rust-analyzer/crates/ra_assists/src/assist_ctx.rs

172 lines
5.8 KiB
Rust
Raw Normal View History

2019-02-03 18:26:35 +00:00
use hir::db::HirDatabase;
use ra_text_edit::TextEditBuilder;
use ra_db::FileRange;
use ra_syntax::{
2019-03-30 10:25:53 +00:00
SourceFile, TextRange, AstNode, TextUnit, SyntaxNode, SyntaxElement, SyntaxToken,
algo::{find_token_at_offset, find_node_at_offset, find_covering_element, TokenAtOffset},
2019-02-03 18:26:35 +00:00
};
use ra_fmt::{leading_indent, reindent};
2019-02-03 18:26:35 +00:00
2019-02-24 10:53:35 +00:00
use crate::{AssistLabel, AssistAction, AssistId};
2019-02-03 18:26:35 +00:00
#[derive(Clone, Debug)]
2019-02-03 18:26:35 +00:00
pub(crate) enum Assist {
Unresolved(Vec<AssistLabel>),
Resolved(Vec<(AssistLabel, AssistAction)>),
2019-02-03 18:26:35 +00:00
}
/// `AssistCtx` allows to apply an assist or check if it could be applied.
///
2019-02-08 21:43:13 +00:00
/// Assists use a somewhat over-engineered approach, given the current needs. The
2019-02-03 18:26:35 +00:00
/// assists workflow consists of two phases. In the first phase, a user asks for
/// the list of available assists. In the second phase, the user picks a
/// particular assist and it gets applied.
///
/// There are two peculiarities here:
///
/// * first, we ideally avoid computing more things then necessary to answer
/// "is assist applicable" in the first phase.
/// * second, when we are applying assist, we don't have a guarantee that there
/// weren't any changes between the point when user asked for assists and when
/// they applied a particular assist. So, when applying assist, we need to do
/// all the checks from scratch.
///
/// To avoid repeating the same code twice for both "check" and "apply"
/// functions, we use an approach reminiscent of that of Django's function based
/// views dealing with forms. Each assist receives a runtime parameter,
/// `should_compute_edit`. It first check if an edit is applicable (potentially
/// computing info required to compute the actual edit). If it is applicable,
/// and `should_compute_edit` is `true`, it then computes the actual edit.
///
/// So, to implement the original assists workflow, we can first apply each edit
/// with `should_compute_edit = false`, and then applying the selected edit
/// again, with `should_compute_edit = true` this time.
///
/// Note, however, that we don't actually use such two-phase logic at the
/// moment, because the LSP API is pretty awkward in this place, and it's much
/// easier to just compute the edit eagerly :-)#[derive(Debug, Clone)]
#[derive(Debug)]
pub(crate) struct AssistCtx<'a, DB> {
pub(crate) db: &'a DB,
pub(crate) frange: FileRange,
source_file: &'a SourceFile,
should_compute_edit: bool,
assist: Assist,
2019-02-03 18:26:35 +00:00
}
impl<'a, DB> Clone for AssistCtx<'a, DB> {
fn clone(&self) -> Self {
AssistCtx {
db: self.db,
frange: self.frange,
source_file: self.source_file,
should_compute_edit: self.should_compute_edit,
assist: self.assist.clone(),
2019-02-03 18:26:35 +00:00
}
}
}
impl<'a, DB: HirDatabase> AssistCtx<'a, DB> {
pub(crate) fn with_ctx<F, T>(db: &DB, frange: FileRange, should_compute_edit: bool, f: F) -> T
where
F: FnOnce(AssistCtx<DB>) -> T,
{
let source_file = &db.parse(frange.file_id);
let assist =
if should_compute_edit { Assist::Resolved(vec![]) } else { Assist::Unresolved(vec![]) };
let ctx = AssistCtx { db, frange, source_file, should_compute_edit, assist };
2019-02-03 18:26:35 +00:00
f(ctx)
}
pub(crate) fn add_action(
&mut self,
2019-02-24 10:53:35 +00:00
id: AssistId,
2019-02-03 18:26:35 +00:00
label: impl Into<String>,
f: impl FnOnce(&mut AssistBuilder),
) -> &mut Self {
2019-02-24 10:53:35 +00:00
let label = AssistLabel { label: label.into(), id };
match &mut self.assist {
Assist::Unresolved(labels) => labels.push(label),
Assist::Resolved(labels_actions) => {
let action = {
let mut edit = AssistBuilder::default();
f(&mut edit);
edit.build()
};
labels_actions.push((label, action));
}
2019-02-03 18:26:35 +00:00
}
self
}
pub(crate) fn build(self) -> Option<Assist> {
Some(self.assist)
2019-02-03 18:26:35 +00:00
}
2019-03-30 10:25:53 +00:00
pub(crate) fn token_at_offset(&self) -> TokenAtOffset<SyntaxToken<'a>> {
find_token_at_offset(self.source_file.syntax(), self.frange.range.start())
2019-02-03 18:26:35 +00:00
}
pub(crate) fn node_at_offset<N: AstNode>(&self) -> Option<&'a N> {
find_node_at_offset(self.source_file.syntax(), self.frange.range.start())
}
2019-03-30 10:25:53 +00:00
pub(crate) fn covering_element(&self) -> SyntaxElement<'a> {
find_covering_element(self.source_file.syntax(), self.frange.range)
2019-02-03 18:26:35 +00:00
}
pub(crate) fn covering_node_for_range(&self, range: TextRange) -> SyntaxElement<'a> {
find_covering_element(self.source_file.syntax(), range)
}
2019-02-03 18:26:35 +00:00
}
#[derive(Default)]
pub(crate) struct AssistBuilder {
edit: TextEditBuilder,
cursor_position: Option<TextUnit>,
2019-02-08 21:43:13 +00:00
target: Option<TextRange>,
2019-02-03 18:26:35 +00:00
}
impl AssistBuilder {
pub(crate) fn replace(&mut self, range: TextRange, replace_with: impl Into<String>) {
self.edit.replace(range, replace_with.into())
}
pub(crate) fn replace_node_and_indent(
&mut self,
node: &SyntaxNode,
replace_with: impl Into<String>,
) {
let mut replace_with = replace_with.into();
if let Some(indent) = leading_indent(node) {
replace_with = reindent(&replace_with, indent)
}
self.replace(node.range(), replace_with)
}
#[allow(unused)]
pub(crate) fn delete(&mut self, range: TextRange) {
self.edit.delete(range)
}
pub(crate) fn insert(&mut self, offset: TextUnit, text: impl Into<String>) {
self.edit.insert(offset, text.into())
}
pub(crate) fn set_cursor(&mut self, offset: TextUnit) {
self.cursor_position = Some(offset)
}
2019-02-08 21:43:13 +00:00
pub(crate) fn target(&mut self, target: TextRange) {
self.target = Some(target)
}
2019-02-03 18:26:35 +00:00
fn build(self) -> AssistAction {
2019-02-08 21:43:13 +00:00
AssistAction {
edit: self.edit.finish(),
cursor_position: self.cursor_position,
target: self.target,
}
2019-02-03 18:26:35 +00:00
}
}