rust-analyzer/crates/ra_hir/src/expr.rs

914 lines
32 KiB
Rust
Raw Normal View History

2019-01-05 23:33:58 +00:00
use std::ops::Index;
2019-01-05 15:32:07 +00:00
use std::sync::Arc;
use rustc_hash::FxHashMap;
2019-01-06 22:57:39 +00:00
use ra_arena::{Arena, RawId, impl_arena_id, map::ArenaMap};
2019-01-05 15:32:07 +00:00
use ra_db::{LocalSyntaxPtr, Cancelable};
use ra_syntax::{
SyntaxKind,
ast::{self, AstNode, LoopBodyOwner, ArgListOwner, NameOwner}
};
2019-01-05 15:32:07 +00:00
use crate::{Path, type_ref::{Mutability, TypeRef}, Name, HirDatabase, DefId, Def, name::AsName};
use crate::ty::primitive::{UintTy, IntTy, FloatTy, UncertainIntTy, UncertainFloatTy};
2019-01-05 15:32:07 +00:00
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct ExprId(RawId);
impl_arena_id!(ExprId);
/// The body of an item (function, const etc.).
#[derive(Debug, Eq, PartialEq)]
pub struct Body {
exprs: Arena<ExprId, Expr>,
pats: Arena<PatId, Pat>,
2019-01-12 20:58:16 +00:00
/// The patterns for the function's parameters. While the parameter types are
2019-01-05 15:32:07 +00:00
/// part of the function signature, the patterns are not (they don't change
/// the external type of the function).
///
/// If this `Body` is for the body of a constant, this will just be
2019-01-05 15:32:07 +00:00
/// empty.
2019-01-12 20:58:16 +00:00
params: Vec<PatId>,
2019-01-05 15:32:07 +00:00
/// The `ExprId` of the actual body expression.
body_expr: ExprId,
}
/// An item body together with the mapping from syntax nodes to HIR expression
/// IDs. This is needed to go from e.g. a position in a file to the HIR
/// expression containing it; but for type inference etc., we want to operate on
/// a structure that is agnostic to the actual positions of expressions in the
/// file, so that we don't recompute types whenever some whitespace is typed.
2019-01-05 15:32:07 +00:00
#[derive(Debug, Eq, PartialEq)]
pub struct BodySyntaxMapping {
body: Arc<Body>,
expr_syntax_mapping: FxHashMap<LocalSyntaxPtr, ExprId>,
2019-01-06 22:57:39 +00:00
expr_syntax_mapping_back: ArenaMap<ExprId, LocalSyntaxPtr>,
2019-01-05 15:32:07 +00:00
pat_syntax_mapping: FxHashMap<LocalSyntaxPtr, PatId>,
2019-01-06 22:57:39 +00:00
pat_syntax_mapping_back: ArenaMap<PatId, LocalSyntaxPtr>,
2019-01-05 15:32:07 +00:00
}
impl Body {
2019-01-12 20:58:16 +00:00
pub fn params(&self) -> &[PatId] {
&self.params
}
pub fn body_expr(&self) -> ExprId {
self.body_expr
}
}
2019-01-05 23:33:58 +00:00
impl Index<ExprId> for Body {
type Output = Expr;
fn index(&self, expr: ExprId) -> &Expr {
&self.exprs[expr]
}
}
impl Index<PatId> for Body {
type Output = Pat;
fn index(&self, pat: PatId) -> &Pat {
&self.pats[pat]
}
}
impl BodySyntaxMapping {
pub fn expr_syntax(&self, expr: ExprId) -> Option<LocalSyntaxPtr> {
2019-01-06 22:57:39 +00:00
self.expr_syntax_mapping_back.get(expr).cloned()
}
pub fn syntax_expr(&self, ptr: LocalSyntaxPtr) -> Option<ExprId> {
self.expr_syntax_mapping.get(&ptr).cloned()
}
2019-01-08 08:47:28 +00:00
pub fn node_expr(&self, node: &ast::Expr) -> Option<ExprId> {
self.expr_syntax_mapping
2019-01-06 23:03:30 +00:00
.get(&LocalSyntaxPtr::new(node.syntax()))
.cloned()
}
pub fn pat_syntax(&self, pat: PatId) -> Option<LocalSyntaxPtr> {
2019-01-06 22:57:39 +00:00
self.pat_syntax_mapping_back.get(pat).cloned()
}
pub fn syntax_pat(&self, ptr: LocalSyntaxPtr) -> Option<PatId> {
self.pat_syntax_mapping.get(&ptr).cloned()
}
2019-01-08 08:47:28 +00:00
pub fn node_pat(&self, node: &ast::Pat) -> Option<PatId> {
self.pat_syntax_mapping
2019-01-06 23:03:30 +00:00
.get(&LocalSyntaxPtr::new(node.syntax()))
.cloned()
}
pub fn body(&self) -> &Arc<Body> {
&self.body
}
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum Literal {
String(String),
ByteString(Vec<u8>),
Char(char),
Bool(bool),
Int(u64, UncertainIntTy),
Float(u64, UncertainFloatTy), // FIXME: f64 is not Eq
Tuple { values: Vec<ExprId> },
Array { values: Vec<ExprId> },
}
2019-01-05 15:32:07 +00:00
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum Expr {
/// This is produced if syntax tree does not have a required expression piece.
Missing,
Path(Path),
If {
condition: ExprId,
then_branch: ExprId,
else_branch: Option<ExprId>,
},
Block {
statements: Vec<Statement>,
tail: Option<ExprId>,
},
Loop {
body: ExprId,
},
While {
condition: ExprId,
body: ExprId,
},
For {
iterable: ExprId,
pat: PatId,
body: ExprId,
},
Call {
callee: ExprId,
args: Vec<ExprId>,
},
MethodCall {
receiver: ExprId,
method_name: Name,
args: Vec<ExprId>,
},
Match {
expr: ExprId,
arms: Vec<MatchArm>,
},
Continue,
Break {
expr: Option<ExprId>,
},
Return {
expr: Option<ExprId>,
},
StructLit {
path: Option<Path>,
fields: Vec<StructLitField>,
spread: Option<ExprId>,
},
Field {
expr: ExprId,
name: Name,
},
Try {
expr: ExprId,
},
Cast {
expr: ExprId,
type_ref: TypeRef,
},
Ref {
expr: ExprId,
mutability: Mutability,
},
UnaryOp {
expr: ExprId,
op: Option<UnaryOp>,
},
BinaryOp {
lhs: ExprId,
rhs: ExprId,
op: Option<BinaryOp>,
},
Lambda {
args: Vec<PatId>,
arg_types: Vec<Option<TypeRef>>,
body: ExprId,
},
2019-01-13 12:00:27 +00:00
Tuple {
exprs: Vec<ExprId>,
},
Literal(Literal),
2019-01-05 15:32:07 +00:00
}
pub use ra_syntax::ast::PrefixOp as UnaryOp;
pub use ra_syntax::ast::BinOp as BinaryOp;
2019-01-05 15:32:07 +00:00
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct MatchArm {
pub pats: Vec<PatId>,
2019-01-05 15:32:07 +00:00
// guard: Option<ExprId>, // TODO
pub expr: ExprId,
2019-01-05 15:32:07 +00:00
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct StructLitField {
pub name: Name,
pub expr: ExprId,
2019-01-05 15:32:07 +00:00
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum Statement {
Let {
pat: PatId,
type_ref: Option<TypeRef>,
initializer: Option<ExprId>,
},
Expr(ExprId),
}
impl Expr {
pub fn walk_child_exprs(&self, mut f: impl FnMut(ExprId)) {
match self {
Expr::Missing => {}
Expr::Path(_) => {}
Expr::If {
condition,
then_branch,
else_branch,
} => {
f(*condition);
f(*then_branch);
if let Some(else_branch) = else_branch {
f(*else_branch);
}
}
Expr::Block { statements, tail } => {
for stmt in statements {
match stmt {
Statement::Let { initializer, .. } => {
if let Some(expr) = initializer {
f(*expr);
}
}
Statement::Expr(e) => f(*e),
}
}
if let Some(expr) = tail {
f(*expr);
}
}
Expr::Loop { body } => f(*body),
Expr::While { condition, body } => {
f(*condition);
f(*body);
}
Expr::For { iterable, body, .. } => {
f(*iterable);
f(*body);
}
Expr::Call { callee, args } => {
f(*callee);
for arg in args {
f(*arg);
}
}
Expr::MethodCall { receiver, args, .. } => {
f(*receiver);
for arg in args {
f(*arg);
}
}
Expr::Match { expr, arms } => {
f(*expr);
for arm in arms {
f(arm.expr);
}
}
Expr::Continue => {}
Expr::Break { expr } | Expr::Return { expr } => {
if let Some(expr) = expr {
f(*expr);
}
}
Expr::StructLit { fields, spread, .. } => {
for field in fields {
f(field.expr);
}
if let Some(expr) = spread {
f(*expr);
}
}
Expr::Lambda { body, .. } => {
f(*body);
}
Expr::BinaryOp { lhs, rhs, .. } => {
f(*lhs);
f(*rhs);
}
Expr::Field { expr, .. }
| Expr::Try { expr }
| Expr::Cast { expr, .. }
| Expr::Ref { expr, .. }
| Expr::UnaryOp { expr, .. } => {
f(*expr);
}
2019-01-13 12:00:27 +00:00
Expr::Tuple { exprs } => {
for expr in exprs {
f(*expr);
}
}
Expr::Literal(l) => match l {
Literal::Array { values } | Literal::Tuple { values } => {
for &val in values {
f(val);
}
}
_ => {}
},
}
}
}
2019-01-05 15:32:07 +00:00
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct PatId(RawId);
impl_arena_id!(PatId);
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum Pat {
Missing,
Bind {
name: Name,
},
TupleStruct {
path: Option<Path>,
args: Vec<PatId>,
},
2019-01-13 10:34:57 +00:00
Ref {
pat: PatId,
mutability: Mutability,
},
}
impl Pat {
2019-01-13 10:34:57 +00:00
pub fn walk_child_pats(&self, mut f: impl FnMut(PatId)) {
match self {
Pat::Missing | Pat::Bind { .. } => {}
Pat::TupleStruct { args, .. } => {
args.iter().map(|pat| *pat).for_each(f);
}
2019-01-13 10:34:57 +00:00
Pat::Ref { pat, .. } => f(*pat),
}
}
}
2019-01-05 15:32:07 +00:00
// Queries
pub(crate) fn body_hir(db: &impl HirDatabase, def_id: DefId) -> Cancelable<Arc<Body>> {
Ok(Arc::clone(&body_syntax_mapping(db, def_id)?.body))
}
struct ExprCollector {
exprs: Arena<ExprId, Expr>,
pats: Arena<PatId, Pat>,
expr_syntax_mapping: FxHashMap<LocalSyntaxPtr, ExprId>,
2019-01-06 22:57:39 +00:00
expr_syntax_mapping_back: ArenaMap<ExprId, LocalSyntaxPtr>,
2019-01-05 15:32:07 +00:00
pat_syntax_mapping: FxHashMap<LocalSyntaxPtr, PatId>,
2019-01-06 22:57:39 +00:00
pat_syntax_mapping_back: ArenaMap<PatId, LocalSyntaxPtr>,
2019-01-05 15:32:07 +00:00
}
impl ExprCollector {
fn new() -> Self {
ExprCollector {
exprs: Arena::default(),
pats: Arena::default(),
expr_syntax_mapping: FxHashMap::default(),
2019-01-06 22:57:39 +00:00
expr_syntax_mapping_back: ArenaMap::default(),
pat_syntax_mapping: FxHashMap::default(),
2019-01-06 22:57:39 +00:00
pat_syntax_mapping_back: ArenaMap::default(),
}
}
2019-01-05 15:32:07 +00:00
fn alloc_expr(&mut self, expr: Expr, syntax_ptr: LocalSyntaxPtr) -> ExprId {
let id = self.exprs.alloc(expr);
self.expr_syntax_mapping.insert(syntax_ptr, id);
self.expr_syntax_mapping_back.insert(id, syntax_ptr);
id
}
fn alloc_pat(&mut self, pat: Pat, syntax_ptr: LocalSyntaxPtr) -> PatId {
let id = self.pats.alloc(pat);
self.pat_syntax_mapping.insert(syntax_ptr, id);
self.pat_syntax_mapping_back.insert(id, syntax_ptr);
id
}
fn empty_block(&mut self) -> ExprId {
let block = Expr::Block {
statements: Vec::new(),
tail: None,
};
self.exprs.alloc(block)
}
2019-01-08 08:28:42 +00:00
fn collect_expr(&mut self, expr: &ast::Expr) -> ExprId {
2019-01-05 15:32:07 +00:00
let syntax_ptr = LocalSyntaxPtr::new(expr.syntax());
2019-01-08 08:28:42 +00:00
match expr.kind() {
ast::ExprKind::IfExpr(e) => {
if let Some(pat) = e.condition().and_then(|c| c.pat()) {
// if let -- desugar to match
let pat = self.collect_pat(pat);
let match_expr =
self.collect_expr_opt(e.condition().expect("checked above").expr());
let then_branch = self.collect_block_opt(e.then_branch());
let else_branch = e
.else_branch()
.map(|e| self.collect_block(e))
.unwrap_or_else(|| self.empty_block());
let placeholder_pat = self.pats.alloc(Pat::Missing);
let arms = vec![
MatchArm {
pats: vec![pat],
expr: then_branch,
},
MatchArm {
pats: vec![placeholder_pat],
expr: else_branch,
},
];
self.alloc_expr(
Expr::Match {
expr: match_expr,
arms,
},
syntax_ptr,
)
} else {
2019-01-05 23:33:58 +00:00
let condition = self.collect_expr_opt(e.condition().and_then(|c| c.expr()));
let then_branch = self.collect_block_opt(e.then_branch());
let else_branch = e.else_branch().map(|e| self.collect_block(e));
self.alloc_expr(
Expr::If {
condition,
then_branch,
else_branch,
},
syntax_ptr,
)
}
2019-01-05 15:32:07 +00:00
}
2019-01-08 08:28:42 +00:00
ast::ExprKind::BlockExpr(e) => self.collect_block_opt(e.block()),
ast::ExprKind::LoopExpr(e) => {
2019-01-05 15:32:07 +00:00
let body = self.collect_block_opt(e.loop_body());
self.alloc_expr(Expr::Loop { body }, syntax_ptr)
}
2019-01-08 08:28:42 +00:00
ast::ExprKind::WhileExpr(e) => {
2019-01-05 15:32:07 +00:00
let condition = if let Some(condition) = e.condition() {
if condition.pat().is_none() {
self.collect_expr_opt(condition.expr())
} else {
// TODO handle while let
return self.alloc_expr(Expr::Missing, syntax_ptr);
}
} else {
self.exprs.alloc(Expr::Missing)
};
let body = self.collect_block_opt(e.loop_body());
self.alloc_expr(Expr::While { condition, body }, syntax_ptr)
}
2019-01-08 08:28:42 +00:00
ast::ExprKind::ForExpr(e) => {
2019-01-05 15:32:07 +00:00
let iterable = self.collect_expr_opt(e.iterable());
let pat = self.collect_pat_opt(e.pat());
let body = self.collect_block_opt(e.loop_body());
self.alloc_expr(
Expr::For {
iterable,
pat,
body,
},
syntax_ptr,
)
}
2019-01-08 08:28:42 +00:00
ast::ExprKind::CallExpr(e) => {
2019-01-05 15:32:07 +00:00
let callee = self.collect_expr_opt(e.expr());
let args = if let Some(arg_list) = e.arg_list() {
arg_list.args().map(|e| self.collect_expr(e)).collect()
} else {
Vec::new()
};
self.alloc_expr(Expr::Call { callee, args }, syntax_ptr)
}
2019-01-08 08:28:42 +00:00
ast::ExprKind::MethodCallExpr(e) => {
2019-01-05 15:32:07 +00:00
let receiver = self.collect_expr_opt(e.expr());
let args = if let Some(arg_list) = e.arg_list() {
arg_list.args().map(|e| self.collect_expr(e)).collect()
} else {
Vec::new()
};
let method_name = e
.name_ref()
.map(|nr| nr.as_name())
.unwrap_or_else(Name::missing);
self.alloc_expr(
Expr::MethodCall {
receiver,
method_name,
args,
},
syntax_ptr,
)
}
2019-01-08 08:28:42 +00:00
ast::ExprKind::MatchExpr(e) => {
2019-01-05 15:32:07 +00:00
let expr = self.collect_expr_opt(e.expr());
let arms = if let Some(match_arm_list) = e.match_arm_list() {
match_arm_list
.arms()
.map(|arm| MatchArm {
pats: arm.pats().map(|p| self.collect_pat(p)).collect(),
expr: self.collect_expr_opt(arm.expr()),
})
.collect()
} else {
Vec::new()
};
self.alloc_expr(Expr::Match { expr, arms }, syntax_ptr)
}
2019-01-08 08:28:42 +00:00
ast::ExprKind::PathExpr(e) => {
2019-01-05 15:32:07 +00:00
let path = e
.path()
.and_then(Path::from_ast)
.map(Expr::Path)
.unwrap_or(Expr::Missing);
self.alloc_expr(path, syntax_ptr)
}
2019-01-08 08:28:42 +00:00
ast::ExprKind::ContinueExpr(_e) => {
2019-01-05 15:32:07 +00:00
// TODO: labels
self.alloc_expr(Expr::Continue, syntax_ptr)
}
2019-01-08 08:28:42 +00:00
ast::ExprKind::BreakExpr(e) => {
2019-01-05 15:32:07 +00:00
let expr = e.expr().map(|e| self.collect_expr(e));
self.alloc_expr(Expr::Break { expr }, syntax_ptr)
}
2019-01-08 08:28:42 +00:00
ast::ExprKind::ParenExpr(e) => {
2019-01-05 15:32:07 +00:00
let inner = self.collect_expr_opt(e.expr());
// make the paren expr point to the inner expression as well
self.expr_syntax_mapping.insert(syntax_ptr, inner);
inner
}
2019-01-08 08:28:42 +00:00
ast::ExprKind::ReturnExpr(e) => {
2019-01-05 15:32:07 +00:00
let expr = e.expr().map(|e| self.collect_expr(e));
self.alloc_expr(Expr::Return { expr }, syntax_ptr)
}
2019-01-08 08:28:42 +00:00
ast::ExprKind::StructLit(e) => {
2019-01-05 15:32:07 +00:00
let path = e.path().and_then(Path::from_ast);
let fields = if let Some(nfl) = e.named_field_list() {
nfl.fields()
.map(|field| StructLitField {
name: field
.name_ref()
.map(|nr| nr.as_name())
.unwrap_or_else(Name::missing),
expr: if let Some(e) = field.expr() {
self.collect_expr(e)
} else if let Some(nr) = field.name_ref() {
// field shorthand
let id = self.exprs.alloc(Expr::Path(Path::from_name_ref(nr)));
self.expr_syntax_mapping
.insert(LocalSyntaxPtr::new(nr.syntax()), id);
self.expr_syntax_mapping_back
.insert(id, LocalSyntaxPtr::new(nr.syntax()));
id
} else {
self.exprs.alloc(Expr::Missing)
},
})
.collect()
} else {
Vec::new()
};
let spread = e.spread().map(|s| self.collect_expr(s));
self.alloc_expr(
Expr::StructLit {
path,
fields,
spread,
},
syntax_ptr,
)
}
2019-01-08 08:28:42 +00:00
ast::ExprKind::FieldExpr(e) => {
2019-01-05 15:32:07 +00:00
let expr = self.collect_expr_opt(e.expr());
let name = e
.name_ref()
.map(|nr| nr.as_name())
.unwrap_or_else(Name::missing);
self.alloc_expr(Expr::Field { expr, name }, syntax_ptr)
}
2019-01-08 08:28:42 +00:00
ast::ExprKind::TryExpr(e) => {
2019-01-05 15:32:07 +00:00
let expr = self.collect_expr_opt(e.expr());
self.alloc_expr(Expr::Try { expr }, syntax_ptr)
}
2019-01-08 08:28:42 +00:00
ast::ExprKind::CastExpr(e) => {
2019-01-05 15:32:07 +00:00
let expr = self.collect_expr_opt(e.expr());
let type_ref = TypeRef::from_ast_opt(e.type_ref());
self.alloc_expr(Expr::Cast { expr, type_ref }, syntax_ptr)
}
2019-01-08 08:28:42 +00:00
ast::ExprKind::RefExpr(e) => {
2019-01-05 15:32:07 +00:00
let expr = self.collect_expr_opt(e.expr());
let mutability = Mutability::from_mutable(e.is_mut());
self.alloc_expr(Expr::Ref { expr, mutability }, syntax_ptr)
}
2019-01-08 08:28:42 +00:00
ast::ExprKind::PrefixExpr(e) => {
2019-01-05 15:32:07 +00:00
let expr = self.collect_expr_opt(e.expr());
let op = e.op();
self.alloc_expr(Expr::UnaryOp { expr, op }, syntax_ptr)
}
2019-01-08 08:28:42 +00:00
ast::ExprKind::LambdaExpr(e) => {
let mut args = Vec::new();
let mut arg_types = Vec::new();
if let Some(pl) = e.param_list() {
for param in pl.params() {
let pat = self.collect_pat_opt(param.pat());
let type_ref = param.type_ref().map(TypeRef::from_ast);
args.push(pat);
arg_types.push(type_ref);
}
}
let body = self.collect_expr_opt(e.body());
self.alloc_expr(
Expr::Lambda {
args,
arg_types,
body,
},
syntax_ptr,
)
2019-01-05 15:32:07 +00:00
}
2019-01-08 08:28:42 +00:00
ast::ExprKind::BinExpr(e) => {
let lhs = self.collect_expr_opt(e.lhs());
let rhs = self.collect_expr_opt(e.rhs());
let op = e.op();
self.alloc_expr(Expr::BinaryOp { lhs, rhs, op }, syntax_ptr)
}
2019-01-13 12:00:27 +00:00
ast::ExprKind::TupleExpr(e) => {
let exprs = e.exprs().map(|expr| self.collect_expr(expr)).collect();
self.alloc_expr(Expr::Tuple { exprs }, syntax_ptr)
}
ast::ExprKind::Literal(e) => {
let child = e.syntax().children().next();
if let Some(c) = child {
let lit = match c.kind() {
SyntaxKind::INT_NUMBER => {
let text = c.text().to_string();
// FIXME: don't do it like this. maybe use something like
// the IntTy::from_name functions
let ty = if text.ends_with("isize") {
UncertainIntTy::Signed(IntTy::Isize)
} else if text.ends_with("i128") {
UncertainIntTy::Signed(IntTy::I128)
} else if text.ends_with("i64") {
UncertainIntTy::Signed(IntTy::I64)
} else if text.ends_with("i32") {
UncertainIntTy::Signed(IntTy::I32)
} else if text.ends_with("i16") {
UncertainIntTy::Signed(IntTy::I16)
} else if text.ends_with("i8") {
UncertainIntTy::Signed(IntTy::I8)
} else if text.ends_with("usize") {
UncertainIntTy::Unsigned(UintTy::Usize)
} else if text.ends_with("u128") {
UncertainIntTy::Unsigned(UintTy::U128)
} else if text.ends_with("u64") {
UncertainIntTy::Unsigned(UintTy::U64)
} else if text.ends_with("u32") {
UncertainIntTy::Unsigned(UintTy::U32)
} else if text.ends_with("u16") {
UncertainIntTy::Unsigned(UintTy::U16)
} else if text.ends_with("u8") {
UncertainIntTy::Unsigned(UintTy::U8)
} else {
UncertainIntTy::Unknown
};
// TODO: actually parse integer
Literal::Int(0u64, ty)
}
SyntaxKind::FLOAT_NUMBER => {
let text = c.text().to_string();
// FIXME: don't do it like this. maybe use something like
// the IntTy::from_name functions
let ty = if text.ends_with("f64") {
UncertainFloatTy::Known(FloatTy::F64)
} else if text.ends_with("f32") {
UncertainFloatTy::Known(FloatTy::F32)
} else {
UncertainFloatTy::Unknown
};
// TODO: actually parse value
Literal::Float(0, ty)
}
SyntaxKind::STRING => {
// FIXME: this likely includes the " characters
let text = c.text().to_string();
Literal::String(text)
}
SyntaxKind::ARRAY_EXPR => {
// TODO: recursively call to self
Literal::Array { values: vec![] }
}
SyntaxKind::PAREN_EXPR => {
// TODO: recursively call to self
Literal::Tuple { values: vec![] }
}
SyntaxKind::TRUE_KW => Literal::Bool(true),
SyntaxKind::FALSE_KW => Literal::Bool(false),
SyntaxKind::BYTE_STRING => {
// FIXME: this is completely incorrect for a variety
// of reasons, but at least it gives the right type
let bytes = c.text().to_string().into_bytes();
Literal::ByteString(bytes)
}
SyntaxKind::CHAR => {
let character = c.text().char_at(1).unwrap_or('X');
Literal::Char(character)
}
SyntaxKind::BYTE => {
let character = c.text().char_at(1).unwrap_or('X');
Literal::Int(
character as u8 as u64,
UncertainIntTy::Unsigned(UintTy::U8),
)
}
_ => return self.alloc_expr(Expr::Missing, syntax_ptr),
};
self.alloc_expr(Expr::Literal(lit), syntax_ptr)
} else {
self.alloc_expr(Expr::Missing, syntax_ptr)
}
}
2019-01-05 15:32:07 +00:00
// TODO implement HIR for these:
2019-01-08 08:28:42 +00:00
ast::ExprKind::Label(_e) => self.alloc_expr(Expr::Missing, syntax_ptr),
ast::ExprKind::IndexExpr(_e) => self.alloc_expr(Expr::Missing, syntax_ptr),
ast::ExprKind::ArrayExpr(_e) => self.alloc_expr(Expr::Missing, syntax_ptr),
ast::ExprKind::RangeExpr(_e) => self.alloc_expr(Expr::Missing, syntax_ptr),
2019-01-05 15:32:07 +00:00
}
}
2019-01-08 08:28:42 +00:00
fn collect_expr_opt(&mut self, expr: Option<&ast::Expr>) -> ExprId {
2019-01-05 15:32:07 +00:00
if let Some(expr) = expr {
self.collect_expr(expr)
} else {
self.exprs.alloc(Expr::Missing)
}
}
2019-01-08 08:28:42 +00:00
fn collect_block(&mut self, block: &ast::Block) -> ExprId {
2019-01-05 15:32:07 +00:00
let statements = block
.statements()
2019-01-08 08:28:42 +00:00
.map(|s| match s.kind() {
ast::StmtKind::LetStmt(stmt) => {
2019-01-05 15:32:07 +00:00
let pat = self.collect_pat_opt(stmt.pat());
let type_ref = stmt.type_ref().map(TypeRef::from_ast);
let initializer = stmt.initializer().map(|e| self.collect_expr(e));
Statement::Let {
pat,
type_ref,
initializer,
}
}
2019-01-08 08:28:42 +00:00
ast::StmtKind::ExprStmt(stmt) => {
Statement::Expr(self.collect_expr_opt(stmt.expr()))
}
2019-01-05 15:32:07 +00:00
})
.collect();
let tail = block.expr().map(|e| self.collect_expr(e));
self.alloc_expr(
Expr::Block { statements, tail },
LocalSyntaxPtr::new(block.syntax()),
)
}
2019-01-08 08:28:42 +00:00
fn collect_block_opt(&mut self, block: Option<&ast::Block>) -> ExprId {
2019-01-05 15:32:07 +00:00
if let Some(block) = block {
self.collect_block(block)
} else {
self.exprs.alloc(Expr::Missing)
}
}
2019-01-08 08:28:42 +00:00
fn collect_pat(&mut self, pat: &ast::Pat) -> PatId {
2019-01-05 15:32:07 +00:00
let syntax_ptr = LocalSyntaxPtr::new(pat.syntax());
2019-01-08 08:28:42 +00:00
match pat.kind() {
ast::PatKind::BindPat(bp) => {
let name = bp
.name()
.map(|nr| nr.as_name())
.unwrap_or_else(Name::missing);
self.alloc_pat(Pat::Bind { name }, syntax_ptr)
}
2019-01-08 08:28:42 +00:00
ast::PatKind::TupleStructPat(p) => {
let path = p.path().and_then(Path::from_ast);
let args = p.args().map(|p| self.collect_pat(p)).collect();
self.alloc_pat(Pat::TupleStruct { path, args }, syntax_ptr)
}
2019-01-13 10:34:57 +00:00
ast::PatKind::RefPat(p) => {
let pat = self.collect_pat_opt(p.pat());
let mutability = Mutability::from_mutable(p.is_mut());
self.alloc_pat(Pat::Ref { pat, mutability }, syntax_ptr)
}
_ => {
// TODO
self.alloc_pat(Pat::Missing, syntax_ptr)
}
}
2019-01-05 15:32:07 +00:00
}
2019-01-08 08:28:42 +00:00
fn collect_pat_opt(&mut self, pat: Option<&ast::Pat>) -> PatId {
2019-01-05 15:32:07 +00:00
if let Some(pat) = pat {
self.collect_pat(pat)
} else {
self.pats.alloc(Pat::Missing)
2019-01-05 15:32:07 +00:00
}
}
2019-01-12 20:58:16 +00:00
fn into_body_syntax_mapping(self, params: Vec<PatId>, body_expr: ExprId) -> BodySyntaxMapping {
2019-01-05 15:32:07 +00:00
let body = Body {
exprs: self.exprs,
pats: self.pats,
2019-01-12 20:58:16 +00:00
params,
2019-01-05 15:32:07 +00:00
body_expr,
};
BodySyntaxMapping {
body: Arc::new(body),
expr_syntax_mapping: self.expr_syntax_mapping,
expr_syntax_mapping_back: self.expr_syntax_mapping_back,
pat_syntax_mapping: self.pat_syntax_mapping,
pat_syntax_mapping_back: self.pat_syntax_mapping_back,
}
}
}
2019-01-08 08:28:42 +00:00
pub(crate) fn collect_fn_body_syntax(node: &ast::FnDef) -> BodySyntaxMapping {
let mut collector = ExprCollector::new();
2019-01-12 20:58:16 +00:00
let params = if let Some(param_list) = node.param_list() {
let mut params = Vec::new();
if let Some(self_param) = param_list.self_param() {
let self_param = LocalSyntaxPtr::new(
self_param
.self_kw()
.expect("self param without self keyword")
.syntax(),
);
2019-01-12 20:58:16 +00:00
let param = collector.alloc_pat(
Pat::Bind {
name: Name::self_param(),
},
self_param,
);
2019-01-12 20:58:16 +00:00
params.push(param);
}
for param in param_list.params() {
let pat = if let Some(pat) = param.pat() {
pat
} else {
continue;
};
2019-01-12 20:58:16 +00:00
params.push(collector.collect_pat(pat));
}
2019-01-12 20:58:16 +00:00
params
} else {
Vec::new()
};
let body = collector.collect_block_opt(node.body());
2019-01-12 20:58:16 +00:00
collector.into_body_syntax_mapping(params, body)
}
2019-01-05 15:32:07 +00:00
pub(crate) fn body_syntax_mapping(
db: &impl HirDatabase,
def_id: DefId,
) -> Cancelable<Arc<BodySyntaxMapping>> {
let def = def_id.resolve(db)?;
let body_syntax_mapping = match def {
Def::Function(f) => collect_fn_body_syntax(&f.source(db)?.1),
2019-01-05 15:32:07 +00:00
// TODO: consts, etc.
_ => panic!("Trying to get body for item type without body"),
};
Ok(Arc::new(body_syntax_mapping))
2019-01-05 15:32:07 +00:00
}