rust-analyzer/crates/ide_completion/src/context.rs

939 lines
31 KiB
Rust
Raw Normal View History

//! See `CompletionContext` structure.
2020-09-02 18:38:08 +00:00
use hir::{Local, ScopeDef, Semantics, SemanticsScope, Type};
2021-05-26 19:09:27 +00:00
use ide_db::{
base_db::{FilePosition, SourceDatabase},
call_info::ActiveParameter,
RootDatabase,
};
2020-08-12 16:26:51 +00:00
use syntax::{
algo::find_node_at_offset,
ast::{self, NameOrNameRef, NameOwner},
match_ast, AstNode, NodeOrToken,
2021-05-26 19:09:27 +00:00
SyntaxKind::{self, *},
SyntaxNode, SyntaxToken, TextRange, TextSize, T,
2019-01-08 19:33:36 +00:00
};
2020-08-12 15:03:06 +00:00
use text_edit::Indel;
2019-01-08 19:33:36 +00:00
2020-08-13 16:06:14 +00:00
use crate::{
patterns::{
determine_location, determine_prev_sibling, for_is_prev2, inside_impl_trait_block,
is_in_loop_body, previous_token, ImmediateLocation, ImmediatePrevSibling,
2020-08-13 16:06:14 +00:00
},
CompletionConfig,
2020-06-11 12:16:35 +00:00
};
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub(crate) enum PatternRefutability {
Refutable,
Irrefutable,
}
2019-01-08 19:33:36 +00:00
/// `CompletionContext` is created early during completion to figure out, where
/// exactly is the cursor, syntax-wise.
#[derive(Debug)]
pub(crate) struct CompletionContext<'a> {
pub(super) sema: Semantics<'a, RootDatabase>,
2020-07-10 23:26:24 +00:00
pub(super) scope: SemanticsScope<'a>,
2020-02-06 11:52:32 +00:00
pub(super) db: &'a RootDatabase,
2020-03-31 14:02:55 +00:00
pub(super) config: &'a CompletionConfig,
2020-08-11 06:54:33 +00:00
pub(super) position: FilePosition,
2020-03-07 14:27:03 +00:00
/// The token before the cursor, in the original file.
pub(super) original_token: SyntaxToken,
/// The token before the cursor, in the macro-expanded file.
2019-07-19 09:56:47 +00:00
pub(super) token: SyntaxToken,
pub(super) krate: Option<hir::Crate>,
pub(super) expected_name: Option<NameOrNameRef>,
pub(super) expected_type: Option<Type>,
2019-12-21 14:17:10 +00:00
pub(super) name_ref_syntax: Option<ast::NameRef>,
2020-07-30 12:12:04 +00:00
pub(super) use_item_syntax: Option<ast::Use>,
/// The parent function of the cursor position if it exists.
pub(super) function_def: Option<ast::Fn>,
/// The parent impl of the cursor position if it exists.
2020-07-30 16:28:28 +00:00
pub(super) impl_def: Option<ast::Impl>,
// potentially set if we are completing a lifetime
pub(super) lifetime_syntax: Option<ast::Lifetime>,
pub(super) lifetime_param_syntax: Option<ast::LifetimeParam>,
2021-03-20 21:43:42 +00:00
pub(super) lifetime_allowed: bool,
pub(super) is_label_ref: bool,
// potentially set if we are completing a name
pub(super) is_pat_or_const: Option<PatternRefutability>,
pub(super) is_param: bool,
pub(super) completion_location: Option<ImmediateLocation>,
pub(super) prev_sibling: Option<ImmediatePrevSibling>,
pub(super) attribute_under_caret: Option<ast::Attr>,
2020-05-14 13:15:52 +00:00
/// FIXME: `ActiveParameter` is string-based, which is very very wrong
2020-04-23 23:46:00 +00:00
pub(super) active_parameter: Option<ActiveParameter>,
2019-01-23 05:21:29 +00:00
/// A single-indent path, like `foo`. `::foo` should not be considered a trivial path.
2019-01-08 19:33:36 +00:00
pub(super) is_trivial_path: bool,
/// If not a trivial path, the prefix (qualifier).
2020-08-13 20:41:55 +00:00
pub(super) path_qual: Option<ast::Path>,
2019-01-08 19:33:36 +00:00
/// `true` if we are a statement or a last expr in the block.
pub(super) can_be_stmt: bool,
2020-07-10 15:41:43 +00:00
/// `true` if we expect an expression at the cursor position.
2020-07-10 15:56:55 +00:00
pub(super) is_expr: bool,
/// If this is a call (method or function) in particular, i.e. the () are already there.
pub(super) is_call: bool,
2020-07-14 11:51:43 +00:00
/// Like `is_call`, but for tuple patterns.
pub(super) is_pattern_call: bool,
/// If this is a macro call, i.e. the () are already there.
pub(super) is_macro_call: bool,
2019-10-08 18:14:52 +00:00
pub(super) is_path_type: bool,
pub(super) has_type_args: bool,
2021-05-27 01:47:20 +00:00
pub(super) locals: Vec<(String, Local)>,
2021-05-26 19:09:27 +00:00
pub(super) previous_token: Option<SyntaxToken>,
2021-05-27 01:47:20 +00:00
pub(super) in_loop_body: bool,
pub(super) incomplete_let: bool,
2021-05-26 19:09:27 +00:00
no_completion_required: bool,
2019-01-08 19:33:36 +00:00
}
2019-01-08 19:33:36 +00:00
impl<'a> CompletionContext<'a> {
pub(super) fn new(
2020-02-06 11:52:32 +00:00
db: &'a RootDatabase,
2019-01-08 19:33:36 +00:00
position: FilePosition,
2020-03-31 14:02:55 +00:00
config: &'a CompletionConfig,
) -> Option<CompletionContext<'a>> {
let sema = Semantics::new(db);
let original_file = sema.parse(position.file_id);
// Insert a fake ident to get a valid parse tree. We will use this file
// to determine context, though the original_file will be used for
// actual completion.
let file_with_fake_ident = {
let parse = db.parse(position.file_id);
2020-05-05 21:15:49 +00:00
let edit = Indel::insert(position.offset, "intellijRulezz".to_string());
parse.reparse(&edit).tree()
};
2020-03-07 14:27:03 +00:00
let fake_ident_token =
file_with_fake_ident.syntax().token_at_offset(position.offset).right_biased().unwrap();
let krate = sema.to_module_def(position.file_id).map(|m| m.krate());
2020-03-07 14:27:03 +00:00
let original_token =
original_file.syntax().token_at_offset(position.offset).left_biased()?;
let token = sema.descend_into_macros(original_token.clone());
let scope = sema.scope_at_offset(&token, position.offset);
2020-09-02 18:38:08 +00:00
let mut locals = vec![];
scope.process_all_names(&mut |name, scope| {
if let ScopeDef::Local(local) = scope {
locals.push((name.to_string(), local));
}
});
2019-01-08 19:33:36 +00:00
let mut ctx = CompletionContext {
sema,
2020-07-10 23:26:24 +00:00
scope,
2019-01-08 19:33:36 +00:00
db,
2020-03-31 14:02:55 +00:00
config,
position,
2020-03-07 14:27:03 +00:00
original_token,
2019-03-30 10:25:53 +00:00
token,
krate,
2021-03-20 21:43:42 +00:00
lifetime_allowed: false,
expected_name: None,
expected_type: None,
2019-12-21 14:17:10 +00:00
name_ref_syntax: None,
2021-03-20 21:43:42 +00:00
lifetime_syntax: None,
lifetime_param_syntax: None,
function_def: None,
2019-01-08 19:33:36 +00:00
use_item_syntax: None,
2020-02-29 20:24:40 +00:00
impl_def: None,
2020-04-23 23:46:00 +00:00
active_parameter: ActiveParameter::at(db, position),
2021-03-21 00:00:09 +00:00
is_label_ref: false,
2019-01-08 19:33:36 +00:00
is_param: false,
is_pat_or_const: None,
2019-01-08 19:33:36 +00:00
is_trivial_path: false,
2020-08-13 20:41:55 +00:00
path_qual: None,
2019-01-08 19:33:36 +00:00
can_be_stmt: false,
2020-07-10 15:56:55 +00:00
is_expr: false,
is_call: false,
2020-07-14 11:51:43 +00:00
is_pattern_call: false,
is_macro_call: false,
2019-10-08 18:14:52 +00:00
is_path_type: false,
has_type_args: false,
2021-05-26 19:09:27 +00:00
previous_token: None,
in_loop_body: false,
completion_location: None,
prev_sibling: None,
2021-05-26 19:09:27 +00:00
no_completion_required: false,
incomplete_let: false,
attribute_under_caret: None,
2020-09-02 18:38:08 +00:00
locals,
2019-01-08 19:33:36 +00:00
};
2020-03-07 14:27:03 +00:00
let mut original_file = original_file.syntax().clone();
let mut speculative_file = file_with_fake_ident.syntax().clone();
2020-03-07 14:27:03 +00:00
let mut offset = position.offset;
let mut fake_ident_token = fake_ident_token;
// Are we inside a macro call?
while let (Some(actual_macro_call), Some(macro_call_with_fake_ident)) = (
find_node_at_offset::<ast::MacroCall>(&original_file, offset),
find_node_at_offset::<ast::MacroCall>(&speculative_file, offset),
2020-03-07 14:27:03 +00:00
) {
2020-03-07 16:47:49 +00:00
if actual_macro_call.path().as_ref().map(|s| s.syntax().text())
!= macro_call_with_fake_ident.path().as_ref().map(|s| s.syntax().text())
{
break;
}
let speculative_args = match macro_call_with_fake_ident.token_tree() {
Some(tt) => tt,
None => break,
};
if let (Some(actual_expansion), Some(speculative_expansion)) = (
2020-03-07 14:27:03 +00:00
ctx.sema.expand(&actual_macro_call),
2020-08-14 13:23:27 +00:00
ctx.sema.speculative_expand(
2020-03-07 14:27:03 +00:00
&actual_macro_call,
&speculative_args,
2020-03-07 14:27:03 +00:00
fake_ident_token,
),
) {
let new_offset = speculative_expansion.1.text_range().start();
2020-03-15 10:17:13 +00:00
if new_offset > actual_expansion.text_range().end() {
2020-03-07 16:47:49 +00:00
break;
}
2020-03-07 14:27:03 +00:00
original_file = actual_expansion;
speculative_file = speculative_expansion.0;
fake_ident_token = speculative_expansion.1;
2020-03-07 16:47:49 +00:00
offset = new_offset;
2020-03-07 14:27:03 +00:00
} else {
break;
}
}
ctx.fill(&original_file, speculative_file, offset);
Some(ctx)
2019-01-08 19:33:36 +00:00
}
2020-10-12 07:59:15 +00:00
/// Checks whether completions in that particular case don't make much sense.
/// Examples:
2021-01-06 20:15:48 +00:00
/// - `fn $0` -- we expect function name, it's unlikely that "hint" will be helpful.
/// Exception for this case is `impl Trait for Foo`, where we would like to hint trait method names.
2021-01-06 20:15:48 +00:00
/// - `for _ i$0` -- obviously, it'll be "in" keyword.
2020-10-12 07:59:15 +00:00
pub(crate) fn no_completion_required(&self) -> bool {
2021-05-26 19:09:27 +00:00
self.no_completion_required
2020-10-12 07:59:15 +00:00
}
/// The range of the identifier that is being completed.
pub(crate) fn source_range(&self) -> TextRange {
2020-03-07 14:27:03 +00:00
// check kind of macro-expanded token, but use range of original token
let kind = self.token.kind();
2021-03-20 21:43:42 +00:00
if kind == IDENT || kind == LIFETIME_IDENT || kind == UNDERSCORE || kind.is_keyword() {
2021-03-08 20:19:44 +00:00
cov_mark::hit!(completes_if_prefix_is_keyword);
self.original_token.text_range()
} else if kind == CHAR {
// assume we are completing a lifetime but the user has only typed the '
cov_mark::hit!(completes_if_lifetime_without_idents);
TextRange::at(self.original_token.text_range().start(), TextSize::from(1))
} else {
2020-08-11 06:54:33 +00:00
TextRange::empty(self.position.offset)
2019-01-20 05:34:16 +00:00
}
}
2021-05-26 19:09:27 +00:00
pub(crate) fn previous_token_is(&self, kind: SyntaxKind) -> bool {
self.previous_token.as_ref().map_or(false, |tok| tok.kind() == kind)
}
pub(crate) fn expects_assoc_item(&self) -> bool {
matches!(
self.completion_location,
Some(ImmediateLocation::Trait) | Some(ImmediateLocation::Impl)
)
}
pub(crate) fn has_dot_receiver(&self) -> bool {
matches!(
&self.completion_location,
Some(ImmediateLocation::FieldAccess { receiver, .. }) | Some(ImmediateLocation::MethodCall { receiver })
if receiver.is_some()
)
}
pub(crate) fn dot_receiver(&self) -> Option<&ast::Expr> {
match &self.completion_location {
Some(ImmediateLocation::MethodCall { receiver })
| Some(ImmediateLocation::FieldAccess { receiver, .. }) => receiver.as_ref(),
_ => None,
}
}
pub(crate) fn expects_use_tree(&self) -> bool {
matches!(self.completion_location, Some(ImmediateLocation::Use))
}
pub(crate) fn expects_non_trait_assoc_item(&self) -> bool {
matches!(self.completion_location, Some(ImmediateLocation::Impl))
}
pub(crate) fn expects_item(&self) -> bool {
matches!(self.completion_location, Some(ImmediateLocation::ItemList))
}
// fn expects_value(&self) -> bool {
2021-05-28 18:46:09 +00:00
pub(crate) fn expects_expression(&self) -> bool {
self.is_expr
}
pub(crate) fn has_block_expr_parent(&self) -> bool {
matches!(self.completion_location, Some(ImmediateLocation::BlockExpr))
}
pub(crate) fn expects_ident_pat_or_ref_expr(&self) -> bool {
matches!(
self.completion_location,
Some(ImmediateLocation::IdentPat) | Some(ImmediateLocation::RefExpr)
)
}
pub(crate) fn expect_record_field(&self) -> bool {
matches!(self.completion_location, Some(ImmediateLocation::RecordField))
}
pub(crate) fn has_impl_or_trait_prev_sibling(&self) -> bool {
matches!(
self.prev_sibling,
Some(ImmediatePrevSibling::ImplDefType) | Some(ImmediatePrevSibling::TraitDefName)
)
}
pub(crate) fn after_if(&self) -> bool {
matches!(self.prev_sibling, Some(ImmediatePrevSibling::IfExpr))
}
2021-05-27 01:47:20 +00:00
pub(crate) fn is_path_disallowed(&self) -> bool {
matches!(
self.completion_location,
Some(ImmediateLocation::Attribute(_))
| Some(ImmediateLocation::ModDeclaration(_))
| Some(ImmediateLocation::RecordPat(_))
| Some(ImmediateLocation::RecordExpr(_))
) || self.attribute_under_caret.is_some()
2020-06-11 12:16:35 +00:00
}
fn fill_impl_def(&mut self) {
self.impl_def = self
.sema
.token_ancestors_with_macros(self.token.clone())
.take_while(|it| it.kind() != SOURCE_FILE && it.kind() != MODULE)
.find_map(ast::Impl::cast);
}
fn expected_type_and_name(&self) -> (Option<Type>, Option<NameOrNameRef>) {
let mut node = match self.token.parent() {
Some(it) => it,
None => return (None, None),
};
loop {
break match_ast! {
match node {
ast::LetStmt(it) => {
cov_mark::hit!(expected_type_let_with_leading_char);
cov_mark::hit!(expected_type_let_without_leading_char);
let ty = it.pat()
2021-05-08 21:14:08 +00:00
.and_then(|pat| self.sema.type_of_pat(&pat))
.or_else(|| it.initializer().and_then(|it| self.sema.type_of_expr(&it)));
let name = if let Some(ast::Pat::IdentPat(ident)) = it.pat() {
ident.name().map(NameOrNameRef::Name)
} else {
None
};
(ty, name)
},
ast::ArgList(_it) => {
cov_mark::hit!(expected_type_fn_param_with_leading_char);
cov_mark::hit!(expected_type_fn_param_without_leading_char);
ActiveParameter::at_token(
&self.sema,
self.token.clone(),
).map(|ap| {
let name = ap.ident().map(NameOrNameRef::Name);
(Some(ap.ty), name)
})
.unwrap_or((None, None))
},
ast::RecordExprFieldList(_it) => {
cov_mark::hit!(expected_type_struct_field_without_leading_char);
// wouldn't try {} be nice...
(|| {
let expr_field = self.token.prev_sibling_or_token()?
2021-05-23 21:54:35 +00:00
.into_node()
.and_then(|node| ast::RecordExprField::cast(node))?;
2021-05-23 21:54:35 +00:00
let (_, _, ty) = self.sema.resolve_record_field(&expr_field)?;
Some((
2021-05-23 21:54:35 +00:00
Some(ty),
expr_field.field_name().map(NameOrNameRef::NameRef),
))
})().unwrap_or((None, None))
},
ast::RecordExprField(it) => {
cov_mark::hit!(expected_type_struct_field_with_leading_char);
(
it.expr().as_ref().and_then(|e| self.sema.type_of_expr(e)),
it.field_name().map(NameOrNameRef::NameRef),
)
},
ast::MatchExpr(it) => {
cov_mark::hit!(expected_type_match_arm_without_leading_char);
let ty = it.expr()
.and_then(|e| self.sema.type_of_expr(&e));
(ty, None)
},
ast::IfExpr(it) => {
cov_mark::hit!(expected_type_if_let_without_leading_char);
let ty = it.condition()
.and_then(|cond| cond.expr())
.and_then(|e| self.sema.type_of_expr(&e));
(ty, None)
},
ast::IdentPat(it) => {
cov_mark::hit!(expected_type_if_let_with_leading_char);
cov_mark::hit!(expected_type_match_arm_with_leading_char);
let ty = self.sema.type_of_pat(&ast::Pat::from(it));
(ty, None)
},
ast::Fn(it) => {
cov_mark::hit!(expected_type_fn_ret_with_leading_char);
cov_mark::hit!(expected_type_fn_ret_without_leading_char);
let def = self.sema.to_def(&it);
(def.map(|def| def.ret_type(self.db)), None)
},
ast::ClosureExpr(it) => {
let ty = self.sema.type_of_expr(&it.into());
ty.and_then(|ty| ty.as_callable(self.db))
.map(|c| (Some(c.return_type()), None))
.unwrap_or((None, None))
},
2021-05-06 17:12:30 +00:00
ast::Stmt(_it) => (None, None),
_ => {
match node.parent() {
Some(n) => {
node = n;
continue;
},
None => (None, None),
}
},
}
};
}
}
fn fill(
&mut self,
2020-03-07 14:27:03 +00:00
original_file: &SyntaxNode,
file_with_fake_ident: SyntaxNode,
2020-04-24 21:40:41 +00:00
offset: TextSize,
) {
let fake_ident_token = file_with_fake_ident.token_at_offset(offset).right_biased().unwrap();
let syntax_element = NodeOrToken::Token(fake_ident_token);
self.previous_token = previous_token(syntax_element.clone());
self.attribute_under_caret = syntax_element.ancestors().find_map(ast::Attr::cast);
self.no_completion_required = {
let inside_impl_trait_block = inside_impl_trait_block(syntax_element.clone());
let fn_is_prev = self.previous_token_is(T![fn]);
let for_is_prev2 = for_is_prev2(syntax_element.clone());
(fn_is_prev && !inside_impl_trait_block) || for_is_prev2
};
self.in_loop_body = is_in_loop_body(syntax_element.clone());
self.incomplete_let =
syntax_element.ancestors().take(6).find_map(ast::LetStmt::cast).map_or(false, |it| {
it.syntax().text_range().end() == syntax_element.text_range().end()
});
let (expected_type, expected_name) = self.expected_type_and_name();
self.expected_type = expected_type;
self.expected_name = expected_name;
let name_like = match find_node_at_offset(&&file_with_fake_ident, offset) {
Some(it) => it,
None => return,
};
self.completion_location =
determine_location(&self.sema, original_file, offset, &name_like);
self.prev_sibling = determine_prev_sibling(&name_like);
match name_like {
ast::NameLike::Lifetime(lifetime) => {
self.classify_lifetime(original_file, lifetime, offset);
2019-02-24 20:49:47 +00:00
}
ast::NameLike::NameRef(name_ref) => {
self.classify_name_ref(original_file, name_ref);
2019-01-08 19:33:36 +00:00
}
ast::NameLike::Name(name) => {
self.classify_name(name);
2019-07-21 11:11:45 +00:00
}
2019-01-08 19:33:36 +00:00
}
}
2019-02-24 20:49:47 +00:00
2021-03-20 21:43:42 +00:00
fn classify_lifetime(
&mut self,
original_file: &SyntaxNode,
lifetime: ast::Lifetime,
offset: TextSize,
) {
self.lifetime_syntax =
find_node_at_offset(original_file, lifetime.syntax().text_range().start());
2021-03-21 00:00:09 +00:00
if let Some(parent) = lifetime.syntax().parent() {
if parent.kind() == ERROR {
2021-03-21 00:00:09 +00:00
return;
}
match_ast! {
match parent {
ast::LifetimeParam(_it) => {
self.lifetime_allowed = true;
self.lifetime_param_syntax =
self.sema.find_node_at_offset_with_macros(original_file, offset);
},
ast::BreakExpr(_it) => self.is_label_ref = true,
ast::ContinueExpr(_it) => self.is_label_ref = true,
ast::Label(_it) => (),
_ => self.lifetime_allowed = true,
2021-03-21 00:00:09 +00:00
}
}
2021-03-20 21:43:42 +00:00
}
}
fn classify_name(&mut self, name: ast::Name) {
if let Some(bind_pat) = name.syntax().parent().and_then(ast::IdentPat::cast) {
self.is_pat_or_const = Some(PatternRefutability::Refutable);
// if any of these is here our bind pat can't be a const pat anymore
let complex_ident_pat = bind_pat.at_token().is_some()
|| bind_pat.ref_token().is_some()
|| bind_pat.mut_token().is_some();
if complex_ident_pat {
self.is_pat_or_const = None;
} else {
let irrefutable_pat = bind_pat.syntax().ancestors().find_map(|node| {
match_ast! {
match node {
ast::LetStmt(it) => Some(it.pat()),
ast::Param(it) => Some(it.pat()),
_ => None,
}
}
});
if let Some(Some(pat)) = irrefutable_pat {
// This check is here since we could be inside a pattern in the initializer expression of the let statement.
if pat.syntax().text_range().contains_range(bind_pat.syntax().text_range()) {
self.is_pat_or_const = Some(PatternRefutability::Irrefutable);
}
}
let is_name_in_field_pat = bind_pat
.syntax()
.parent()
.and_then(ast::RecordPatField::cast)
.map_or(false, |pat_field| pat_field.name_ref().is_none());
if is_name_in_field_pat {
self.is_pat_or_const = None;
}
}
self.fill_impl_def();
}
self.is_param |= is_node::<ast::Param>(name.syntax());
}
fn classify_name_ref(&mut self, original_file: &SyntaxNode, name_ref: ast::NameRef) {
self.fill_impl_def();
2019-12-21 14:17:10 +00:00
self.name_ref_syntax =
2021-03-20 21:43:42 +00:00
find_node_at_offset(original_file, name_ref.syntax().text_range().start());
2020-02-08 17:28:39 +00:00
if matches!(self.completion_location, Some(ImmediateLocation::ItemList)) {
return;
2019-01-08 19:33:36 +00:00
}
2020-03-07 14:27:03 +00:00
self.use_item_syntax =
self.sema.token_ancestors_with_macros(self.token.clone()).find_map(ast::Use::cast);
2019-01-08 19:33:36 +00:00
self.function_def = self
2020-03-07 14:27:03 +00:00
.sema
.token_ancestors_with_macros(self.token.clone())
2019-01-08 19:33:36 +00:00
.take_while(|it| it.kind() != SOURCE_FILE && it.kind() != MODULE)
2020-07-30 12:51:08 +00:00
.find_map(ast::Fn::cast);
2019-01-08 19:33:36 +00:00
let parent = match name_ref.syntax().parent() {
Some(it) => it,
None => return,
};
2019-07-19 09:56:47 +00:00
if let Some(segment) = ast::PathSegment::cast(parent.clone()) {
2019-01-08 19:33:36 +00:00
let path = segment.parent_path();
self.is_call = path
.syntax()
.parent()
.and_then(ast::PathExpr::cast)
.and_then(|it| it.syntax().parent().and_then(ast::CallExpr::cast))
.is_some();
self.is_macro_call = path.syntax().parent().and_then(ast::MacroCall::cast).is_some();
2020-07-14 11:51:43 +00:00
self.is_pattern_call =
path.syntax().parent().and_then(ast::TupleStructPat::cast).is_some();
2019-10-08 18:14:52 +00:00
self.is_path_type = path.syntax().parent().and_then(ast::PathType::cast).is_some();
2020-07-31 16:29:29 +00:00
self.has_type_args = segment.generic_arg_list().is_some();
2019-10-08 18:14:52 +00:00
2020-08-13 20:41:55 +00:00
if let Some(path) = path_or_use_tree_qualifier(&path) {
self.path_qual = path
.segment()
.and_then(|it| {
find_node_with_range::<ast::PathSegment>(
original_file,
it.syntax().text_range(),
)
})
.map(|it| it.parent_path());
return;
}
if let Some(segment) = path.segment() {
if segment.coloncolon_token().is_some() {
2019-01-08 19:33:36 +00:00
return;
}
}
2020-08-13 20:41:55 +00:00
self.is_trivial_path = true;
2019-01-08 19:33:36 +00:00
2020-08-13 20:41:55 +00:00
// Find either enclosing expr statement (thing with `;`) or a
// block. If block, check that we are the last expr.
self.can_be_stmt = name_ref
.syntax()
.ancestors()
.find_map(|node| {
if let Some(stmt) = ast::ExprStmt::cast(node.clone()) {
return Some(stmt.syntax().text_range() == name_ref.syntax().text_range());
}
if let Some(block) = ast::BlockExpr::cast(node) {
return Some(
2021-01-05 12:45:46 +00:00
block.tail_expr().map(|e| e.syntax().text_range())
2020-08-13 20:41:55 +00:00
== Some(name_ref.syntax().text_range()),
);
}
None
})
.unwrap_or(false);
self.is_expr = path.syntax().parent().and_then(ast::PathExpr::cast).is_some();
2019-01-08 19:33:36 +00:00
}
self.is_call |=
matches!(self.completion_location, Some(ImmediateLocation::MethodCall { .. }));
2019-01-08 19:33:36 +00:00
}
}
2019-07-19 09:56:47 +00:00
fn find_node_with_range<N: AstNode>(syntax: &SyntaxNode, range: TextRange) -> Option<N> {
2021-01-15 17:15:33 +00:00
syntax.covering_element(range).ancestors().find_map(N::cast)
2019-01-08 19:33:36 +00:00
}
fn is_node<N: AstNode>(node: &SyntaxNode) -> bool {
2019-07-21 11:11:45 +00:00
match node.ancestors().find_map(N::cast) {
2019-01-08 19:33:36 +00:00
None => false,
2019-07-20 09:58:27 +00:00
Some(n) => n.syntax().text_range() == node.text_range(),
2019-01-08 19:33:36 +00:00
}
}
2020-08-13 20:41:55 +00:00
fn path_or_use_tree_qualifier(path: &ast::Path) -> Option<ast::Path> {
if let Some(qual) = path.qualifier() {
return Some(qual);
}
let use_tree_list = path.syntax().ancestors().find_map(ast::UseTreeList::cast)?;
let use_tree = use_tree_list.syntax().parent().and_then(ast::UseTree::cast)?;
use_tree.path()
}
#[cfg(test)]
mod tests {
use expect_test::{expect, Expect};
use hir::HirDisplay;
use crate::test_utils::{position, TEST_CONFIG};
use super::CompletionContext;
fn check_expected_type_and_name(ra_fixture: &str, expect: Expect) {
let (db, pos) = position(ra_fixture);
let completion_context = CompletionContext::new(&db, pos, &TEST_CONFIG).unwrap();
let ty = completion_context
.expected_type
.map(|t| t.display_test(&db).to_string())
.unwrap_or("?".to_owned());
let name = completion_context
.expected_name
.map_or_else(|| "?".to_owned(), |name| name.to_string());
expect.assert_eq(&format!("ty: {}, name: {}", ty, name));
}
#[test]
fn expected_type_let_without_leading_char() {
cov_mark::check!(expected_type_let_without_leading_char);
check_expected_type_and_name(
r#"
fn foo() {
let x: u32 = $0;
}
"#,
expect![[r#"ty: u32, name: x"#]],
);
}
#[test]
fn expected_type_let_with_leading_char() {
cov_mark::check!(expected_type_let_with_leading_char);
check_expected_type_and_name(
r#"
fn foo() {
let x: u32 = c$0;
}
"#,
expect![[r#"ty: u32, name: x"#]],
);
}
2021-05-08 21:14:08 +00:00
#[test]
fn expected_type_let_pat() {
check_expected_type_and_name(
r#"
fn foo() {
let x$0 = 0u32;
}
"#,
expect![[r#"ty: u32, name: ?"#]],
);
check_expected_type_and_name(
r#"
fn foo() {
let $0 = 0u32;
}
"#,
expect![[r#"ty: u32, name: ?"#]],
);
}
#[test]
fn expected_type_fn_param_without_leading_char() {
cov_mark::check!(expected_type_fn_param_without_leading_char);
check_expected_type_and_name(
r#"
fn foo() {
bar($0);
}
fn bar(x: u32) {}
"#,
expect![[r#"ty: u32, name: x"#]],
);
}
#[test]
fn expected_type_fn_param_with_leading_char() {
cov_mark::check!(expected_type_fn_param_with_leading_char);
check_expected_type_and_name(
r#"
fn foo() {
bar(c$0);
}
fn bar(x: u32) {}
"#,
expect![[r#"ty: u32, name: x"#]],
);
}
#[test]
fn expected_type_struct_field_without_leading_char() {
cov_mark::check!(expected_type_struct_field_without_leading_char);
check_expected_type_and_name(
r#"
struct Foo { a: u32 }
fn foo() {
Foo { a: $0 };
}
"#,
expect![[r#"ty: u32, name: a"#]],
)
}
#[test]
fn expected_type_generic_struct_field() {
check_expected_type_and_name(
r#"
struct Foo<T> { a: T }
fn foo() -> Foo<u32> {
Foo { a: $0 }
}
"#,
expect![[r#"ty: u32, name: a"#]],
)
}
#[test]
fn expected_type_struct_field_with_leading_char() {
cov_mark::check!(expected_type_struct_field_with_leading_char);
check_expected_type_and_name(
r#"
struct Foo { a: u32 }
fn foo() {
Foo { a: c$0 };
}
"#,
expect![[r#"ty: u32, name: a"#]],
);
}
#[test]
fn expected_type_match_arm_without_leading_char() {
cov_mark::check!(expected_type_match_arm_without_leading_char);
check_expected_type_and_name(
r#"
enum E { X }
fn foo() {
match E::X { $0 }
}
"#,
expect![[r#"ty: E, name: ?"#]],
);
}
#[test]
fn expected_type_match_arm_with_leading_char() {
cov_mark::check!(expected_type_match_arm_with_leading_char);
check_expected_type_and_name(
r#"
enum E { X }
fn foo() {
match E::X { c$0 }
}
"#,
expect![[r#"ty: E, name: ?"#]],
);
}
#[test]
fn expected_type_if_let_without_leading_char() {
cov_mark::check!(expected_type_if_let_without_leading_char);
check_expected_type_and_name(
r#"
enum Foo { Bar, Baz, Quux }
fn foo() {
let f = Foo::Quux;
if let $0 = f { }
}
"#,
expect![[r#"ty: Foo, name: ?"#]],
)
}
#[test]
fn expected_type_if_let_with_leading_char() {
cov_mark::check!(expected_type_if_let_with_leading_char);
check_expected_type_and_name(
r#"
enum Foo { Bar, Baz, Quux }
fn foo() {
let f = Foo::Quux;
if let c$0 = f { }
}
"#,
expect![[r#"ty: Foo, name: ?"#]],
)
}
#[test]
fn expected_type_fn_ret_without_leading_char() {
cov_mark::check!(expected_type_fn_ret_without_leading_char);
check_expected_type_and_name(
r#"
fn foo() -> u32 {
$0
}
"#,
expect![[r#"ty: u32, name: ?"#]],
)
}
#[test]
fn expected_type_fn_ret_with_leading_char() {
cov_mark::check!(expected_type_fn_ret_with_leading_char);
check_expected_type_and_name(
r#"
fn foo() -> u32 {
c$0
}
"#,
expect![[r#"ty: u32, name: ?"#]],
)
}
#[test]
fn expected_type_fn_ret_fn_ref_fully_typed() {
check_expected_type_and_name(
r#"
fn foo() -> u32 {
foo$0
}
"#,
expect![[r#"ty: u32, name: ?"#]],
)
}
#[test]
fn expected_type_closure_param_return() {
// FIXME: make this work with `|| $0`
check_expected_type_and_name(
r#"
fn foo() {
bar(|| a$0);
}
fn bar(f: impl FnOnce() -> u32) {}
#[lang = "fn_once"]
trait FnOnce { type Output; }
"#,
expect![[r#"ty: u32, name: ?"#]],
);
}
#[test]
fn expected_type_generic_function() {
check_expected_type_and_name(
r#"
fn foo() {
bar::<u32>($0);
}
fn bar<T>(t: T) {}
"#,
expect![[r#"ty: u32, name: t"#]],
);
}
#[test]
fn expected_type_generic_method() {
check_expected_type_and_name(
r#"
fn foo() {
S(1u32).bar($0);
}
struct S<T>(T);
impl<T> S<T> {
fn bar(self, t: T) {}
}
"#,
expect![[r#"ty: u32, name: t"#]],
);
}
}