rust-analyzer/crates/hir_ty/src/utils.rs

265 lines
9.6 KiB
Rust
Raw Normal View History

2019-11-26 14:26:08 +00:00
//! Helper functions for working with def, which don't need to be a separate
//! query, but can't be computed directly from `*Data` (ie, which need a `db`).
2019-11-27 13:25:01 +00:00
use std::sync::Arc;
2019-11-26 14:26:08 +00:00
2019-11-26 13:59:24 +00:00
use hir_def::{
2019-11-27 13:25:01 +00:00
adt::VariantData,
2019-11-26 13:59:24 +00:00
db::DefDatabase,
generics::{
GenericParams, TypeParamData, TypeParamProvenance, WherePredicate, WherePredicateTypeTarget,
},
path::Path,
2019-11-26 13:59:24 +00:00
resolver::{HasResolver, TypeNs},
type_ref::TypeRef,
2019-12-20 10:59:50 +00:00
AssocContainerId, GenericDefId, Lookup, TraitId, TypeAliasId, TypeParamId, VariantId,
2019-11-26 13:59:24 +00:00
};
2019-12-13 21:01:06 +00:00
use hir_expand::name::{name, Name};
2019-11-26 13:59:24 +00:00
use crate::{db::HirDatabase, GenericPredicate, TraitRef};
fn direct_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> Vec<TraitId> {
2019-11-26 13:59:24 +00:00
let resolver = trait_.resolver(db);
// returning the iterator directly doesn't easily work because of
// lifetime problems, but since there usually shouldn't be more than a
// few direct traits this should be fine (we could even use some kind of
// SmallVec if performance is a concern)
let generic_params = db.generic_params(trait_.into());
let trait_self = generic_params.find_trait_self_param();
generic_params
2019-11-26 13:59:24 +00:00
.where_predicates
.iter()
2020-12-11 12:49:32 +00:00
.filter_map(|pred| match pred {
WherePredicate::ForLifetime { target, bound, .. }
| WherePredicate::TypeBound { target, bound } => match target {
2020-12-11 12:49:32 +00:00
WherePredicateTypeTarget::TypeRef(TypeRef::Path(p))
if p == &Path::from(name![Self]) =>
{
bound.as_path()
}
WherePredicateTypeTarget::TypeParam(local_id) if Some(*local_id) == trait_self => {
bound.as_path()
}
_ => None,
},
WherePredicate::Lifetime { .. } => None,
2019-11-26 13:59:24 +00:00
})
.filter_map(|path| match resolver.resolve_path_in_type_ns_fully(db, path.mod_path()) {
2019-11-26 13:59:24 +00:00
Some(TypeNs::TraitId(t)) => Some(t),
_ => None,
})
.collect()
}
fn direct_super_trait_refs(db: &dyn HirDatabase, trait_ref: &TraitRef) -> Vec<TraitRef> {
// returning the iterator directly doesn't easily work because of
// lifetime problems, but since there usually shouldn't be more than a
// few direct traits this should be fine (we could even use some kind of
// SmallVec if performance is a concern)
2021-03-18 20:53:19 +00:00
let generic_params = db.generic_params(trait_ref.hir_trait_id().into());
let trait_self = match generic_params.find_trait_self_param() {
2021-03-18 20:53:19 +00:00
Some(p) => TypeParamId { parent: trait_ref.hir_trait_id().into(), local_id: p },
None => return Vec::new(),
};
db.generic_predicates_for_param(trait_self)
.iter()
.filter_map(|pred| {
pred.as_ref().filter_map(|pred| match pred {
GenericPredicate::Implemented(tr) => Some(tr.clone()),
_ => None,
})
})
2021-03-18 20:53:19 +00:00
.map(|pred| pred.subst(&trait_ref.substitution))
.collect()
}
2019-11-26 13:59:24 +00:00
/// Returns an iterator over the whole super trait hierarchy (including the
/// trait itself).
pub(super) fn all_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> Vec<TraitId> {
2019-11-26 13:59:24 +00:00
// we need to take care a bit here to avoid infinite loops in case of cycles
// (i.e. if we have `trait A: B; trait B: A;`)
let mut result = vec![trait_];
let mut i = 0;
while i < result.len() {
let t = result[i];
// yeah this is quadratic, but trait hierarchies should be flat
// enough that this doesn't matter
for tt in direct_super_traits(db, t) {
if !result.contains(&tt) {
result.push(tt);
}
}
i += 1;
}
result
}
2019-11-26 14:42:21 +00:00
/// Given a trait ref (`Self: Trait`), builds all the implied trait refs for
/// super traits. The original trait ref will be included. So the difference to
/// `all_super_traits` is that we keep track of type parameters; for example if
/// we have `Self: Trait<u32, i32>` and `Trait<T, U>: OtherTrait<U>` we'll get
/// `Self: OtherTrait<i32>`.
pub(super) fn all_super_trait_refs(db: &dyn HirDatabase, trait_ref: TraitRef) -> Vec<TraitRef> {
// we need to take care a bit here to avoid infinite loops in case of cycles
// (i.e. if we have `trait A: B; trait B: A;`)
let mut result = vec![trait_ref];
let mut i = 0;
while i < result.len() {
let t = &result[i];
// yeah this is quadratic, but trait hierarchies should be flat
// enough that this doesn't matter
for tt in direct_super_trait_refs(db, t) {
2021-03-18 20:53:19 +00:00
if !result.iter().any(|tr| tr.trait_id == tt.trait_id) {
result.push(tt);
}
}
i += 1;
}
result
}
2019-11-26 15:02:50 +00:00
pub(super) fn associated_type_by_name_including_super_traits(
db: &dyn HirDatabase,
trait_ref: TraitRef,
2019-11-26 14:42:21 +00:00
name: &Name,
) -> Option<(TraitRef, TypeAliasId)> {
all_super_trait_refs(db, trait_ref).into_iter().find_map(|t| {
2021-03-18 20:53:19 +00:00
let assoc_type = db.trait_data(t.hir_trait_id()).associated_type_by_name(name)?;
Some((t, assoc_type))
})
2019-11-26 14:42:21 +00:00
}
2019-11-27 13:25:01 +00:00
pub(super) fn variant_data(db: &dyn DefDatabase, var: VariantId) -> Arc<VariantData> {
2019-11-27 13:25:01 +00:00
match var {
VariantId::StructId(it) => db.struct_data(it).variant_data.clone(),
VariantId::UnionId(it) => db.union_data(it).variant_data.clone(),
VariantId::EnumVariantId(it) => {
db.enum_data(it.parent).variants[it.local_id].variant_data.clone()
}
}
}
2019-11-27 14:46:02 +00:00
/// Helper for mutating `Arc<[T]>` (i.e. `Arc::make_mut` for Arc slices).
/// The underlying values are cloned if there are other strong references.
pub(crate) fn make_mut_slice<T: Clone>(a: &mut Arc<[T]>) -> &mut [T] {
if Arc::get_mut(a).is_none() {
*a = a.iter().cloned().collect();
}
Arc::get_mut(a).unwrap()
}
pub(crate) fn generics(db: &dyn DefDatabase, def: GenericDefId) -> Generics {
let parent_generics = parent_generic_def(db, def).map(|def| Box::new(generics(db, def)));
Generics { def, params: db.generic_params(def), parent_generics }
}
#[derive(Debug)]
pub(crate) struct Generics {
def: GenericDefId,
pub(crate) params: Arc<GenericParams>,
parent_generics: Option<Box<Generics>>,
}
impl Generics {
2020-02-07 14:13:15 +00:00
pub(crate) fn iter<'a>(
&'a self,
) -> impl Iterator<Item = (TypeParamId, &'a TypeParamData)> + 'a {
self.parent_generics
.as_ref()
.into_iter()
2020-02-07 14:13:15 +00:00
.flat_map(|it| {
it.params
.types
.iter()
.map(move |(local_id, p)| (TypeParamId { parent: it.def, local_id }, p))
})
.chain(
self.params
.types
.iter()
.map(move |(local_id, p)| (TypeParamId { parent: self.def, local_id }, p)),
)
}
2020-02-07 14:13:15 +00:00
pub(crate) fn iter_parent<'a>(
&'a self,
) -> impl Iterator<Item = (TypeParamId, &'a TypeParamData)> + 'a {
self.parent_generics.as_ref().into_iter().flat_map(|it| {
it.params
.types
.iter()
.map(move |(local_id, p)| (TypeParamId { parent: it.def, local_id }, p))
})
}
2019-12-07 12:05:05 +00:00
pub(crate) fn len(&self) -> usize {
self.len_split().0
}
2019-12-07 12:05:05 +00:00
/// (total, parents, child)
pub(crate) fn len_split(&self) -> (usize, usize, usize) {
let parent = self.parent_generics.as_ref().map_or(0, |p| p.len());
let child = self.params.types.len();
2019-12-07 12:05:05 +00:00
(parent + child, parent, child)
}
/// (parent total, self param, type param list, impl trait)
pub(crate) fn provenance_split(&self) -> (usize, usize, usize, usize) {
let parent = self.parent_generics.as_ref().map_or(0, |p| p.len());
2020-02-07 14:13:15 +00:00
let self_params = self
.params
.types
.iter()
.filter(|(_, p)| p.provenance == TypeParamProvenance::TraitSelf)
.count();
let list_params = self
.params
.types
.iter()
.filter(|(_, p)| p.provenance == TypeParamProvenance::TypeParamList)
.count();
let impl_trait_params = self
.params
.types
.iter()
.filter(|(_, p)| p.provenance == TypeParamProvenance::ArgumentImplTrait)
.count();
(parent, self_params, list_params, impl_trait_params)
}
pub(crate) fn param_idx(&self, param: TypeParamId) -> Option<usize> {
2020-01-31 15:52:43 +00:00
Some(self.find_param(param)?.0)
}
fn find_param(&self, param: TypeParamId) -> Option<(usize, &TypeParamData)> {
if param.parent == self.def {
let (idx, (_local_id, data)) = self
.params
.types
.iter()
.enumerate()
.find(|(_, (idx, _))| *idx == param.local_id)
.unwrap();
2019-12-07 12:05:05 +00:00
let (_total, parent_len, _child) = self.len_split();
Some((parent_len + idx, data))
2020-01-31 15:52:43 +00:00
} else {
self.parent_generics.as_ref().and_then(|g| g.find_param(param))
}
}
}
fn parent_generic_def(db: &dyn DefDatabase, def: GenericDefId) -> Option<GenericDefId> {
let container = match def {
GenericDefId::FunctionId(it) => it.lookup(db).container,
GenericDefId::TypeAliasId(it) => it.lookup(db).container,
GenericDefId::ConstId(it) => it.lookup(db).container,
GenericDefId::EnumVariantId(it) => return Some(it.parent.into()),
GenericDefId::AdtId(_) | GenericDefId::TraitId(_) | GenericDefId::ImplId(_) => return None,
};
match container {
2019-12-20 10:59:50 +00:00
AssocContainerId::ImplId(it) => Some(it.into()),
AssocContainerId::TraitId(it) => Some(it.into()),
AssocContainerId::ModuleId(_) => None,
}
}