2018-12-20 20:56:28 +00:00
|
|
|
mod primitive;
|
|
|
|
#[cfg(test)]
|
|
|
|
mod tests;
|
|
|
|
|
|
|
|
use rustc_hash::{FxHashMap, FxHashSet};
|
|
|
|
|
|
|
|
use std::sync::Arc;
|
|
|
|
use std::collections::HashMap;
|
|
|
|
|
|
|
|
use ra_db::LocalSyntaxPtr;
|
|
|
|
use ra_syntax::{
|
2018-12-22 21:17:55 +00:00
|
|
|
TextRange, TextUnit, SmolStr,
|
2018-12-20 20:56:28 +00:00
|
|
|
algo::visit::{visitor, Visitor},
|
|
|
|
ast::{self, AstNode, DocCommentsOwner, NameOwner, LoopBodyOwner, ArgListOwner},
|
|
|
|
SyntaxNodeRef
|
|
|
|
};
|
|
|
|
|
|
|
|
use crate::{
|
|
|
|
FnScopes,
|
|
|
|
db::HirDatabase,
|
|
|
|
arena::{Arena, Id},
|
|
|
|
};
|
|
|
|
|
|
|
|
// pub(crate) type TypeId = Id<Ty>;
|
|
|
|
|
|
|
|
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
|
|
|
|
pub enum Ty {
|
|
|
|
/// The primitive boolean type. Written as `bool`.
|
|
|
|
Bool,
|
|
|
|
|
|
|
|
/// The primitive character type; holds a Unicode scalar value
|
|
|
|
/// (a non-surrogate code point). Written as `char`.
|
|
|
|
Char,
|
|
|
|
|
|
|
|
/// A primitive signed integer type. For example, `i32`.
|
|
|
|
Int(primitive::IntTy),
|
|
|
|
|
|
|
|
/// A primitive unsigned integer type. For example, `u32`.
|
|
|
|
Uint(primitive::UintTy),
|
|
|
|
|
|
|
|
/// A primitive floating-point type. For example, `f64`.
|
|
|
|
Float(primitive::FloatTy),
|
|
|
|
|
|
|
|
/// Structures, enumerations and unions.
|
|
|
|
///
|
|
|
|
/// Substs here, possibly against intuition, *may* contain `Param`s.
|
|
|
|
/// That is, even after substitution it is possible that there are type
|
|
|
|
/// variables. This happens when the `Adt` corresponds to an ADT
|
|
|
|
/// definition and not a concrete use of it.
|
|
|
|
// Adt(&'tcx AdtDef, &'tcx Substs<'tcx>),
|
|
|
|
|
|
|
|
// Foreign(DefId),
|
|
|
|
|
|
|
|
/// The pointee of a string slice. Written as `str`.
|
|
|
|
Str,
|
|
|
|
|
|
|
|
/// An array with the given length. Written as `[T; n]`.
|
|
|
|
// Array(Ty<'tcx>, &'tcx ty::Const<'tcx>),
|
|
|
|
|
|
|
|
/// The pointee of an array slice. Written as `[T]`.
|
|
|
|
Slice(TyRef),
|
|
|
|
|
|
|
|
/// A raw pointer. Written as `*mut T` or `*const T`
|
|
|
|
// RawPtr(TypeAndMut<'tcx>),
|
|
|
|
|
|
|
|
/// A reference; a pointer with an associated lifetime. Written as
|
|
|
|
/// `&'a mut T` or `&'a T`.
|
|
|
|
// Ref(Region<'tcx>, Ty<'tcx>, hir::Mutability),
|
|
|
|
|
|
|
|
/// The anonymous type of a function declaration/definition. Each
|
|
|
|
/// function has a unique type, which is output (for a function
|
|
|
|
/// named `foo` returning an `i32`) as `fn() -> i32 {foo}`.
|
|
|
|
///
|
|
|
|
/// For example the type of `bar` here:
|
|
|
|
///
|
|
|
|
/// ```rust
|
|
|
|
/// fn foo() -> i32 { 1 }
|
|
|
|
/// let bar = foo; // bar: fn() -> i32 {foo}
|
|
|
|
/// ```
|
|
|
|
// FnDef(DefId, &'tcx Substs<'tcx>),
|
|
|
|
|
|
|
|
/// A pointer to a function. Written as `fn() -> i32`.
|
|
|
|
///
|
|
|
|
/// For example the type of `bar` here:
|
|
|
|
///
|
|
|
|
/// ```rust
|
|
|
|
/// fn foo() -> i32 { 1 }
|
|
|
|
/// let bar: fn() -> i32 = foo;
|
|
|
|
/// ```
|
|
|
|
// FnPtr(PolyFnSig<'tcx>),
|
|
|
|
|
|
|
|
/// A trait, defined with `trait`.
|
|
|
|
// Dynamic(Binder<&'tcx List<ExistentialPredicate<'tcx>>>, ty::Region<'tcx>),
|
|
|
|
|
|
|
|
/// The anonymous type of a closure. Used to represent the type of
|
|
|
|
/// `|a| a`.
|
|
|
|
// Closure(DefId, ClosureSubsts<'tcx>),
|
|
|
|
|
|
|
|
/// The anonymous type of a generator. Used to represent the type of
|
|
|
|
/// `|a| yield a`.
|
|
|
|
// Generator(DefId, GeneratorSubsts<'tcx>, hir::GeneratorMovability),
|
|
|
|
|
|
|
|
/// A type representin the types stored inside a generator.
|
|
|
|
/// This should only appear in GeneratorInteriors.
|
|
|
|
// GeneratorWitness(Binder<&'tcx List<Ty<'tcx>>>),
|
|
|
|
|
|
|
|
/// The never type `!`
|
|
|
|
Never,
|
|
|
|
|
|
|
|
/// A tuple type. For example, `(i32, bool)`.
|
|
|
|
Tuple(Vec<Ty>),
|
|
|
|
|
|
|
|
/// The projection of an associated type. For example,
|
|
|
|
/// `<T as Trait<..>>::N`.
|
|
|
|
// Projection(ProjectionTy<'tcx>),
|
|
|
|
|
|
|
|
/// Opaque (`impl Trait`) type found in a return type.
|
|
|
|
/// The `DefId` comes either from
|
|
|
|
/// * the `impl Trait` ast::Ty node,
|
|
|
|
/// * or the `existential type` declaration
|
|
|
|
/// The substitutions are for the generics of the function in question.
|
|
|
|
/// After typeck, the concrete type can be found in the `types` map.
|
|
|
|
// Opaque(DefId, &'tcx Substs<'tcx>),
|
|
|
|
|
|
|
|
/// A type parameter; for example, `T` in `fn f<T>(x: T) {}
|
|
|
|
// Param(ParamTy),
|
|
|
|
|
|
|
|
/// Bound type variable, used only when preparing a trait query.
|
|
|
|
// Bound(ty::DebruijnIndex, BoundTy),
|
|
|
|
|
|
|
|
/// A placeholder type - universally quantified higher-ranked type.
|
|
|
|
// Placeholder(ty::PlaceholderType),
|
|
|
|
|
|
|
|
/// A type variable used during type checking.
|
|
|
|
// Infer(InferTy),
|
|
|
|
|
|
|
|
/// A placeholder for a type which could not be computed; this is
|
|
|
|
/// propagated to avoid useless error messages.
|
|
|
|
Unknown,
|
|
|
|
}
|
|
|
|
|
|
|
|
type TyRef = Arc<Ty>;
|
|
|
|
|
|
|
|
impl Ty {
|
|
|
|
pub fn new(node: ast::TypeRef) -> Self {
|
|
|
|
use ra_syntax::ast::TypeRef::*;
|
|
|
|
match node {
|
|
|
|
ParenType(_inner) => Ty::Unknown, // TODO
|
|
|
|
TupleType(_inner) => Ty::Unknown, // TODO
|
|
|
|
NeverType(..) => Ty::Never,
|
2018-12-22 21:17:55 +00:00
|
|
|
PathType(inner) => {
|
|
|
|
let path = if let Some(p) = inner.path() { p } else { return Ty::Unknown };
|
|
|
|
if path.qualifier().is_none() {
|
|
|
|
let name = path.segment().and_then(|s| s.name_ref()).map(|n| n.text()).unwrap_or(SmolStr::new(""));
|
|
|
|
if let Some(int_ty) = primitive::IntTy::from_string(&name) {
|
|
|
|
Ty::Int(int_ty)
|
|
|
|
} else if let Some(uint_ty) = primitive::UintTy::from_string(&name) {
|
|
|
|
Ty::Uint(uint_ty)
|
|
|
|
} else if let Some(float_ty) = primitive::FloatTy::from_string(&name) {
|
|
|
|
Ty::Float(float_ty)
|
|
|
|
} else {
|
|
|
|
// TODO
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// TODO
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
},
|
2018-12-20 20:56:28 +00:00
|
|
|
PointerType(_inner) => Ty::Unknown, // TODO
|
|
|
|
ArrayType(_inner) => Ty::Unknown, // TODO
|
|
|
|
SliceType(_inner) => Ty::Unknown, // TODO
|
|
|
|
ReferenceType(_inner) => Ty::Unknown, // TODO
|
|
|
|
PlaceholderType(_inner) => Ty::Unknown, // TODO
|
|
|
|
FnPointerType(_inner) => Ty::Unknown, // TODO
|
|
|
|
ForType(_inner) => Ty::Unknown, // TODO
|
|
|
|
ImplTraitType(_inner) => Ty::Unknown, // TODO
|
|
|
|
DynTraitType(_inner) => Ty::Unknown, // TODO
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn unit() -> Self {
|
|
|
|
Ty::Tuple(Vec::new())
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
|
|
|
pub struct InferenceResult {
|
|
|
|
type_for: FxHashMap<LocalSyntaxPtr, Ty>,
|
|
|
|
}
|
|
|
|
|
|
|
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
|
|
|
pub struct InferenceContext {
|
|
|
|
scopes: Arc<FnScopes>,
|
|
|
|
// TODO unification tables...
|
|
|
|
type_for: FxHashMap<LocalSyntaxPtr, Ty>,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl InferenceContext {
|
|
|
|
fn new(scopes: Arc<FnScopes>) -> Self {
|
|
|
|
InferenceContext {
|
|
|
|
type_for: FxHashMap::default(),
|
|
|
|
scopes
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn write_ty(&mut self, node: SyntaxNodeRef, ty: Ty) {
|
|
|
|
self.type_for.insert(LocalSyntaxPtr::new(node), ty);
|
|
|
|
}
|
|
|
|
|
|
|
|
fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
|
|
|
|
unimplemented!()
|
|
|
|
}
|
|
|
|
|
|
|
|
fn infer_expr(&mut self, expr: ast::Expr) -> Ty {
|
|
|
|
let ty = match expr {
|
|
|
|
ast::Expr::IfExpr(e) => {
|
|
|
|
if let Some(condition) = e.condition() {
|
|
|
|
if let Some(e) = condition.expr() {
|
|
|
|
// TODO if no pat, this should be bool
|
|
|
|
self.infer_expr(e);
|
|
|
|
}
|
|
|
|
// TODO write type for pat
|
|
|
|
};
|
|
|
|
let if_ty = if let Some(block) = e.then_branch() {
|
|
|
|
self.infer_block(block)
|
|
|
|
} else {
|
|
|
|
Ty::Unknown
|
|
|
|
};
|
|
|
|
let else_ty = if let Some(block) = e.else_branch() {
|
|
|
|
self.infer_block(block)
|
|
|
|
} else {
|
|
|
|
Ty::Unknown
|
|
|
|
};
|
|
|
|
if self.unify(&if_ty, &else_ty) {
|
|
|
|
// TODO actually, need to take the 'more specific' type (not unknown, never, ...)
|
|
|
|
if_ty
|
|
|
|
} else {
|
|
|
|
// TODO report diagnostic
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ast::Expr::BlockExpr(e) => {
|
|
|
|
if let Some(block) = e.block() {
|
|
|
|
self.infer_block(block)
|
|
|
|
} else {
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ast::Expr::LoopExpr(e) => {
|
|
|
|
if let Some(block) = e.loop_body() {
|
|
|
|
self.infer_block(block);
|
|
|
|
};
|
|
|
|
// TODO never, or the type of the break param
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
ast::Expr::WhileExpr(e) => {
|
|
|
|
if let Some(condition) = e.condition() {
|
|
|
|
if let Some(e) = condition.expr() {
|
|
|
|
// TODO if no pat, this should be bool
|
|
|
|
self.infer_expr(e);
|
|
|
|
}
|
|
|
|
// TODO write type for pat
|
|
|
|
};
|
|
|
|
if let Some(block) = e.loop_body() {
|
|
|
|
// TODO
|
|
|
|
self.infer_block(block);
|
|
|
|
};
|
|
|
|
// TODO always unit?
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
ast::Expr::ForExpr(e) => {
|
|
|
|
if let Some(expr) = e.iterable() {
|
|
|
|
self.infer_expr(expr);
|
|
|
|
}
|
|
|
|
if let Some(pat) = e.pat() {
|
|
|
|
// TODO write type for pat
|
|
|
|
}
|
|
|
|
if let Some(block) = e.loop_body() {
|
|
|
|
self.infer_block(block);
|
|
|
|
}
|
|
|
|
// TODO always unit?
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
ast::Expr::LambdaExpr(e) => {
|
|
|
|
let body_ty = if let Some(body) = e.body() {
|
|
|
|
self.infer_expr(body)
|
|
|
|
} else {
|
|
|
|
Ty::Unknown
|
|
|
|
};
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
ast::Expr::CallExpr(e) => {
|
|
|
|
if let Some(arg_list) = e.arg_list() {
|
|
|
|
for arg in arg_list.args() {
|
|
|
|
// TODO unify / expect argument type
|
|
|
|
self.infer_expr(arg);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
ast::Expr::MethodCallExpr(e) => {
|
|
|
|
if let Some(arg_list) = e.arg_list() {
|
|
|
|
for arg in arg_list.args() {
|
|
|
|
// TODO unify / expect argument type
|
|
|
|
self.infer_expr(arg);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
ast::Expr::MatchExpr(e) => {
|
|
|
|
let ty = if let Some(match_expr) = e.expr() {
|
|
|
|
self.infer_expr(match_expr)
|
|
|
|
} else {
|
|
|
|
Ty::Unknown
|
|
|
|
};
|
|
|
|
if let Some(match_arm_list) = e.match_arm_list() {
|
|
|
|
for arm in match_arm_list.arms() {
|
|
|
|
// TODO type the bindings in pat
|
|
|
|
// TODO type the guard
|
|
|
|
let ty = if let Some(e) = arm.expr() {
|
|
|
|
self.infer_expr(e)
|
|
|
|
} else {
|
|
|
|
Ty::Unknown
|
|
|
|
};
|
|
|
|
}
|
|
|
|
// TODO unify all the match arm types
|
|
|
|
Ty::Unknown
|
|
|
|
} else {
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ast::Expr::TupleExpr(e) => {
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
ast::Expr::ArrayExpr(e) => {
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
ast::Expr::PathExpr(e) => {
|
|
|
|
if let Some(p) = e.path() {
|
|
|
|
if p.qualifier().is_none() {
|
|
|
|
if let Some(name) = p.segment().and_then(|s| s.name_ref()) {
|
|
|
|
let s = self.scopes.resolve_local_name(name);
|
|
|
|
if let Some(scope_entry) = s {
|
|
|
|
if let Some(ty) = self.type_for.get(&scope_entry.ptr()) {
|
|
|
|
ty.clone()
|
|
|
|
} else {
|
|
|
|
// TODO introduce type variable?
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// TODO resolve path
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ast::Expr::ContinueExpr(e) => {
|
|
|
|
Ty::Never
|
|
|
|
}
|
|
|
|
ast::Expr::BreakExpr(e) => {
|
|
|
|
Ty::Never
|
|
|
|
}
|
|
|
|
ast::Expr::ParenExpr(e) => {
|
|
|
|
if let Some(e) = e.expr() {
|
|
|
|
self.infer_expr(e)
|
|
|
|
} else {
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ast::Expr::Label(e) => {
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
ast::Expr::ReturnExpr(e) => {
|
|
|
|
if let Some(e) = e.expr() {
|
|
|
|
// TODO unify with return type
|
|
|
|
self.infer_expr(e);
|
|
|
|
};
|
|
|
|
Ty::Never
|
|
|
|
}
|
|
|
|
ast::Expr::MatchArmList(_) | ast::Expr::MatchArm(_) | ast::Expr::MatchGuard(_) => {
|
|
|
|
// Can this even occur outside of a match expression?
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
ast::Expr::StructLit(e) => {
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
ast::Expr::NamedFieldList(_) | ast::Expr::NamedField(_) => {
|
|
|
|
// Can this even occur outside of a struct literal?
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
ast::Expr::IndexExpr(e) => {
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
ast::Expr::FieldExpr(e) => {
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
ast::Expr::TryExpr(e) => {
|
|
|
|
let inner_ty = if let Some(e) = e.expr() {
|
|
|
|
self.infer_expr(e)
|
|
|
|
} else {
|
|
|
|
Ty::Unknown
|
|
|
|
};
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
ast::Expr::CastExpr(e) => {
|
|
|
|
let inner_ty = if let Some(e) = e.expr() {
|
|
|
|
self.infer_expr(e)
|
|
|
|
} else {
|
|
|
|
Ty::Unknown
|
|
|
|
};
|
|
|
|
let cast_ty = e.type_ref().map(Ty::new).unwrap_or(Ty::Unknown);
|
|
|
|
// TODO do the coercion...
|
|
|
|
cast_ty
|
|
|
|
}
|
|
|
|
ast::Expr::RefExpr(e) => {
|
|
|
|
let inner_ty = if let Some(e) = e.expr() {
|
|
|
|
self.infer_expr(e)
|
|
|
|
} else {
|
|
|
|
Ty::Unknown
|
|
|
|
};
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
ast::Expr::PrefixExpr(e) => {
|
|
|
|
let inner_ty = if let Some(e) = e.expr() {
|
|
|
|
self.infer_expr(e)
|
|
|
|
} else {
|
|
|
|
Ty::Unknown
|
|
|
|
};
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
ast::Expr::RangeExpr(e) => {
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
ast::Expr::BinExpr(e) => {
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
ast::Expr::Literal(e) => {
|
|
|
|
Ty::Unknown
|
|
|
|
}
|
|
|
|
};
|
|
|
|
self.write_ty(expr.syntax(), ty.clone());
|
|
|
|
ty
|
|
|
|
}
|
|
|
|
|
|
|
|
fn infer_block(&mut self, node: ast::Block) -> Ty {
|
|
|
|
for stmt in node.statements() {
|
|
|
|
match stmt {
|
|
|
|
ast::Stmt::LetStmt(stmt) => {
|
|
|
|
if let Some(expr) = stmt.initializer() {
|
|
|
|
self.infer_expr(expr);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ast::Stmt::ExprStmt(expr_stmt) => {
|
|
|
|
if let Some(expr) = expr_stmt.expr() {
|
|
|
|
self.infer_expr(expr);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
let ty = if let Some(expr) = node.expr() {
|
|
|
|
self.infer_expr(expr)
|
|
|
|
} else {
|
|
|
|
Ty::unit()
|
|
|
|
};
|
|
|
|
self.write_ty(node.syntax(), ty.clone());
|
|
|
|
ty
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn infer(db: &impl HirDatabase, node: ast::FnDef, scopes: Arc<FnScopes>) -> InferenceResult {
|
|
|
|
let mut ctx = InferenceContext::new(scopes);
|
|
|
|
|
|
|
|
for param in node.param_list().unwrap().params() {
|
|
|
|
let pat = param.pat().unwrap();
|
|
|
|
let type_ref = param.type_ref().unwrap();
|
|
|
|
let ty = Ty::new(type_ref);
|
|
|
|
ctx.type_for.insert(LocalSyntaxPtr::new(pat.syntax()), ty);
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO get Ty for node.ret_type() and pass that to infer_block as expectation
|
|
|
|
// (see Expectation in rustc_typeck)
|
|
|
|
|
|
|
|
ctx.infer_block(node.body().unwrap());
|
|
|
|
|
|
|
|
// TODO 'resolve' the types: replace inference variables by their inferred results
|
|
|
|
|
|
|
|
InferenceResult { type_for: ctx.type_for }
|
|
|
|
}
|