rust-analyzer/crates/hir_ty/src/infer/coerce.rs

457 lines
19 KiB
Rust
Raw Normal View History

//! Coercion logic. Coercions are certain type conversions that can implicitly
//! happen in certain places, e.g. weakening `&mut` to `&` or deref coercions
//! like going from `&Vec<T>` to `&[T]`.
//!
//! See https://doc.rust-lang.org/nomicon/coercions.html and
//! librustc_typeck/check/coercion.rs.
use chalk_ir::{cast::Cast, Mutability, TyVariableKind};
use hir_def::{expr::ExprId, lang_item::LangItemTarget};
use crate::{
autoderef, infer::TypeMismatch, static_lifetime, Canonical, DomainGoal, FnPointer, FnSig,
Interner, Solution, Substitution, Ty, TyBuilder, TyExt, TyKind,
};
use super::{InEnvironment, InferOk, InferResult, InferenceContext, TypeError};
2019-11-21 12:39:09 +00:00
impl<'a> InferenceContext<'a> {
/// Unify two types, but may coerce the first one to the second one
/// using "implicit coercion rules" if needed.
pub(super) fn coerce(&mut self, from_ty: &Ty, to_ty: &Ty) -> bool {
let from_ty = self.resolve_ty_shallow(from_ty);
let to_ty = self.resolve_ty_shallow(to_ty);
match self.coerce_inner(from_ty, &to_ty) {
Ok(result) => {
self.table.register_infer_ok(result);
true
}
Err(_) => {
// FIXME deal with error
false
}
}
}
/// Merge two types from different branches, with possible coercion.
///
/// Mostly this means trying to coerce one to the other, but
/// - if we have two function types for different functions or closures, we need to
/// coerce both to function pointers;
/// - if we were concerned with lifetime subtyping, we'd need to look for a
/// least upper bound.
pub(super) fn coerce_merge_branch(&mut self, id: Option<ExprId>, ty1: &Ty, ty2: &Ty) -> Ty {
let ty1 = self.resolve_ty_shallow(ty1);
let ty2 = self.resolve_ty_shallow(ty2);
// Special case: two function types. Try to coerce both to
// pointers to have a chance at getting a match. See
// https://github.com/rust-lang/rust/blob/7b805396bf46dce972692a6846ce2ad8481c5f85/src/librustc_typeck/check/coercion.rs#L877-L916
let sig = match (ty1.kind(&Interner), ty2.kind(&Interner)) {
(TyKind::FnDef(..), TyKind::FnDef(..))
| (TyKind::Closure(..), TyKind::FnDef(..))
| (TyKind::FnDef(..), TyKind::Closure(..))
| (TyKind::Closure(..), TyKind::Closure(..)) => {
// FIXME: we're ignoring safety here. To be more correct, if we have one FnDef and one Closure,
// we should be coercing the closure to a fn pointer of the safety of the FnDef
cov_mark::hit!(coerce_fn_reification);
let sig = ty1.callable_sig(self.db).expect("FnDef without callable sig");
Some(sig)
}
_ => None,
};
if let Some(sig) = sig {
let target_ty = TyKind::Function(sig.to_fn_ptr()).intern(&Interner);
let result1 = self.coerce_inner(ty1.clone(), &target_ty);
let result2 = self.coerce_inner(ty2.clone(), &target_ty);
if let (Ok(result1), Ok(result2)) = (result1, result2) {
self.table.register_infer_ok(result1);
self.table.register_infer_ok(result2);
return target_ty;
}
}
// It might not seem like it, but order is important here: ty1 is our
// "previous" type, ty2 is the "new" one being added. If the previous
// type is a type variable and the new one is `!`, trying it the other
// way around first would mean we make the type variable `!`, instead of
// just marking it as possibly diverging.
2021-05-16 13:56:27 +00:00
if self.coerce(&ty2, &ty1) {
ty1.clone()
2021-05-16 13:56:27 +00:00
} else if self.coerce(&ty1, &ty2) {
ty2.clone()
} else {
if let Some(id) = id {
self.result
.type_mismatches
.insert(id.into(), TypeMismatch { expected: ty1.clone(), actual: ty2.clone() });
}
cov_mark::hit!(coerce_merge_fail_fallback);
ty1.clone()
}
}
2021-05-02 14:20:37 +00:00
fn coerce_inner(&mut self, from_ty: Ty, to_ty: &Ty) -> InferResult {
if from_ty.is_never() {
// Subtle: If we are coercing from `!` to `?T`, where `?T` is an unbound
// type variable, we want `?T` to fallback to `!` if not
// otherwise constrained. An example where this arises:
//
// let _: Option<?T> = Some({ return; });
//
// here, we would coerce from `!` to `?T`.
match to_ty.kind(&Interner) {
TyKind::InferenceVar(tv, TyVariableKind::General) => {
2021-05-16 18:04:00 +00:00
self.table.set_diverging(*tv, true);
}
_ => {}
}
return Ok(InferOk { goals: Vec::new() });
}
// Consider coercing the subtype to a DST
if let Ok(ret) = self.try_coerce_unsized(&from_ty, &to_ty) {
return Ok(ret);
}
// Examine the supertype and consider auto-borrowing.
match to_ty.kind(&Interner) {
TyKind::Raw(mt, _) => {
return self.coerce_ptr(from_ty, to_ty, *mt);
}
TyKind::Ref(mt, _, _) => {
return self.coerce_ref(from_ty, to_ty, *mt);
}
_ => {}
}
match from_ty.kind(&Interner) {
TyKind::FnDef(..) => {
// Function items are coercible to any closure
// type; function pointers are not (that would
// require double indirection).
// Additionally, we permit coercion of function
// items to drop the unsafe qualifier.
self.coerce_from_fn_item(from_ty, to_ty)
}
TyKind::Function(from_fn_ptr) => {
// We permit coercion of fn pointers to drop the
// unsafe qualifier.
self.coerce_from_fn_pointer(from_ty.clone(), from_fn_ptr, to_ty)
2021-04-08 11:32:56 +00:00
}
TyKind::Closure(_, from_substs) => {
// Non-capturing closures are coercible to
// function pointers or unsafe function pointers.
// It cannot convert closures that require unsafe.
self.coerce_closure_to_fn(from_ty.clone(), from_substs, to_ty)
2021-02-28 18:13:37 +00:00
}
_ => {
// Otherwise, just use unification rules.
2021-05-21 16:20:56 +00:00
self.table.try_unify(&from_ty, to_ty)
}
}
}
fn coerce_ptr(&mut self, from_ty: Ty, to_ty: &Ty, to_mt: Mutability) -> InferResult {
let (_is_ref, from_mt, from_inner) = match from_ty.kind(&Interner) {
TyKind::Ref(mt, _, ty) => (true, mt, ty),
TyKind::Raw(mt, ty) => (false, mt, ty),
2021-05-21 16:20:56 +00:00
_ => return self.table.try_unify(&from_ty, to_ty),
};
coerce_mutabilities(*from_mt, to_mt)?;
// Check that the types which they point at are compatible.
let from_raw = TyKind::Raw(to_mt, from_inner.clone()).intern(&Interner);
// FIXME: behavior differs based on is_ref once we're computing adjustments
2021-05-21 16:20:56 +00:00
self.table.try_unify(&from_raw, to_ty)
}
/// Reborrows `&mut A` to `&mut B` and `&(mut) A` to `&B`.
/// To match `A` with `B`, autoderef will be performed,
/// calling `deref`/`deref_mut` where necessary.
fn coerce_ref(&mut self, from_ty: Ty, to_ty: &Ty, to_mt: Mutability) -> InferResult {
2021-05-02 14:20:37 +00:00
match from_ty.kind(&Interner) {
TyKind::Ref(mt, _, _) => {
coerce_mutabilities(*mt, to_mt)?;
}
2021-05-21 16:20:56 +00:00
_ => return self.table.try_unify(&from_ty, to_ty),
};
// NOTE: this code is mostly copied and adapted from rustc, and
// currently more complicated than necessary, carrying errors around
// etc.. This complication will become necessary when we actually track
// details of coercion errors though, so I think it's useful to leave
// the structure like it is.
let canonicalized = self.canonicalize(from_ty.clone());
2021-05-02 14:20:37 +00:00
let autoderef = autoderef::autoderef(
self.db,
self.resolver.krate(),
InEnvironment {
goal: canonicalized.value.clone(),
environment: self.trait_env.env.clone(),
2021-02-28 18:13:37 +00:00
},
);
let mut first_error = None;
let mut found = None;
for (autoderefs, referent_ty) in autoderef.enumerate() {
if autoderefs == 0 {
// Don't let this pass, otherwise it would cause
// &T to autoref to &&T.
continue;
}
let referent_ty = canonicalized.decanonicalize_ty(referent_ty.value);
// At this point, we have deref'd `a` to `referent_ty`. So
// imagine we are coercing from `&'a mut Vec<T>` to `&'b mut [T]`.
// In the autoderef loop for `&'a mut Vec<T>`, we would get
// three callbacks:
//
// - `&'a mut Vec<T>` -- 0 derefs, just ignore it
// - `Vec<T>` -- 1 deref
// - `[T]` -- 2 deref
//
// At each point after the first callback, we want to
// check to see whether this would match out target type
// (`&'b mut [T]`) if we autoref'd it. We can't just
// compare the referent types, though, because we still
// have to consider the mutability. E.g., in the case
// we've been considering, we have an `&mut` reference, so
// the `T` in `[T]` needs to be unified with equality.
//
// Therefore, we construct reference types reflecting what
// the types will be after we do the final auto-ref and
// compare those. Note that this means we use the target
// mutability [1], since it may be that we are coercing
// from `&mut T` to `&U`.
let lt = static_lifetime(); // FIXME: handle lifetimes correctly, see rustc
let derefd_from_ty = TyKind::Ref(to_mt, lt, referent_ty).intern(&Interner);
2021-05-21 16:20:56 +00:00
match self.table.try_unify(&derefd_from_ty, to_ty) {
Ok(result) => {
found = Some(result);
break;
}
Err(err) => {
if first_error.is_none() {
first_error = Some(err);
}
}
}
}
// Extract type or return an error. We return the first error
// we got, which should be from relating the "base" type
// (e.g., in example above, the failure from relating `Vec<T>`
// to the target type), since that should be the least
// confusing.
let result = match found {
Some(d) => d,
None => {
let err = first_error.expect("coerce_borrowed_pointer had no error");
return Err(err);
}
};
Ok(result)
}
/// Attempts to coerce from the type of a Rust function item into a function pointer.
fn coerce_from_fn_item(&mut self, from_ty: Ty, to_ty: &Ty) -> InferResult {
match to_ty.kind(&Interner) {
2021-05-02 14:20:37 +00:00
TyKind::Function(_) => {
let from_sig = from_ty.callable_sig(self.db).expect("FnDef had no sig");
// FIXME check ABI: Intrinsics are not coercible to function pointers
// FIXME Safe `#[target_feature]` functions are not assignable to safe fn pointers (RFC 2396)
// FIXME rustc normalizes assoc types in the sig here, not sure if necessary
let from_sig = from_sig.to_fn_ptr();
let from_fn_pointer = TyKind::Function(from_sig.clone()).intern(&Interner);
let ok = self.coerce_from_safe_fn(from_fn_pointer, &from_sig, to_ty)?;
Ok(ok)
}
2021-05-21 16:20:56 +00:00
_ => self.table.try_unify(&from_ty, to_ty),
}
}
fn coerce_from_fn_pointer(
&mut self,
from_ty: Ty,
from_f: &FnPointer,
to_ty: &Ty,
) -> InferResult {
self.coerce_from_safe_fn(from_ty, from_f, to_ty)
}
fn coerce_from_safe_fn(
&mut self,
from_ty: Ty,
from_fn_ptr: &FnPointer,
to_ty: &Ty,
) -> InferResult {
if let TyKind::Function(to_fn_ptr) = to_ty.kind(&Interner) {
if let (chalk_ir::Safety::Safe, chalk_ir::Safety::Unsafe) =
(from_fn_ptr.sig.safety, to_fn_ptr.sig.safety)
{
let from_unsafe =
TyKind::Function(safe_to_unsafe_fn_ty(from_fn_ptr.clone())).intern(&Interner);
2021-05-21 16:20:56 +00:00
return self.table.try_unify(&from_unsafe, to_ty);
2021-04-05 20:08:16 +00:00
}
}
2021-05-21 16:20:56 +00:00
self.table.try_unify(&from_ty, to_ty)
}
/// Attempts to coerce from the type of a non-capturing closure into a
/// function pointer.
fn coerce_closure_to_fn(
&mut self,
from_ty: Ty,
from_substs: &Substitution,
to_ty: &Ty,
) -> InferResult {
match to_ty.kind(&Interner) {
TyKind::Function(fn_ty) /* if from_substs is non-capturing (FIXME) */ => {
// We coerce the closure, which has fn type
// `extern "rust-call" fn((arg0,arg1,...)) -> _`
// to
// `fn(arg0,arg1,...) -> _`
// or
// `unsafe fn(arg0,arg1,...) -> _`
let safety = fn_ty.sig.safety;
let pointer_ty = coerce_closure_fn_ty(from_substs, safety);
2021-05-21 16:20:56 +00:00
self.table.try_unify(&pointer_ty, to_ty)
}
2021-05-21 16:20:56 +00:00
_ => self.table.try_unify(&from_ty, to_ty),
}
}
/// Coerce a type using `from_ty: CoerceUnsized<ty_ty>`
///
/// See: https://doc.rust-lang.org/nightly/std/marker/trait.CoerceUnsized.html
fn try_coerce_unsized(&mut self, from_ty: &Ty, to_ty: &Ty) -> InferResult {
// These 'if' statements require some explanation.
// The `CoerceUnsized` trait is special - it is only
// possible to write `impl CoerceUnsized<B> for A` where
// A and B have 'matching' fields. This rules out the following
// two types of blanket impls:
//
// `impl<T> CoerceUnsized<T> for SomeType`
// `impl<T> CoerceUnsized<SomeType> for T`
//
// Both of these trigger a special `CoerceUnsized`-related error (E0376)
//
// We can take advantage of this fact to avoid performing unecessary work.
// If either `source` or `target` is a type variable, then any applicable impl
// would need to be generic over the self-type (`impl<T> CoerceUnsized<SomeType> for T`)
// or generic over the `CoerceUnsized` type parameter (`impl<T> CoerceUnsized<T> for
// SomeType`).
//
// However, these are exactly the kinds of impls which are forbidden by
// the compiler! Therefore, we can be sure that coercion will always fail
// when either the source or target type is a type variable. This allows us
// to skip performing any trait selection, and immediately bail out.
if from_ty.is_ty_var() {
return Err(TypeError);
}
if to_ty.is_ty_var() {
return Err(TypeError);
}
// Handle reborrows before trying to solve `Source: CoerceUnsized<Target>`.
let coerce_from = match (from_ty.kind(&Interner), to_ty.kind(&Interner)) {
(TyKind::Ref(from_mt, _, from_inner), TyKind::Ref(to_mt, _, _)) => {
coerce_mutabilities(*from_mt, *to_mt)?;
let lt = static_lifetime();
TyKind::Ref(*to_mt, lt, from_inner.clone()).intern(&Interner)
}
(TyKind::Ref(from_mt, _, from_inner), TyKind::Raw(to_mt, _)) => {
coerce_mutabilities(*from_mt, *to_mt)?;
TyKind::Raw(*to_mt, from_inner.clone()).intern(&Interner)
}
_ => from_ty.clone(),
};
let krate = self.resolver.krate().unwrap();
let coerce_unsized_trait = match self.db.lang_item(krate, "coerce_unsized".into()) {
Some(LangItemTarget::TraitId(trait_)) => trait_,
_ => return Err(TypeError),
};
2021-04-03 19:59:13 +00:00
let trait_ref = {
let b = TyBuilder::trait_ref(self.db, coerce_unsized_trait);
if b.remaining() != 2 {
// The CoerceUnsized trait should have two generic params: Self and T.
return Err(TypeError);
2021-04-03 19:59:13 +00:00
}
b.push(coerce_from.clone()).push(to_ty.clone()).build()
2021-04-03 19:59:13 +00:00
};
let goal: InEnvironment<DomainGoal> =
InEnvironment::new(&self.trait_env.env, trait_ref.cast(&Interner));
let canonicalized = self.canonicalize(goal);
// FIXME: rustc's coerce_unsized is more specialized -- it only tries to
// solve `CoerceUnsized` and `Unsize` goals at this point and leaves the
// rest for later. Also, there's some logic about sized type variables.
// Need to find out in what cases this is necessary
let solution = self
.db
.trait_solve(krate, canonicalized.value.clone().cast(&Interner))
.ok_or(TypeError)?;
match solution {
Solution::Unique(v) => {
canonicalized.apply_solution(
&mut self.table,
Canonical {
binders: v.binders,
// FIXME handle constraints
value: v.value.subst,
},
);
}
// FIXME: should we accept ambiguous results here?
_ => return Err(TypeError),
};
Ok(InferOk { goals: Vec::new() })
}
}
fn coerce_closure_fn_ty(closure_substs: &Substitution, safety: chalk_ir::Safety) -> Ty {
let closure_sig = closure_substs.at(&Interner, 0).assert_ty_ref(&Interner).clone();
match closure_sig.kind(&Interner) {
TyKind::Function(fn_ty) => TyKind::Function(FnPointer {
num_binders: fn_ty.num_binders,
sig: FnSig { safety, ..fn_ty.sig },
substitution: fn_ty.substitution.clone(),
})
.intern(&Interner),
_ => TyKind::Error.intern(&Interner),
}
}
fn safe_to_unsafe_fn_ty(fn_ty: FnPointer) -> FnPointer {
FnPointer {
num_binders: fn_ty.num_binders,
sig: FnSig { safety: chalk_ir::Safety::Unsafe, ..fn_ty.sig },
substitution: fn_ty.substitution,
}
}
fn coerce_mutabilities(from: Mutability, to: Mutability) -> Result<(), TypeError> {
match (from, to) {
(Mutability::Mut, Mutability::Mut)
| (Mutability::Mut, Mutability::Not)
| (Mutability::Not, Mutability::Not) => Ok(()),
(Mutability::Not, Mutability::Mut) => Err(TypeError),
}
}