rust-analyzer/crates/ra_assists/src/auto_import.rs

775 lines
22 KiB
Rust
Raw Normal View History

2019-02-06 14:34:37 +00:00
use hir::db::HirDatabase;
use ra_syntax::{
ast, AstNode, SyntaxNode, Direction, TextRange,
SyntaxKind::{ PATH, PATH_SEGMENT, COLONCOLON, COMMA }
};
use crate::assist_ctx::{AssistCtx, Assist, AssistBuilder};
use itertools::{ Itertools, EitherOrBoth };
// TODO: refactor this before merge
mod formatting {
use ra_syntax::{
AstNode, SyntaxNode,
ast::{self, AstToken},
algo::generate,
};
/// If the node is on the beginning of the line, calculate indent.
pub fn leading_indent(node: &SyntaxNode) -> Option<&str> {
for leaf in prev_leaves(node) {
if let Some(ws) = ast::Whitespace::cast(leaf) {
let ws_text = ws.text();
if let Some(pos) = ws_text.rfind('\n') {
return Some(&ws_text[pos + 1..]);
}
}
if leaf.leaf_text().unwrap().contains('\n') {
break;
}
}
None
}
fn prev_leaves(node: &SyntaxNode) -> impl Iterator<Item = &SyntaxNode> {
generate(prev_leaf(node), |&node| prev_leaf(node))
}
fn prev_leaf(node: &SyntaxNode) -> Option<&SyntaxNode> {
generate(node.ancestors().find_map(SyntaxNode::prev_sibling), |it| {
it.last_child()
})
.last()
}
}
fn collect_path_segments(path: &ast::Path) -> Option<Vec<&ast::PathSegment>> {
let mut v = Vec::new();
collect_path_segments_raw(&mut v, path)?;
return Some(v);
}
fn collect_path_segments_raw<'a>(
segments: &mut Vec<&'a ast::PathSegment>,
2019-02-06 14:34:37 +00:00
mut path: &'a ast::Path,
) -> Option<usize> {
let oldlen = segments.len();
loop {
let mut children = path.syntax().children();
let (first, second, third) = (
children.next().map(|n| (n, n.kind())),
children.next().map(|n| (n, n.kind())),
children.next().map(|n| (n, n.kind())),
);
match (first, second, third) {
(Some((subpath, PATH)), Some((_, COLONCOLON)), Some((segment, PATH_SEGMENT))) => {
path = ast::Path::cast(subpath)?;
segments.push(ast::PathSegment::cast(segment)?);
}
(Some((segment, PATH_SEGMENT)), _, _) => {
segments.push(ast::PathSegment::cast(segment)?);
break;
}
(_, _, _) => return None,
}
}
// We need to reverse only the new added segments
let only_new_segments = segments.split_at_mut(oldlen).1;
only_new_segments.reverse();
return Some(segments.len() - oldlen);
}
fn fmt_segments(segments: &[&ast::PathSegment]) -> String {
let mut buf = String::new();
fmt_segments_raw(segments, &mut buf);
return buf;
}
fn fmt_segments_raw(segments: &[&ast::PathSegment], buf: &mut String) {
let mut first = true;
for s in segments {
if !first {
buf.push_str("::");
}
match s.kind() {
Some(ast::PathSegmentKind::Name(nameref)) => buf.push_str(nameref.text()),
Some(ast::PathSegmentKind::SelfKw) => buf.push_str("self"),
Some(ast::PathSegmentKind::SuperKw) => buf.push_str("super"),
Some(ast::PathSegmentKind::CrateKw) => buf.push_str("crate"),
None => {}
}
first = false;
}
}
#[derive(Copy, Clone)]
enum PathSegmentsMatch {
// Patch matches exactly
Full,
// When some of the segments matched
Partial(usize),
// When all the segments of the right path are matched against the left path,
// but the left path is longer.
PartialLeft(usize),
// When all the segments of the left path are matched against the right path,
// but the right path is longer.
PartialRight(usize),
// In all the three cases above we keep track of how many segments matched
}
fn compare_path_segments(
left: &[&ast::PathSegment],
right: &[&ast::PathSegment],
) -> PathSegmentsMatch {
let mut matching = 0;
for either_or_both in left.iter().zip_longest(right.iter()) {
match either_or_both {
EitherOrBoth::Both(left, right) => {
if compare_path_segment(left, right) {
matching += 1
} else {
return PathSegmentsMatch::Partial(matching);
2019-02-06 14:34:37 +00:00
}
}
EitherOrBoth::Left(_) => {
return PathSegmentsMatch::PartialLeft(matching);
}
EitherOrBoth::Right(_) => {
return PathSegmentsMatch::PartialRight(matching);
}
}
}
return PathSegmentsMatch::Full;
}
fn compare_path_segment(a: &ast::PathSegment, b: &ast::PathSegment) -> bool {
if let (Some(ka), Some(kb)) = (a.kind(), b.kind()) {
match (ka, kb) {
2019-02-06 14:34:37 +00:00
(ast::PathSegmentKind::Name(nameref_a), ast::PathSegmentKind::Name(nameref_b)) => {
nameref_a.text() == nameref_b.text()
}
(ast::PathSegmentKind::SelfKw, ast::PathSegmentKind::SelfKw) => true,
(ast::PathSegmentKind::SuperKw, ast::PathSegmentKind::SuperKw) => true,
(ast::PathSegmentKind::CrateKw, ast::PathSegmentKind::CrateKw) => true,
(_, _) => false,
}
2019-02-06 14:34:37 +00:00
} else {
false
}
}
fn compare_path_segment_with_name(a: &ast::PathSegment, b: &ast::Name) -> bool {
if let Some(ka) = a.kind() {
return match (ka, b) {
(ast::PathSegmentKind::Name(nameref_a), _) => nameref_a.text() == b.text(),
(_, _) => false,
};
} else {
false
}
}
#[derive(Copy, Clone)]
enum ImportAction<'a> {
Nothing,
// Add a brand new use statement.
AddNewUse(
Option<&'a SyntaxNode>, // anchor node
bool, // true if we want to add the new statement after the anchor
),
// In the following actions we keep track of how may segments matched,
// so we can choose the best action to take.
// To split an existing use statement creating a nested import.
AddNestedImport(
usize,
&'a ast::Path, // the complete path we want to split
Option<&'a ast::PathSegment>, // the first segment of path we want to add into the new nested list
bool, // true if we want to add 'self' in addition to the segment
),
// To add the target path to an existing nested import tree list.
AddInTreeList(
usize,
&'a ast::UseTreeList,
bool, // true if we want to add 'self'
),
}
impl<'a> ImportAction<'a> {
fn better<'b>(left: &'b ImportAction<'a>, right: &'b ImportAction<'a>) -> &'b ImportAction<'a> {
if left.is_better(right) {
left
} else {
right
}
}
fn is_better(&self, other: &ImportAction) -> bool {
match (self, other) {
(ImportAction::Nothing, _) => true,
(ImportAction::AddInTreeList(..), ImportAction::Nothing) => false,
(ImportAction::AddNestedImport(n, ..), ImportAction::AddInTreeList(m, ..)) => n > m,
(ImportAction::AddInTreeList(n, ..), ImportAction::AddNestedImport(m, ..)) => n > m,
(ImportAction::AddInTreeList(..), _) => true,
(ImportAction::AddNestedImport(..), ImportAction::Nothing) => false,
(ImportAction::AddNestedImport(..), _) => true,
(ImportAction::AddNewUse(..), _) => false,
}
}
}
// Find out the best ImportAction to import target path against current_use_tree.
// If current_use_tree has a nested import the function gets called recursively on every UseTree inside a UseTreeList.
fn walk_use_tree_for_best_action<'a>(
current_path_segments: &mut Vec<&'a ast::PathSegment>, // buffer containing path segments
2019-02-06 14:34:37 +00:00
current_parent_use_tree_list: Option<&'a ast::UseTreeList>, // will be Some value if we are in a nested import
current_use_tree: &'a ast::UseTree, // the use tree we are currently examinating
target: &[&'a ast::PathSegment], // the path we want to import
2019-02-06 14:34:37 +00:00
) -> ImportAction<'a> {
// We save the number of segments in the buffer so we can restore the correct segments
// before returning. Recursive call will add segments so we need to delete them.
let prev_len = current_path_segments.len();
let tree_list = current_use_tree.use_tree_list();
let alias = current_use_tree.alias();
let path = match current_use_tree.path() {
Some(path) => path,
None => {
// If the use item don't have a path, it means it's broken (syntax error)
return ImportAction::AddNewUse(
current_use_tree
.syntax()
.ancestors()
.find_map(ast::UseItem::cast)
.map(AstNode::syntax),
true,
);
}
};
// This can happen only if current_use_tree is a direct child of a UseItem
if let Some(name) = alias.and_then(ast::NameOwner::name) {
if compare_path_segment_with_name(target[0], name) {
return ImportAction::Nothing;
}
}
collect_path_segments_raw(current_path_segments, path);
// We compare only the new segments added in the line just above.
// The first prev_len segments were already compared in 'parent' recursive calls.
let c = compare_path_segments(
target.split_at(prev_len).1,
current_path_segments.split_at(prev_len).1,
);
let mut action = match c {
PathSegmentsMatch::Full => {
// e.g: target is std::fmt and we can have
// 1- use std::fmt;
// 2- use std::fmt:{ ... }
if let Some(list) = tree_list {
// In case 2 we need to add self to the nested list
// unless it's already there
let has_self = list.use_trees().map(ast::UseTree::path).any(|p| {
p.and_then(ast::Path::segment)
.and_then(ast::PathSegment::kind)
.filter(|k| *k == ast::PathSegmentKind::SelfKw)
.is_some()
});
if has_self {
ImportAction::Nothing
} else {
ImportAction::AddInTreeList(current_path_segments.len(), list, true)
}
} else {
// Case 1
ImportAction::Nothing
}
}
PathSegmentsMatch::Partial(0) => ImportAction::AddNewUse(
2019-02-06 14:34:37 +00:00
// e.g: target is std::fmt and we can have
// use foo::bar
// We add a brand new use statement
current_use_tree
.syntax()
.ancestors()
.find_map(ast::UseItem::cast)
.map(AstNode::syntax),
true,
),
PathSegmentsMatch::Partial(n) => {
// e.g: target is std::fmt and we have
// use std::io;
// We need to split.
let segments_to_split = current_path_segments.split_at(prev_len + n).1;
ImportAction::AddNestedImport(prev_len + n, path, Some(segments_to_split[0]), false)
}
PathSegmentsMatch::PartialLeft(n) => {
// e.g: target is std::fmt and we can have
// 1- use std;
// 2- use std::{ ... };
// fallback action
let mut better_action = ImportAction::AddNewUse(
current_use_tree
.syntax()
.ancestors()
.find_map(ast::UseItem::cast)
.map(AstNode::syntax),
true,
);
if let Some(list) = tree_list {
// Case 2, check recursively if the path is already imported in the nested list
for u in list.use_trees() {
let child_action =
walk_use_tree_for_best_action(current_path_segments, Some(list), u, target);
if child_action.is_better(&better_action) {
better_action = child_action;
if let ImportAction::Nothing = better_action {
return better_action;
}
}
}
} else {
// Case 1, split
better_action = ImportAction::AddNestedImport(prev_len + n, path, None, true)
}
better_action
}
PathSegmentsMatch::PartialRight(n) => {
// e.g: target is std::fmt and we can have
2019-02-06 14:34:37 +00:00
// use std::fmt::Debug;
let segments_to_split = current_path_segments.split_at(prev_len + n).1;
ImportAction::AddNestedImport(prev_len + n, path, Some(segments_to_split[0]), true)
}
};
// If we are inside a UseTreeList adding a use statement become adding to the existing
// tree list.
action = match (current_parent_use_tree_list, action) {
(Some(use_tree_list), ImportAction::AddNewUse(..)) => {
ImportAction::AddInTreeList(prev_len, use_tree_list, false)
}
(_, _) => action,
};
// We remove the segments added
current_path_segments.truncate(prev_len);
return action;
}
fn best_action_for_target<'b, 'a: 'b>(
container: &'a SyntaxNode,
path: &'a ast::Path,
target: &'b [&'a ast::PathSegment],
) -> ImportAction<'a> {
let mut storage = Vec::with_capacity(16); // this should be the only allocation
let best_action = container
.children()
.filter_map(ast::UseItem::cast)
.filter_map(ast::UseItem::use_tree)
.map(|u| walk_use_tree_for_best_action(&mut storage, None, u, target))
.fold(None, |best, a| {
best.and_then(|best| Some(*ImportAction::better(&best, &a)))
.or(Some(a))
});
match best_action {
Some(action) => return action,
None => {
// We have no action we no use item was found in container so we find
// another item and we use it as anchor.
// If there are not items, we choose the target path itself as anchor.
let anchor = container
.children()
.find_map(ast::ModuleItem::cast)
.map(AstNode::syntax)
.or(Some(path.syntax()));
return ImportAction::AddNewUse(anchor, false);
}
}
}
fn make_assist(action: &ImportAction, target: &[&ast::PathSegment], edit: &mut AssistBuilder) {
match action {
ImportAction::AddNewUse(anchor, after) => {
make_assist_add_new_use(anchor, *after, target, edit)
}
ImportAction::AddInTreeList(n, tree_list_node, add_self) => {
// We know that the fist n segments already exists in the use statement we want
// to modify, so we want to add only the last target.len() - n segments.
let segments_to_add = target.split_at(*n).1;
make_assist_add_in_tree_list(tree_list_node, segments_to_add, *add_self, edit)
}
ImportAction::AddNestedImport(n, path, first_segment_to_split, add_self) => {
let segments_to_add = target.split_at(*n).1;
make_assist_add_nested_import(
path,
first_segment_to_split,
segments_to_add,
*add_self,
edit,
)
}
_ => {}
}
}
fn make_assist_add_new_use(
anchor: &Option<&SyntaxNode>,
after: bool,
target: &[&ast::PathSegment],
edit: &mut AssistBuilder,
) {
if let Some(anchor) = anchor {
let indent = formatting::leading_indent(anchor);
let mut buf = String::new();
if after {
buf.push_str("\n");
if let Some(spaces) = indent {
buf.push_str(spaces);
}
}
buf.push_str("use ");
fmt_segments_raw(target, &mut buf);
buf.push_str(";");
if !after {
buf.push_str("\n\n");
if let Some(spaces) = indent {
buf.push_str(spaces);
}
}
let position = if after {
anchor.range().end()
} else {
anchor.range().start()
};
edit.insert(position, buf);
}
}
fn make_assist_add_in_tree_list(
tree_list: &ast::UseTreeList,
target: &[&ast::PathSegment],
add_self: bool,
edit: &mut AssistBuilder,
) {
let last = tree_list.use_trees().last();
if let Some(last) = last {
let mut buf = String::new();
let comma = last
.syntax()
.siblings(Direction::Next)
.find(|n| n.kind() == COMMA);
let offset = if let Some(comma) = comma {
comma.range().end()
} else {
buf.push_str(",");
last.syntax().range().end()
};
if add_self {
buf.push_str(" self")
} else {
buf.push_str(" ");
}
fmt_segments_raw(target, &mut buf);
edit.insert(offset, buf);
} else {
}
}
fn make_assist_add_nested_import(
path: &ast::Path,
first_segment_to_split: &Option<&ast::PathSegment>,
target: &[&ast::PathSegment],
add_self: bool,
edit: &mut AssistBuilder,
) {
let use_tree = path.syntax().ancestors().find_map(ast::UseTree::cast);
if let Some(use_tree) = use_tree {
let (start, add_colon_colon) = if let Some(first_segment_to_split) = first_segment_to_split
{
(first_segment_to_split.syntax().range().start(), false)
} else {
(use_tree.syntax().range().end(), true)
};
let end = use_tree.syntax().range().end();
let mut buf = String::new();
if add_colon_colon {
buf.push_str("::");
}
buf.push_str("{ ");
if add_self {
buf.push_str("self, ");
}
fmt_segments_raw(target, &mut buf);
if !target.is_empty() {
buf.push_str(", ");
}
edit.insert(start, buf);
edit.insert(end, "}");
}
}
pub(crate) fn auto_import(ctx: AssistCtx<impl HirDatabase>) -> Option<Assist> {
let node = ctx.covering_node();
let current_file = node.ancestors().find_map(ast::SourceFile::cast)?;
let path = node.ancestors().find_map(ast::Path::cast)?;
// We don't want to mess with use statements
if path
.syntax()
.ancestors()
.find_map(ast::UseItem::cast)
.is_some()
{
return None;
}
let segments = collect_path_segments(path)?;
if segments.len() < 2 {
return None;
}
ctx.build(
format!("import {} in the current file", fmt_segments(&segments)),
|edit| {
let action = best_action_for_target(current_file.syntax(), path, &segments);
make_assist(&action, segments.as_slice(), edit);
if let Some(last_segment) = path.segment() {
// Here we are assuming the assist will provide a correct use statement
// so we can delete the path qualifier
edit.delete(TextRange::from_to(
path.syntax().range().start(),
last_segment.syntax().range().start(),
));
}
},
)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::helpers::{ check_assist, check_assist_not_applicable };
#[test]
fn test_auto_import_file_add_use_no_anchor() {
check_assist(
auto_import,
"
std::fmt::Debug<|>
",
"
use std::fmt::Debug;
Debug<|>
",
);
}
#[test]
fn test_auto_import_file_add_use() {
check_assist(
auto_import,
"
use stdx;
impl std::fmt::Debug<|> for Foo {
}
",
"
use stdx;
use std::fmt::Debug;
impl Debug<|> for Foo {
}
",
);
}
#[test]
fn test_auto_import_file_add_use_other_anchor() {
check_assist(
auto_import,
"
impl std::fmt::Debug<|> for Foo {
}
",
"
use std::fmt::Debug;
impl Debug<|> for Foo {
}
",
);
}
#[test]
fn test_auto_import_file_add_use_other_anchor_indent() {
check_assist(
auto_import,
"
impl std::fmt::Debug<|> for Foo {
}
",
"
use std::fmt::Debug;
impl Debug<|> for Foo {
}
",
);
}
#[test]
fn test_auto_import_file_split_different() {
check_assist(
auto_import,
"
use std::fmt;
impl std::io<|> for Foo {
}
",
"
use std::{ io, fmt};
impl io<|> for Foo {
}
",
);
}
#[test]
fn test_auto_import_file_split_self_for_use() {
check_assist(
auto_import,
"
use std::fmt;
impl std::fmt::Debug<|> for Foo {
}
",
"
use std::fmt::{ self, Debug, };
impl Debug<|> for Foo {
}
",
);
}
#[test]
fn test_auto_import_file_split_self_for_target() {
check_assist(
auto_import,
"
use std::fmt::Debug;
impl std::fmt<|> for Foo {
}
",
"
use std::fmt::{ self, Debug};
impl fmt<|> for Foo {
}
",
);
}
#[test]
fn test_auto_import_file_add_to_nested_self_nested() {
check_assist(
auto_import,
"
use std::fmt::{Debug, nested::{Display}};
impl std::fmt::nested<|> for Foo {
}
",
"
use std::fmt::{Debug, nested::{Display, self}};
impl nested<|> for Foo {
}
",
);
}
#[test]
fn test_auto_import_file_add_to_nested_self_already_included() {
check_assist(
auto_import,
"
use std::fmt::{Debug, nested::{self, Display}};
impl std::fmt::nested<|> for Foo {
}
",
"
use std::fmt::{Debug, nested::{self, Display}};
impl nested<|> for Foo {
}
",
);
}
#[test]
fn test_auto_import_file_add_to_nested_nested() {
check_assist(
auto_import,
"
use std::fmt::{Debug, nested::{Display}};
impl std::fmt::nested::Debug<|> for Foo {
}
",
"
use std::fmt::{Debug, nested::{Display, Debug}};
impl Debug<|> for Foo {
}
",
);
}
#[test]
fn test_auto_import_file_alias() {
check_assist(
auto_import,
"
use std::fmt as foo;
impl foo::Debug<|> for Foo {
}
",
"
use std::fmt as foo;
impl Debug<|> for Foo {
}
",
);
}
#[test]
fn test_auto_import_not_applicable_one_segment() {
check_assist_not_applicable(
auto_import,
"
impl foo<|> for Foo {
}
",
);
}
}