mirror of
https://github.com/rust-lang/rust-analyzer
synced 2025-01-22 09:55:06 +00:00
155 lines
5.1 KiB
Rust
155 lines
5.1 KiB
Rust
|
use hir::db::HirDatabase;
|
||
|
use ra_text_edit::TextEditBuilder;
|
||
|
use ra_db::FileRange;
|
||
|
use ra_syntax::{
|
||
|
SourceFile, TextRange, AstNode, TextUnit, SyntaxNode,
|
||
|
algo::{find_leaf_at_offset, find_node_at_offset, find_covering_node, LeafAtOffset},
|
||
|
};
|
||
|
use ra_ide_api_light::formatting::{leading_indent, reindent};
|
||
|
|
||
|
use crate::{AssistLabel, AssistAction};
|
||
|
|
||
|
pub(crate) enum Assist {
|
||
|
Unresolved(AssistLabel),
|
||
|
Resolved(AssistLabel, AssistAction),
|
||
|
}
|
||
|
|
||
|
/// `AssistCtx` allows to apply an assist or check if it could be applied.
|
||
|
///
|
||
|
/// Assists use a somewhat overengineered approach, given the current needs. The
|
||
|
/// assists workflow consists of two phases. In the first phase, a user asks for
|
||
|
/// the list of available assists. In the second phase, the user picks a
|
||
|
/// particular assist and it gets applied.
|
||
|
///
|
||
|
/// There are two peculiarities here:
|
||
|
///
|
||
|
/// * first, we ideally avoid computing more things then necessary to answer
|
||
|
/// "is assist applicable" in the first phase.
|
||
|
/// * second, when we are applying assist, we don't have a guarantee that there
|
||
|
/// weren't any changes between the point when user asked for assists and when
|
||
|
/// they applied a particular assist. So, when applying assist, we need to do
|
||
|
/// all the checks from scratch.
|
||
|
///
|
||
|
/// To avoid repeating the same code twice for both "check" and "apply"
|
||
|
/// functions, we use an approach reminiscent of that of Django's function based
|
||
|
/// views dealing with forms. Each assist receives a runtime parameter,
|
||
|
/// `should_compute_edit`. It first check if an edit is applicable (potentially
|
||
|
/// computing info required to compute the actual edit). If it is applicable,
|
||
|
/// and `should_compute_edit` is `true`, it then computes the actual edit.
|
||
|
///
|
||
|
/// So, to implement the original assists workflow, we can first apply each edit
|
||
|
/// with `should_compute_edit = false`, and then applying the selected edit
|
||
|
/// again, with `should_compute_edit = true` this time.
|
||
|
///
|
||
|
/// Note, however, that we don't actually use such two-phase logic at the
|
||
|
/// moment, because the LSP API is pretty awkward in this place, and it's much
|
||
|
/// easier to just compute the edit eagerly :-)#[derive(Debug, Clone)]
|
||
|
#[derive(Debug)]
|
||
|
pub(crate) struct AssistCtx<'a, DB> {
|
||
|
pub(crate) db: &'a DB,
|
||
|
pub(crate) frange: FileRange,
|
||
|
source_file: &'a SourceFile,
|
||
|
should_compute_edit: bool,
|
||
|
}
|
||
|
|
||
|
impl<'a, DB> Clone for AssistCtx<'a, DB> {
|
||
|
fn clone(&self) -> Self {
|
||
|
AssistCtx {
|
||
|
db: self.db,
|
||
|
frange: self.frange,
|
||
|
source_file: self.source_file,
|
||
|
should_compute_edit: self.should_compute_edit,
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<'a, DB: HirDatabase> AssistCtx<'a, DB> {
|
||
|
pub(crate) fn with_ctx<F, T>(db: &DB, frange: FileRange, should_compute_edit: bool, f: F) -> T
|
||
|
where
|
||
|
F: FnOnce(AssistCtx<DB>) -> T,
|
||
|
{
|
||
|
let source_file = &db.parse(frange.file_id);
|
||
|
let ctx = AssistCtx {
|
||
|
db,
|
||
|
frange,
|
||
|
source_file,
|
||
|
should_compute_edit,
|
||
|
};
|
||
|
f(ctx)
|
||
|
}
|
||
|
|
||
|
pub(crate) fn build(
|
||
|
self,
|
||
|
label: impl Into<String>,
|
||
|
f: impl FnOnce(&mut AssistBuilder),
|
||
|
) -> Option<Assist> {
|
||
|
let label = AssistLabel {
|
||
|
label: label.into(),
|
||
|
};
|
||
|
if !self.should_compute_edit {
|
||
|
return Some(Assist::Unresolved(label));
|
||
|
}
|
||
|
let action = {
|
||
|
let mut edit = AssistBuilder::default();
|
||
|
f(&mut edit);
|
||
|
edit.build()
|
||
|
};
|
||
|
Some(Assist::Resolved(label, action))
|
||
|
}
|
||
|
|
||
|
pub(crate) fn leaf_at_offset(&self) -> LeafAtOffset<&'a SyntaxNode> {
|
||
|
find_leaf_at_offset(self.source_file.syntax(), self.frange.range.start())
|
||
|
}
|
||
|
|
||
|
pub(crate) fn node_at_offset<N: AstNode>(&self) -> Option<&'a N> {
|
||
|
find_node_at_offset(self.source_file.syntax(), self.frange.range.start())
|
||
|
}
|
||
|
pub(crate) fn covering_node(&self) -> &'a SyntaxNode {
|
||
|
find_covering_node(self.source_file.syntax(), self.frange.range)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#[derive(Default)]
|
||
|
pub(crate) struct AssistBuilder {
|
||
|
edit: TextEditBuilder,
|
||
|
cursor_position: Option<TextUnit>,
|
||
|
}
|
||
|
|
||
|
impl AssistBuilder {
|
||
|
pub(crate) fn replace(&mut self, range: TextRange, replace_with: impl Into<String>) {
|
||
|
self.edit.replace(range, replace_with.into())
|
||
|
}
|
||
|
|
||
|
pub(crate) fn replace_node_and_indent(
|
||
|
&mut self,
|
||
|
node: &SyntaxNode,
|
||
|
replace_with: impl Into<String>,
|
||
|
) {
|
||
|
let mut replace_with = replace_with.into();
|
||
|
if let Some(indent) = leading_indent(node) {
|
||
|
replace_with = reindent(&replace_with, indent)
|
||
|
}
|
||
|
self.replace(node.range(), replace_with)
|
||
|
}
|
||
|
|
||
|
#[allow(unused)]
|
||
|
pub(crate) fn delete(&mut self, range: TextRange) {
|
||
|
self.edit.delete(range)
|
||
|
}
|
||
|
|
||
|
pub(crate) fn insert(&mut self, offset: TextUnit, text: impl Into<String>) {
|
||
|
self.edit.insert(offset, text.into())
|
||
|
}
|
||
|
|
||
|
pub(crate) fn set_cursor(&mut self, offset: TextUnit) {
|
||
|
self.cursor_position = Some(offset)
|
||
|
}
|
||
|
|
||
|
fn build(self) -> AssistAction {
|
||
|
AssistAction {
|
||
|
edit: self.edit.finish(),
|
||
|
cursor_position: self.cursor_position,
|
||
|
}
|
||
|
}
|
||
|
}
|