mirror of
https://github.com/rust-lang/rust-analyzer
synced 2025-01-21 01:24:13 +00:00
113 lines
3.4 KiB
Rust
113 lines
3.4 KiB
Rust
|
//! Checks that a set of measurements looks like a linear function rather than
|
||
|
//! like a quadratic function. Algorithm:
|
||
|
//!
|
||
|
//! 1. Linearly scale input to be in [0; 1)
|
||
|
//! 2. Using linear regression, compute the best linear function approximating
|
||
|
//! the input.
|
||
|
//! 3. Compute RMSE and maximal absolute error.
|
||
|
//! 4. Check that errors are within tolerances and that the constant term is not
|
||
|
//! too negative.
|
||
|
//!
|
||
|
//! Ideally, we should use a proper "model selection" to directly compare
|
||
|
//! quadratic and linear models, but that sounds rather complicated:
|
||
|
//!
|
||
|
//! https://stats.stackexchange.com/questions/21844/selecting-best-model-based-on-linear-quadratic-and-cubic-fit-of-data
|
||
|
//!
|
||
|
//! We might get false positives on a VM, but never false negatives. So, if the
|
||
|
//! first round fails, we repeat the ordeal three more times and fail only if
|
||
|
//! every time there's a fault.
|
||
|
use stdx::format_to;
|
||
|
|
||
|
#[derive(Default)]
|
||
|
pub struct AssertLinear {
|
||
|
rounds: Vec<Round>,
|
||
|
}
|
||
|
|
||
|
#[derive(Default)]
|
||
|
struct Round {
|
||
|
samples: Vec<(f64, f64)>,
|
||
|
plot: String,
|
||
|
linear: bool,
|
||
|
}
|
||
|
|
||
|
impl AssertLinear {
|
||
|
pub fn next_round(&mut self) -> bool {
|
||
|
if let Some(round) = self.rounds.last_mut() {
|
||
|
round.finish();
|
||
|
}
|
||
|
if self.rounds.iter().any(|it| it.linear) || self.rounds.len() == 4 {
|
||
|
return false;
|
||
|
}
|
||
|
self.rounds.push(Round::default());
|
||
|
true
|
||
|
}
|
||
|
|
||
|
pub fn sample(&mut self, x: f64, y: f64) {
|
||
|
self.rounds.last_mut().unwrap().samples.push((x, y))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl Drop for AssertLinear {
|
||
|
fn drop(&mut self) {
|
||
|
assert!(!self.rounds.is_empty());
|
||
|
if self.rounds.iter().all(|it| !it.linear) {
|
||
|
for round in &self.rounds {
|
||
|
eprintln!("\n{}", round.plot);
|
||
|
}
|
||
|
panic!("Doesn't look linear!")
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl Round {
|
||
|
fn finish(&mut self) {
|
||
|
let (mut xs, mut ys): (Vec<_>, Vec<_>) = self.samples.iter().copied().unzip();
|
||
|
normalize(&mut xs);
|
||
|
normalize(&mut ys);
|
||
|
let xy = xs.iter().copied().zip(ys.iter().copied());
|
||
|
|
||
|
// Linear regression: finding a and b to fit y = a + b*x.
|
||
|
|
||
|
let mean_x = mean(&xs);
|
||
|
let mean_y = mean(&ys);
|
||
|
|
||
|
let b = {
|
||
|
let mut num = 0.0;
|
||
|
let mut denom = 0.0;
|
||
|
for (x, y) in xy.clone() {
|
||
|
num += (x - mean_x) * (y - mean_y);
|
||
|
denom += (x - mean_x).powi(2);
|
||
|
}
|
||
|
num / denom
|
||
|
};
|
||
|
|
||
|
let a = mean_y - b * mean_x;
|
||
|
|
||
|
self.plot = format!("y_pred = {:.3} + {:.3} * x\n\nx y y_pred\n", a, b);
|
||
|
|
||
|
let mut se = 0.0;
|
||
|
let mut max_error = 0.0f64;
|
||
|
for (x, y) in xy {
|
||
|
let y_pred = a + b * x;
|
||
|
se += (y - y_pred).powi(2);
|
||
|
max_error = max_error.max((y_pred - y).abs());
|
||
|
|
||
|
format_to!(self.plot, "{:.3} {:.3} {:.3}\n", x, y, y_pred);
|
||
|
}
|
||
|
|
||
|
let rmse = (se / xs.len() as f64).sqrt();
|
||
|
format_to!(self.plot, "\nrmse = {:.3} max error = {:.3}", rmse, max_error);
|
||
|
|
||
|
self.linear = rmse < 0.05 && max_error < 0.1 && a > -0.1;
|
||
|
|
||
|
fn normalize(xs: &mut Vec<f64>) {
|
||
|
let max = xs.iter().copied().max_by(|a, b| a.partial_cmp(b).unwrap()).unwrap();
|
||
|
xs.iter_mut().for_each(|it| *it /= max);
|
||
|
}
|
||
|
|
||
|
fn mean(xs: &[f64]) -> f64 {
|
||
|
xs.iter().copied().sum::<f64>() / (xs.len() as f64)
|
||
|
}
|
||
|
}
|
||
|
}
|