) {
if a {
panic!();
}
}
"#,
r#"
/// .
///
/// # Examples
///
/// ```
/// use test::panics_if;
///
/// panics_if(a);
/// ```
///
/// ```should_panic
/// use test::panics_if;
///
/// panics_if(a); // panics
/// ```
///
/// # Panics
///
/// Panics if .
fn panics_if(a: bool) {
if a {
panic!();
}
}
"#,
);
}
#[test]
fn guesses_assert_macro_can_panic() {
check_assist(
generate_documentation_template,
r#"
fn $0panics_if_not(a: bool) {
assert!(a == true);
}
"#,
r#"
/// .
///
/// # Examples
///
/// ```
/// use test::panics_if_not;
///
/// panics_if_not(a);
/// ```
///
/// ```should_panic
/// use test::panics_if_not;
///
/// panics_if_not(a); // panics
/// ```
///
/// # Panics
///
/// Panics if .
fn panics_if_not(a: bool) {
assert!(a == true);
}
"#,
);
}
#[test]
fn guesses_unwrap_can_panic() {
check_assist(
generate_documentation_template,
r#"
fn $0panics_if_none(a: Option<()>) {
a.unwrap();
}
"#,
r#"
/// .
///
/// # Examples
///
/// ```
/// use test::panics_if_none;
///
/// panics_if_none(a);
/// ```
///
/// ```should_panic
/// use test::panics_if_none;
///
/// panics_if_none(a); // panics
/// ```
///
/// # Panics
///
/// Panics if .
fn panics_if_none(a: Option<()>) {
a.unwrap();
}
"#,
);
}
#[test]
fn guesses_expect_can_panic() {
check_assist(
generate_documentation_template,
r#"
fn $0panics_if_none2(a: Option<()>) {
a.expect("Bouh!");
}
"#,
r#"
/// .
///
/// # Examples
///
/// ```
/// use test::panics_if_none2;
///
/// panics_if_none2(a);
/// ```
///
/// ```should_panic
/// use test::panics_if_none2;
///
/// panics_if_none2(a); // panics
/// ```
///
/// # Panics
///
/// Panics if .
fn panics_if_none2(a: Option<()>) {
a.expect("Bouh!");
}
"#,
);
}
#[test]
fn checks_output_in_example() {
check_assist(
generate_documentation_template,
r#"
fn returns_a_value$0() -> i32 {
0
}
"#,
r#"
/// .
///
/// # Examples
///
/// ```
/// use test::returns_a_value;
///
/// assert_eq!(returns_a_value(), );
/// ```
fn returns_a_value() -> i32 {
0
}
"#,
);
}
#[test]
fn detects_result_output() {
check_assist(
generate_documentation_template,
r#"
fn returns_a_result$0() -> Result<i32, std::io::Error> {
Ok(0)
}
"#,
r#"
/// .
///
/// # Examples
///
/// ```
/// use test::returns_a_result;
///
/// assert_eq!(returns_a_result(), );
/// ```
///
/// # Errors
///
/// This function will return an error if .
fn returns_a_result() -> Result<i32, std::io::Error> {
Ok(0)
}
"#,
);
}
#[test]
fn checks_ref_mut_in_example() {
check_assist(
generate_documentation_template,
r#"
fn modifies_a_value$0(a: &mut i32) {
*a = 0;
}
"#,
r#"
/// .
///
/// # Examples
///
/// ```
/// use test::modifies_a_value;
///
/// let mut a = ;
/// modifies_a_value(&mut a);
/// assert_eq!(a, );
/// ```
fn modifies_a_value(a: &mut i32) {
*a = 0;
}
"#,
);
}
#[test]
fn stores_result_if_at_least_3_params() {
check_assist(
generate_documentation_template,
r#"
fn sum3$0(a: i32, b: i32, c: i32) -> i32 {
a + b + c
}
"#,
r#"
/// .
///
/// # Examples
///
/// ```
/// use test::sum3;
///
/// let result = sum3(a, b, c);
/// assert_eq!(result, );
/// ```
fn sum3(a: i32, b: i32, c: i32) -> i32 {
a + b + c
}
"#,
);
}
#[test]
fn supports_fn_in_mods() {
check_assist(
generate_documentation_template,
r#"
mod a {
mod b {
fn no$0op() {}
}
}
"#,
r#"
mod a {
mod b {
/// .
///
/// # Examples
///
/// ```
/// use test::a::b::noop;
///
/// noop();
/// ```
fn noop() {}
}
}
"#,
);
}
#[test]
fn supports_fn_in_impl() {
check_assist(
generate_documentation_template,
r#"
struct MyStruct;
impl MyStruct {
fn no$0op() {}
}
"#,
r#"
struct MyStruct;
impl MyStruct {
/// .
///
/// # Examples
///
/// ```
/// use test::MyStruct;
///
/// MyStruct::noop();
/// ```
fn noop() {}
}
"#,
);
}
#[test]
fn detects_new() {
check_assist(
generate_documentation_template,
r#"
#[derive(Debug, PartialEq)]
pub struct MyGenericStruct<T> {
pub x: T,
}
impl<T> MyGenericStruct<T> {
pub fn new$0(x: T) -> MyGenericStruct<T> {
MyGenericStruct { x }
}
}
"#,
r#"
#[derive(Debug, PartialEq)]
pub struct MyGenericStruct<T> {
pub x: T,
}
impl<T> MyGenericStruct<T> {
/// Creates a new [`MyGenericStruct<T>`].
///
/// # Examples
///
/// ```
/// use test::MyGenericStruct;
///
/// assert_eq!(MyGenericStruct::new(x), );
/// ```
pub fn new(x: T) -> MyGenericStruct<T> {
MyGenericStruct { x }
}
}
"#,
);
}
#[test]
fn detects_new_with_self() {
check_assist(
generate_documentation_template,
r#"
#[derive(Debug, PartialEq)]
pub struct MyGenericStruct2<T> {
pub x: T,
}
impl<T> MyGenericStruct2<T> {
pub fn new$0(x: T) -> Self {
MyGenericStruct2 { x }
}
}
"#,
r#"
#[derive(Debug, PartialEq)]
pub struct MyGenericStruct2<T> {
pub x: T,
}
impl<T> MyGenericStruct2<T> {
/// Creates a new [`MyGenericStruct2<T>`].
///
/// # Examples
///
/// ```
/// use test::MyGenericStruct2;
///
/// assert_eq!(MyGenericStruct2::new(x), );
/// ```
pub fn new(x: T) -> Self {
MyGenericStruct2 { x }
}
}
"#,
);
}
#[test]
fn supports_method_call() {
check_assist(
generate_documentation_template,
r#"
impl<T> MyGenericStruct<T> {
pub fn co$0nsume(self) {}
}
"#,
r#"
impl<T> MyGenericStruct<T> {
/// .
///
/// # Examples
///
/// ```
/// use test::MyGenericStruct;
///
/// let my_generic_struct = ;
/// my_generic_struct.consume();
/// ```
pub fn consume(self) {}
}
"#,
);
}
#[test]
fn checks_modified_self_param() {
check_assist(
generate_documentation_template,
r#"
impl<T> MyGenericStruct<T> {
pub fn modi$0fy(&mut self, new_value: T) {
self.x = new_value;
}
}
"#,
r#"
impl<T> MyGenericStruct<T> {
/// .
///
/// # Examples
///
/// ```
/// use test::MyGenericStruct;
///
/// let mut my_generic_struct = ;
/// my_generic_struct.modify(new_value);
/// assert_eq!(my_generic_struct, );
/// ```
pub fn modify(&mut self, new_value: T) {
self.x = new_value;
}
}
"#,
);
}
}