rust-analyzer/crates/ra_hir/src/ty/infer.rs

1862 lines
73 KiB
Rust
Raw Normal View History

//! Type inference, i.e. the process of walking through the code and determining
//! the type of each expression and pattern.
//!
//! For type inference, compare the implementations in rustc (the various
//! check_* methods in librustc_typeck/check/mod.rs are a good entry point) and
//! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for
//! inference here is the `infer` function, which infers the types of all
//! expressions in a given function.
//!
//! During inference, types (i.e. the `Ty` struct) can contain type 'variables'
//! which represent currently unknown types; as we walk through the expressions,
//! we might determine that certain variables need to be equal to each other, or
//! to certain types. To record this, we use the union-find implementation from
//! the `ena` crate, which is extracted from rustc.
use std::borrow::Cow;
2019-09-25 21:56:55 +00:00
use std::iter::{repeat, repeat_with};
use std::mem;
use std::ops::Index;
use std::sync::Arc;
use ena::unify::{InPlaceUnificationTable, NoError, UnifyKey, UnifyValue};
use rustc_hash::FxHashMap;
use ra_arena::map::ArenaMap;
2019-05-21 13:24:53 +00:00
use ra_prof::profile;
use test_utils::tested_by;
use super::{
autoderef, lower, method_resolution, op, primitive,
traits::{Guidance, Obligation, ProjectionPredicate, Solution},
2019-07-09 19:34:23 +00:00
ApplicationTy, CallableDef, InEnvironment, ProjectionTy, Substs, TraitEnvironment, TraitRef,
Ty, TypableDef, TypeCtor, TypeWalk,
};
use crate::{
adt::VariantDef,
code_model::TypeAlias,
2019-09-08 06:53:49 +00:00
db::HirDatabase,
diagnostics::DiagnosticSink,
2019-05-23 17:18:47 +00:00
expr::{
2019-08-23 12:55:21 +00:00
self, Array, BinaryOp, BindingAnnotation, Body, Expr, ExprId, Literal, Pat, PatId,
RecordFieldPat, Statement, UnaryOp,
2019-05-23 17:18:47 +00:00
},
generics::{GenericParams, HasGenericParams},
lang_item::LangItemTarget,
2019-07-08 15:45:12 +00:00
name,
nameres::Namespace,
2019-09-15 12:14:33 +00:00
path::{known, GenericArg, GenericArgs},
resolve::{Resolver, TypeNs},
2019-04-17 01:26:01 +00:00
ty::infer::diagnostics::InferenceDiagnostic,
type_ref::{Mutability, TypeRef},
Adt, AssocItem, ConstData, DefWithBody, FnData, Function, HasBody, Name, Path, StructField,
};
mod unify;
mod path;
/// The entry point of type inference.
2019-05-21 13:24:53 +00:00
pub fn infer_query(db: &impl HirDatabase, def: DefWithBody) -> Arc<InferenceResult> {
let _p = profile("infer_query");
let body = def.body(db);
let resolver = def.resolver(db);
let mut ctx = InferenceContext::new(db, body, resolver);
match def {
2019-06-18 17:07:35 +00:00
DefWithBody::Const(ref c) => ctx.collect_const(&c.data(db)),
DefWithBody::Function(ref f) => ctx.collect_fn(&f.data(db)),
DefWithBody::Static(ref s) => ctx.collect_const(&s.data(db)),
}
ctx.infer_body();
Arc::new(ctx.resolve_all())
}
2019-03-02 19:05:37 +00:00
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
2019-03-04 14:49:18 +00:00
enum ExprOrPatId {
2019-03-04 14:52:48 +00:00
ExprId(ExprId),
PatId(PatId),
}
2019-03-04 14:52:48 +00:00
impl_froms!(ExprOrPatId: ExprId, PatId);
/// Binding modes inferred for patterns.
/// https://doc.rust-lang.org/reference/patterns.html#binding-modes
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
enum BindingMode {
Move,
Ref(Mutability),
}
impl BindingMode {
2019-07-05 16:02:32 +00:00
pub fn convert(annotation: BindingAnnotation) -> BindingMode {
match annotation {
BindingAnnotation::Unannotated | BindingAnnotation::Mutable => BindingMode::Move,
BindingAnnotation::Ref => BindingMode::Ref(Mutability::Shared),
BindingAnnotation::RefMut => BindingMode::Ref(Mutability::Mut),
}
}
}
impl Default for BindingMode {
fn default() -> Self {
BindingMode::Move
}
}
/// A mismatch between an expected and an inferred type.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct TypeMismatch {
pub expected: Ty,
pub actual: Ty,
}
/// The result of type inference: A mapping from expressions and patterns to types.
#[derive(Clone, PartialEq, Eq, Debug, Default)]
pub struct InferenceResult {
/// For each method call expr, records the function it resolves to.
method_resolutions: FxHashMap<ExprId, Function>,
/// For each field access expr, records the field it resolves to.
field_resolutions: FxHashMap<ExprId, StructField>,
2019-07-21 11:11:45 +00:00
/// For each struct literal, records the variant it resolves to.
variant_resolutions: FxHashMap<ExprOrPatId, VariantDef>,
2019-03-02 19:05:37 +00:00
/// For each associated item record what it resolves to
assoc_resolutions: FxHashMap<ExprOrPatId, AssocItem>,
2019-03-23 13:28:47 +00:00
diagnostics: Vec<InferenceDiagnostic>,
pub(super) type_of_expr: ArenaMap<ExprId, Ty>,
pub(super) type_of_pat: ArenaMap<PatId, Ty>,
pub(super) type_mismatches: ArenaMap<ExprId, TypeMismatch>,
}
impl InferenceResult {
pub fn method_resolution(&self, expr: ExprId) -> Option<Function> {
2019-07-04 17:26:44 +00:00
self.method_resolutions.get(&expr).copied()
}
pub fn field_resolution(&self, expr: ExprId) -> Option<StructField> {
2019-07-04 17:26:44 +00:00
self.field_resolutions.get(&expr).copied()
}
2019-07-21 11:11:45 +00:00
pub fn variant_resolution_for_expr(&self, id: ExprId) -> Option<VariantDef> {
self.variant_resolutions.get(&id.into()).copied()
}
pub fn variant_resolution_for_pat(&self, id: PatId) -> Option<VariantDef> {
self.variant_resolutions.get(&id.into()).copied()
2019-07-12 16:56:18 +00:00
}
pub fn assoc_resolutions_for_expr(&self, id: ExprId) -> Option<AssocItem> {
2019-07-04 17:26:44 +00:00
self.assoc_resolutions.get(&id.into()).copied()
2019-03-04 14:49:18 +00:00
}
pub fn assoc_resolutions_for_pat(&self, id: PatId) -> Option<AssocItem> {
2019-07-04 17:26:44 +00:00
self.assoc_resolutions.get(&id.into()).copied()
}
pub fn type_mismatch_for_expr(&self, expr: ExprId) -> Option<&TypeMismatch> {
self.type_mismatches.get(expr)
}
2019-03-23 13:28:47 +00:00
pub(crate) fn add_diagnostics(
&self,
db: &impl HirDatabase,
owner: Function,
2019-03-23 17:41:59 +00:00
sink: &mut DiagnosticSink,
2019-03-23 13:28:47 +00:00
) {
2019-03-23 15:35:14 +00:00
self.diagnostics.iter().for_each(|it| it.add_to(db, owner, sink))
2019-03-21 19:13:11 +00:00
}
}
impl Index<ExprId> for InferenceResult {
type Output = Ty;
fn index(&self, expr: ExprId) -> &Ty {
self.type_of_expr.get(expr).unwrap_or(&Ty::Unknown)
}
}
impl Index<PatId> for InferenceResult {
type Output = Ty;
fn index(&self, pat: PatId) -> &Ty {
self.type_of_pat.get(pat).unwrap_or(&Ty::Unknown)
}
}
/// The inference context contains all information needed during type inference.
#[derive(Clone, Debug)]
struct InferenceContext<'a, D: HirDatabase> {
db: &'a D,
body: Arc<Body>,
resolver: Resolver,
var_unification_table: InPlaceUnificationTable<TypeVarId>,
2019-07-09 19:34:23 +00:00
trait_env: Arc<TraitEnvironment>,
obligations: Vec<Obligation>,
result: InferenceResult,
/// The return type of the function being inferred.
return_ty: Ty,
/// Impls of `CoerceUnsized` used in coercion.
/// (from_ty_ctor, to_ty_ctor) => coerce_generic_index
// FIXME: Use trait solver for this.
// Chalk seems unable to work well with builtin impl of `Unsize` now.
coerce_unsized_map: FxHashMap<(TypeCtor, TypeCtor), usize>,
}
2019-09-12 18:59:21 +00:00
macro_rules! ty_app {
($ctor:pat, $param:pat) => {
Ty::Apply(ApplicationTy { ctor: $ctor, parameters: $param })
};
($ctor:pat) => {
ty_app!($ctor, _)
};
}
impl<'a, D: HirDatabase> InferenceContext<'a, D> {
fn new(db: &'a D, body: Arc<Body>, resolver: Resolver) -> Self {
InferenceContext {
result: InferenceResult::default(),
var_unification_table: InPlaceUnificationTable::new(),
obligations: Vec::default(),
return_ty: Ty::Unknown, // set in collect_fn_signature
trait_env: lower::trait_env(db, &resolver),
coerce_unsized_map: Self::init_coerce_unsized_map(db, &resolver),
db,
body,
resolver,
}
}
fn init_coerce_unsized_map(
db: &'a D,
resolver: &Resolver,
) -> FxHashMap<(TypeCtor, TypeCtor), usize> {
let krate = resolver.krate().unwrap();
let impls = match db.lang_item(krate, "coerce_unsized".into()) {
Some(LangItemTarget::Trait(trait_)) => db.impls_for_trait(krate, trait_),
_ => return FxHashMap::default(),
};
impls
.iter()
.filter_map(|impl_block| {
// `CoerseUnsized` has one generic parameter for the target type.
let trait_ref = impl_block.target_trait_ref(db)?;
let cur_from_ty = trait_ref.substs.0.get(0)?;
let cur_to_ty = trait_ref.substs.0.get(1)?;
match (&cur_from_ty, cur_to_ty) {
(ty_app!(ctor1, st1), ty_app!(ctor2, st2)) => {
// FIXME: We return the first non-equal bound as the type parameter to coerce to unsized type.
// This works for smart-pointer-like coercion, which covers all impls from std.
st1.iter().zip(st2.iter()).enumerate().find_map(|(i, (ty1, ty2))| {
match (ty1, ty2) {
(Ty::Param { idx: p1, .. }, Ty::Param { idx: p2, .. })
if p1 != p2 =>
{
Some(((*ctor1, *ctor2), i))
}
_ => None,
}
})
}
_ => None,
}
})
.collect()
}
fn resolve_all(mut self) -> InferenceResult {
// FIXME resolve obligations as well (use Guidance if necessary)
let mut result = mem::replace(&mut self.result, InferenceResult::default());
let mut tv_stack = Vec::new();
for ty in result.type_of_expr.values_mut() {
let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
*ty = resolved;
}
for ty in result.type_of_pat.values_mut() {
let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
*ty = resolved;
}
result
}
fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) {
self.result.type_of_expr.insert(expr, ty);
}
fn write_method_resolution(&mut self, expr: ExprId, func: Function) {
self.result.method_resolutions.insert(expr, func);
}
fn write_field_resolution(&mut self, expr: ExprId, field: StructField) {
self.result.field_resolutions.insert(expr, field);
}
2019-07-21 11:11:45 +00:00
fn write_variant_resolution(&mut self, id: ExprOrPatId, variant: VariantDef) {
self.result.variant_resolutions.insert(id, variant);
2019-07-12 16:56:18 +00:00
}
fn write_assoc_resolution(&mut self, id: ExprOrPatId, item: AssocItem) {
self.result.assoc_resolutions.insert(id, item);
}
fn write_pat_ty(&mut self, pat: PatId, ty: Ty) {
self.result.type_of_pat.insert(pat, ty);
}
fn push_diagnostic(&mut self, diagnostic: InferenceDiagnostic) {
self.result.diagnostics.push(diagnostic);
}
fn make_ty(&mut self, type_ref: &TypeRef) -> Ty {
let ty = Ty::from_hir(
self.db,
2019-03-23 07:53:48 +00:00
// FIXME use right resolver for block
&self.resolver,
type_ref,
);
let ty = self.insert_type_vars(ty);
self.normalize_associated_types_in(ty)
}
fn unify_substs(&mut self, substs1: &Substs, substs2: &Substs, depth: usize) -> bool {
substs1.0.iter().zip(substs2.0.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth))
}
fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
self.unify_inner(ty1, ty2, 0)
}
fn unify_inner(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool {
if depth > 1000 {
// prevent stackoverflows
panic!("infinite recursion in unification");
}
if ty1 == ty2 {
return true;
}
// try to resolve type vars first
let ty1 = self.resolve_ty_shallow(ty1);
let ty2 = self.resolve_ty_shallow(ty2);
match (&*ty1, &*ty2) {
2019-03-21 21:29:12 +00:00
(Ty::Apply(a_ty1), Ty::Apply(a_ty2)) if a_ty1.ctor == a_ty2.ctor => {
self.unify_substs(&a_ty1.parameters, &a_ty2.parameters, depth + 1)
}
2019-09-12 18:59:21 +00:00
_ => self.unify_inner_trivial(&ty1, &ty2),
}
}
fn unify_inner_trivial(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
match (ty1, ty2) {
(Ty::Unknown, _) | (_, Ty::Unknown) => true,
(Ty::Infer(InferTy::TypeVar(tv1)), Ty::Infer(InferTy::TypeVar(tv2)))
| (Ty::Infer(InferTy::IntVar(tv1)), Ty::Infer(InferTy::IntVar(tv2)))
| (Ty::Infer(InferTy::FloatVar(tv1)), Ty::Infer(InferTy::FloatVar(tv2)))
| (
Ty::Infer(InferTy::MaybeNeverTypeVar(tv1)),
Ty::Infer(InferTy::MaybeNeverTypeVar(tv2)),
) => {
// both type vars are unknown since we tried to resolve them
self.var_unification_table.union(*tv1, *tv2);
true
}
// The order of MaybeNeverTypeVar matters here.
// Unifying MaybeNeverTypeVar and TypeVar will let the latter become MaybeNeverTypeVar.
// Unifying MaybeNeverTypeVar and other concrete type will let the former become it.
(Ty::Infer(InferTy::TypeVar(tv)), other)
| (other, Ty::Infer(InferTy::TypeVar(tv)))
| (Ty::Infer(InferTy::MaybeNeverTypeVar(tv)), other)
| (other, Ty::Infer(InferTy::MaybeNeverTypeVar(tv)))
| (Ty::Infer(InferTy::IntVar(tv)), other @ ty_app!(TypeCtor::Int(_)))
| (other @ ty_app!(TypeCtor::Int(_)), Ty::Infer(InferTy::IntVar(tv)))
| (Ty::Infer(InferTy::FloatVar(tv)), other @ ty_app!(TypeCtor::Float(_)))
| (other @ ty_app!(TypeCtor::Float(_)), Ty::Infer(InferTy::FloatVar(tv))) => {
// the type var is unknown since we tried to resolve it
self.var_unification_table.union_value(*tv, TypeVarValue::Known(other.clone()));
true
}
_ => false,
}
}
fn new_type_var(&mut self) -> Ty {
Ty::Infer(InferTy::TypeVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
}
fn new_integer_var(&mut self) -> Ty {
Ty::Infer(InferTy::IntVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
}
fn new_float_var(&mut self) -> Ty {
Ty::Infer(InferTy::FloatVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
}
fn new_maybe_never_type_var(&mut self) -> Ty {
Ty::Infer(InferTy::MaybeNeverTypeVar(
self.var_unification_table.new_key(TypeVarValue::Unknown),
))
}
/// Replaces Ty::Unknown by a new type var, so we can maybe still infer it.
fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
match ty {
Ty::Unknown => self.new_type_var(),
Ty::Apply(ApplicationTy {
2019-03-21 21:29:12 +00:00
ctor: TypeCtor::Int(primitive::UncertainIntTy::Unknown),
..
}) => self.new_integer_var(),
Ty::Apply(ApplicationTy {
2019-03-21 21:29:12 +00:00
ctor: TypeCtor::Float(primitive::UncertainFloatTy::Unknown),
..
}) => self.new_float_var(),
_ => ty,
}
}
fn insert_type_vars(&mut self, ty: Ty) -> Ty {
ty.fold(&mut |ty| self.insert_type_vars_shallow(ty))
}
fn resolve_obligations_as_possible(&mut self) {
let obligations = mem::replace(&mut self.obligations, Vec::new());
for obligation in obligations {
let in_env = InEnvironment::new(self.trait_env.clone(), obligation.clone());
let canonicalized = self.canonicalizer().canonicalize_obligation(in_env);
let solution =
2019-07-09 19:34:23 +00:00
self.db.trait_solve(self.resolver.krate().unwrap(), canonicalized.value.clone());
match solution {
Some(Solution::Unique(substs)) => {
canonicalized.apply_solution(self, substs.0);
}
Some(Solution::Ambig(Guidance::Definite(substs))) => {
canonicalized.apply_solution(self, substs.0);
self.obligations.push(obligation);
}
Some(_) => {
// FIXME use this when trying to resolve everything at the end
self.obligations.push(obligation);
}
None => {
// FIXME obligation cannot be fulfilled => diagnostic
}
};
}
}
/// Resolves the type as far as currently possible, replacing type variables
/// by their known types. All types returned by the infer_* functions should
/// be resolved as far as possible, i.e. contain no type variables with
/// known type.
fn resolve_ty_as_possible(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
self.resolve_obligations_as_possible();
ty.fold(&mut |ty| match ty {
Ty::Infer(tv) => {
let inner = tv.to_inner();
if tv_stack.contains(&inner) {
tested_by!(type_var_cycles_resolve_as_possible);
// recursive type
return tv.fallback_value();
}
if let Some(known_ty) = self.var_unification_table.probe_value(inner).known() {
// known_ty may contain other variables that are known by now
tv_stack.push(inner);
let result = self.resolve_ty_as_possible(tv_stack, known_ty.clone());
tv_stack.pop();
result
} else {
ty
}
}
_ => ty,
})
}
/// If `ty` is a type variable with known type, returns that type;
/// otherwise, return ty.
fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> {
let mut ty = Cow::Borrowed(ty);
// The type variable could resolve to a int/float variable. Hence try
// resolving up to three times; each type of variable shouldn't occur
// more than once
for i in 0..3 {
if i > 0 {
tested_by!(type_var_resolves_to_int_var);
}
match &*ty {
Ty::Infer(tv) => {
let inner = tv.to_inner();
match self.var_unification_table.probe_value(inner).known() {
Some(known_ty) => {
// The known_ty can't be a type var itself
ty = Cow::Owned(known_ty.clone());
}
_ => return ty,
}
}
_ => return ty,
}
}
log::error!("Inference variable still not resolved: {:?}", ty);
ty
}
2019-08-11 11:52:34 +00:00
/// Recurses through the given type, normalizing associated types mentioned
/// in it by replacing them by type variables and registering obligations to
/// resolve later. This should be done once for every type we get from some
/// type annotation (e.g. from a let type annotation, field type or function
/// call). `make_ty` handles this already, but e.g. for field types we need
/// to do it as well.
fn normalize_associated_types_in(&mut self, ty: Ty) -> Ty {
2019-08-11 11:52:34 +00:00
let ty = self.resolve_ty_as_possible(&mut vec![], ty);
ty.fold(&mut |ty| match ty {
Ty::Projection(proj_ty) => self.normalize_projection_ty(proj_ty),
_ => ty,
})
}
fn normalize_projection_ty(&mut self, proj_ty: ProjectionTy) -> Ty {
let var = self.new_type_var();
2019-09-25 01:32:01 +00:00
let predicate = ProjectionPredicate { projection_ty: proj_ty, ty: var.clone() };
let obligation = Obligation::Projection(predicate);
self.obligations.push(obligation);
var
}
/// Resolves the type completely; type variables without known type are
/// replaced by Ty::Unknown.
fn resolve_ty_completely(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
ty.fold(&mut |ty| match ty {
Ty::Infer(tv) => {
let inner = tv.to_inner();
if tv_stack.contains(&inner) {
tested_by!(type_var_cycles_resolve_completely);
// recursive type
return tv.fallback_value();
}
if let Some(known_ty) = self.var_unification_table.probe_value(inner).known() {
// known_ty may contain other variables that are known by now
tv_stack.push(inner);
let result = self.resolve_ty_completely(tv_stack, known_ty.clone());
tv_stack.pop();
result
} else {
tv.fallback_value()
}
}
_ => ty,
})
}
fn resolve_variant(&mut self, path: Option<&Path>) -> (Ty, Option<VariantDef>) {
let path = match path {
Some(path) => path,
None => return (Ty::Unknown, None),
};
let resolver = &self.resolver;
let def: TypableDef =
2019-06-08 15:38:14 +00:00
// FIXME: this should resolve assoc items as well, see this example:
// https://play.rust-lang.org/?gist=087992e9e22495446c01c0d4e2d69521
match resolver.resolve_path_in_type_ns_fully(self.db, &path) {
Some(TypeNs::Adt(Adt::Struct(it))) => it.into(),
Some(TypeNs::Adt(Adt::Union(it))) => it.into(),
Some(TypeNs::AdtSelfType(adt)) => adt.into(),
Some(TypeNs::EnumVariant(it)) => it.into(),
Some(TypeNs::TypeAlias(it)) => it.into(),
Some(TypeNs::SelfType(_)) |
Some(TypeNs::GenericParam(_)) |
Some(TypeNs::BuiltinType(_)) |
Some(TypeNs::Trait(_)) |
Some(TypeNs::Adt(Adt::Enum(_))) |
None => {
return (Ty::Unknown, None)
2019-06-08 15:38:14 +00:00
}
};
2019-03-23 07:53:48 +00:00
// FIXME remove the duplication between here and `Ty::from_path`?
let substs = Ty::substs_from_path(self.db, resolver, path, def);
match def {
2019-09-12 21:34:52 +00:00
TypableDef::Adt(Adt::Struct(s)) => {
let ty = s.ty(self.db);
let ty = self.insert_type_vars(ty.apply_substs(substs));
(ty, Some(s.into()))
}
TypableDef::EnumVariant(var) => {
let ty = var.parent_enum(self.db).ty(self.db);
let ty = self.insert_type_vars(ty.apply_substs(substs));
(ty, Some(var.into()))
}
2019-09-12 21:34:52 +00:00
TypableDef::Adt(Adt::Enum(_))
| TypableDef::Adt(Adt::Union(_))
2019-05-23 17:18:47 +00:00
| TypableDef::TypeAlias(_)
2019-02-25 07:27:47 +00:00
| TypableDef::Function(_)
2019-02-25 08:21:01 +00:00
| TypableDef::Const(_)
2019-05-30 11:05:35 +00:00
| TypableDef::Static(_)
| TypableDef::BuiltinType(_) => (Ty::Unknown, None),
}
}
fn infer_tuple_struct_pat(
&mut self,
path: Option<&Path>,
subpats: &[PatId],
expected: &Ty,
default_bm: BindingMode,
) -> Ty {
let (ty, def) = self.resolve_variant(path);
self.unify(&ty, expected);
let substs = ty.substs().unwrap_or_else(Substs::empty);
for (i, &subpat) in subpats.iter().enumerate() {
let expected_ty = def
.and_then(|d| d.field(self.db, &Name::new_tuple_field(i)))
.map_or(Ty::Unknown, |field| field.ty(self.db))
.subst(&substs);
2019-08-11 11:52:34 +00:00
let expected_ty = self.normalize_associated_types_in(expected_ty);
self.infer_pat(subpat, &expected_ty, default_bm);
}
ty
}
2019-08-23 12:55:21 +00:00
fn infer_record_pat(
&mut self,
path: Option<&Path>,
2019-08-23 12:55:21 +00:00
subpats: &[RecordFieldPat],
expected: &Ty,
default_bm: BindingMode,
2019-07-21 11:11:45 +00:00
id: PatId,
) -> Ty {
let (ty, def) = self.resolve_variant(path);
2019-07-21 11:11:45 +00:00
if let Some(variant) = def {
self.write_variant_resolution(id.into(), variant);
}
self.unify(&ty, expected);
let substs = ty.substs().unwrap_or_else(Substs::empty);
for subpat in subpats {
let matching_field = def.and_then(|it| it.field(self.db, &subpat.name));
let expected_ty =
matching_field.map_or(Ty::Unknown, |field| field.ty(self.db)).subst(&substs);
2019-08-11 11:52:34 +00:00
let expected_ty = self.normalize_associated_types_in(expected_ty);
self.infer_pat(subpat.pat, &expected_ty, default_bm);
}
ty
}
fn infer_pat(&mut self, pat: PatId, mut expected: &Ty, mut default_bm: BindingMode) -> Ty {
let body = Arc::clone(&self.body); // avoid borrow checker problem
let is_non_ref_pat = match &body[pat] {
Pat::Tuple(..)
| Pat::TupleStruct { .. }
2019-09-03 05:59:09 +00:00
| Pat::Record { .. }
| Pat::Range { .. }
| Pat::Slice { .. } => true,
2019-03-23 07:53:48 +00:00
// FIXME: Path/Lit might actually evaluate to ref, but inference is unimplemented.
Pat::Path(..) | Pat::Lit(..) => true,
Pat::Wild | Pat::Bind { .. } | Pat::Ref { .. } | Pat::Missing => false,
};
if is_non_ref_pat {
while let Some((inner, mutability)) = expected.as_reference() {
expected = inner;
default_bm = match default_bm {
BindingMode::Move => BindingMode::Ref(mutability),
BindingMode::Ref(Mutability::Shared) => BindingMode::Ref(Mutability::Shared),
BindingMode::Ref(Mutability::Mut) => BindingMode::Ref(mutability),
}
}
} else if let Pat::Ref { .. } = &body[pat] {
2019-03-17 19:05:10 +00:00
tested_by!(match_ergonomics_ref);
// When you encounter a `&pat` pattern, reset to Move.
// This is so that `w` is by value: `let (_, &w) = &(1, &2);`
default_bm = BindingMode::Move;
}
// Lose mutability.
let default_bm = default_bm;
let expected = expected;
let ty = match &body[pat] {
Pat::Tuple(ref args) => {
let expectations = match expected.as_tuple() {
Some(parameters) => &*parameters.0,
_ => &[],
};
let expectations_iter = expectations.iter().chain(repeat(&Ty::Unknown));
let inner_tys = args
.iter()
.zip(expectations_iter)
.map(|(&pat, ty)| self.infer_pat(pat, ty, default_bm))
.collect();
Ty::apply(TypeCtor::Tuple { cardinality: args.len() as u16 }, Substs(inner_tys))
}
Pat::Ref { pat, mutability } => {
let expectation = match expected.as_reference() {
Some((inner_ty, exp_mut)) => {
if *mutability != exp_mut {
2019-03-23 07:53:48 +00:00
// FIXME: emit type error?
}
inner_ty
}
_ => &Ty::Unknown,
};
let subty = self.infer_pat(*pat, expectation, default_bm);
2019-06-03 14:21:08 +00:00
Ty::apply_one(TypeCtor::Ref(*mutability), subty)
}
2019-09-03 05:59:44 +00:00
Pat::TupleStruct { path: p, args: subpats } => {
self.infer_tuple_struct_pat(p.as_ref(), subpats, expected, default_bm)
}
2019-09-03 05:59:44 +00:00
Pat::Record { path: p, args: fields } => {
2019-08-23 12:55:21 +00:00
self.infer_record_pat(p.as_ref(), fields, expected, default_bm, pat)
}
Pat::Path(path) => {
2019-03-23 07:53:48 +00:00
// FIXME use correct resolver for the surrounding expression
let resolver = self.resolver.clone();
self.infer_path(&resolver, &path, pat.into()).unwrap_or(Ty::Unknown)
}
2019-09-03 06:01:09 +00:00
Pat::Bind { mode, name: _, subpat } => {
let mode = if mode == &BindingAnnotation::Unannotated {
default_bm
} else {
2019-07-05 16:02:32 +00:00
BindingMode::convert(*mode)
};
let inner_ty = if let Some(subpat) = subpat {
self.infer_pat(*subpat, expected, default_bm)
} else {
expected.clone()
};
let inner_ty = self.insert_type_vars_shallow(inner_ty);
let bound_ty = match mode {
BindingMode::Ref(mutability) => {
2019-06-03 14:21:08 +00:00
Ty::apply_one(TypeCtor::Ref(mutability), inner_ty.clone())
}
BindingMode::Move => inner_ty.clone(),
};
let bound_ty = self.resolve_ty_as_possible(&mut vec![], bound_ty);
self.write_pat_ty(pat, bound_ty);
return inner_ty;
}
_ => Ty::Unknown,
};
// use a new type variable if we got Ty::Unknown here
let ty = self.insert_type_vars_shallow(ty);
self.unify(&ty, expected);
let ty = self.resolve_ty_as_possible(&mut vec![], ty);
self.write_pat_ty(pat, ty.clone());
ty
}
fn substs_for_method_call(
&mut self,
def_generics: Option<Arc<GenericParams>>,
2019-04-09 20:04:59 +00:00
generic_args: Option<&GenericArgs>,
receiver_ty: &Ty,
) -> Substs {
let (parent_param_count, param_count) =
def_generics.as_ref().map_or((0, 0), |g| (g.count_parent_params(), g.params.len()));
let mut substs = Vec::with_capacity(parent_param_count + param_count);
2019-04-09 20:04:59 +00:00
// Parent arguments are unknown, except for the receiver type
if let Some(parent_generics) = def_generics.and_then(|p| p.parent_params.clone()) {
for param in &parent_generics.params {
2019-07-08 15:45:12 +00:00
if param.name == name::SELF_TYPE {
substs.push(receiver_ty.clone());
} else {
substs.push(Ty::Unknown);
}
}
}
// handle provided type arguments
if let Some(generic_args) = generic_args {
// if args are provided, it should be all of them, but we can't rely on that
for arg in generic_args.args.iter().take(param_count) {
match arg {
GenericArg::Type(type_ref) => {
let ty = self.make_ty(type_ref);
substs.push(ty);
}
}
}
};
let supplied_params = substs.len();
for _ in supplied_params..parent_param_count + param_count {
substs.push(Ty::Unknown);
}
assert_eq!(substs.len(), parent_param_count + param_count);
Substs(substs.into())
}
2019-04-09 20:04:59 +00:00
fn register_obligations_for_call(&mut self, callable_ty: &Ty) {
2019-06-03 14:01:10 +00:00
if let Ty::Apply(a_ty) = callable_ty {
if let TypeCtor::FnDef(def) = a_ty.ctor {
let generic_predicates = self.db.generic_predicates(def.into());
for predicate in generic_predicates.iter() {
let predicate = predicate.clone().subst(&a_ty.parameters);
if let Some(obligation) = Obligation::from_predicate(predicate) {
self.obligations.push(obligation);
}
}
2019-06-03 14:01:10 +00:00
// add obligation for trait implementation, if this is a trait method
match def {
CallableDef::Function(f) => {
if let Some(trait_) = f.parent_trait(self.db) {
// construct a TraitDef
let substs = a_ty.parameters.prefix(
trait_.generic_params(self.db).count_params_including_parent(),
);
self.obligations.push(Obligation::Trait(TraitRef { trait_, substs }));
2019-04-09 20:04:59 +00:00
}
}
2019-06-03 14:01:10 +00:00
CallableDef::Struct(_) | CallableDef::EnumVariant(_) => {}
2019-04-09 20:04:59 +00:00
}
2019-06-03 14:01:10 +00:00
}
2019-04-09 20:04:59 +00:00
}
}
fn infer_method_call(
&mut self,
tgt_expr: ExprId,
receiver: ExprId,
args: &[ExprId],
method_name: &Name,
generic_args: Option<&GenericArgs>,
) -> Ty {
let receiver_ty = self.infer_expr(receiver, &Expectation::none());
2019-05-04 13:42:00 +00:00
let canonicalized_receiver = self.canonicalizer().canonicalize_ty(receiver_ty.clone());
let resolved = method_resolution::lookup_method(
2019-05-04 13:42:00 +00:00
&canonicalized_receiver.value,
self.db,
method_name,
2019-05-04 13:42:00 +00:00
&self.resolver,
);
2019-04-09 20:04:59 +00:00
let (derefed_receiver_ty, method_ty, def_generics) = match resolved {
Some((ty, func)) => {
2019-05-04 13:42:00 +00:00
let ty = canonicalized_receiver.decanonicalize_ty(ty);
2019-04-09 20:04:59 +00:00
self.write_method_resolution(tgt_expr, func);
(
ty,
self.db.type_for_def(func.into(), Namespace::Values),
Some(func.generic_params(self.db)),
)
}
None => (receiver_ty, Ty::Unknown, None),
};
2019-07-05 03:41:53 +00:00
let substs = self.substs_for_method_call(def_generics, generic_args, &derefed_receiver_ty);
2019-04-09 20:04:59 +00:00
let method_ty = method_ty.apply_substs(substs);
let method_ty = self.insert_type_vars(method_ty);
self.register_obligations_for_call(&method_ty);
let (expected_receiver_ty, param_tys, ret_ty) = match method_ty.callable_sig(self.db) {
Some(sig) => {
if !sig.params().is_empty() {
(sig.params()[0].clone(), sig.params()[1..].to_vec(), sig.ret().clone())
} else {
(Ty::Unknown, Vec::new(), sig.ret().clone())
2019-04-09 20:04:59 +00:00
}
}
None => (Ty::Unknown, Vec::new(), Ty::Unknown),
2019-04-09 20:04:59 +00:00
};
// Apply autoref so the below unification works correctly
// FIXME: return correct autorefs from lookup_method
let actual_receiver_ty = match expected_receiver_ty.as_reference() {
Some((_, mutability)) => Ty::apply_one(TypeCtor::Ref(mutability), derefed_receiver_ty),
_ => derefed_receiver_ty,
};
self.unify(&expected_receiver_ty, &actual_receiver_ty);
self.check_call_arguments(args, &param_tys);
2019-08-11 11:52:34 +00:00
let ret_ty = self.normalize_associated_types_in(ret_ty);
2019-04-09 20:04:59 +00:00
ret_ty
}
2019-09-12 18:59:21 +00:00
/// Infer type of expression with possibly implicit coerce to the expected type.
2019-09-25 21:56:55 +00:00
/// Return the type after possible coercion.
2019-09-12 18:59:21 +00:00
fn infer_expr_coerce(&mut self, expr: ExprId, expected: &Expectation) -> Ty {
let ty = self.infer_expr_inner(expr, &expected);
2019-09-25 21:56:55 +00:00
let ty = if !self.coerce(&ty, &expected.ty) {
self.result
.type_mismatches
.insert(expr, TypeMismatch { expected: expected.ty.clone(), actual: ty.clone() });
// Return actual type when type mismatch.
// This is needed for diagnostic when return type mismatch.
ty
} else if expected.ty == Ty::Unknown {
ty
} else {
expected.ty.clone()
};
self.resolve_ty_as_possible(&mut vec![], ty)
2019-09-12 18:59:21 +00:00
}
/// Merge two types from different branches, with possible implicit coerce.
///
/// Note that it is only possible that one type are coerced to another.
/// Coercing both types to another least upper bound type is not possible in rustc,
/// which will simply result in "incompatible types" error.
fn coerce_merge_branch<'t>(&mut self, ty1: &Ty, ty2: &Ty) -> Ty {
if self.coerce(ty1, ty2) {
ty2.clone()
} else if self.coerce(ty2, ty1) {
ty1.clone()
} else {
tested_by!(coerce_merge_fail_fallback);
// For incompatible types, we use the latter one as result
// to be better recovery for `if` without `else`.
ty2.clone()
}
}
2019-09-12 18:59:21 +00:00
/// Unify two types, but may coerce the first one to the second one
/// using "implicit coercion rules" if needed.
///
/// See: https://doc.rust-lang.org/nomicon/coercions.html
fn coerce(&mut self, from_ty: &Ty, to_ty: &Ty) -> bool {
2019-09-12 18:59:21 +00:00
let from_ty = self.resolve_ty_shallow(from_ty).into_owned();
let to_ty = self.resolve_ty_shallow(to_ty);
self.coerce_inner(from_ty, &to_ty)
}
fn coerce_inner(&mut self, mut from_ty: Ty, to_ty: &Ty) -> bool {
match (&from_ty, to_ty) {
// Never type will make type variable to fallback to Never Type instead of Unknown.
(ty_app!(TypeCtor::Never), Ty::Infer(InferTy::TypeVar(tv))) => {
let var = self.new_maybe_never_type_var();
self.var_unification_table.union_value(*tv, TypeVarValue::Known(var));
return true;
}
2019-09-12 18:59:21 +00:00
(ty_app!(TypeCtor::Never), _) => return true,
// Trivial cases, this should go after `never` check to
// avoid infer result type to be never
_ => {
if self.unify_inner_trivial(&from_ty, &to_ty) {
return true;
}
}
}
2019-09-12 18:59:21 +00:00
// Pointer weakening and function to pointer
match (&mut from_ty, to_ty) {
2019-09-12 18:59:21 +00:00
// `*mut T`, `&mut T, `&T`` -> `*const T`
// `&mut T` -> `&T`
// `&mut T` -> `*mut T`
(ty_app!(c1@TypeCtor::RawPtr(_)), ty_app!(c2@TypeCtor::RawPtr(Mutability::Shared)))
| (ty_app!(c1@TypeCtor::Ref(_)), ty_app!(c2@TypeCtor::RawPtr(Mutability::Shared)))
| (ty_app!(c1@TypeCtor::Ref(_)), ty_app!(c2@TypeCtor::Ref(Mutability::Shared)))
| (ty_app!(c1@TypeCtor::Ref(Mutability::Mut)), ty_app!(c2@TypeCtor::RawPtr(_))) => {
*c1 = *c2;
}
// Illegal mutablity conversion
(
ty_app!(TypeCtor::RawPtr(Mutability::Shared)),
ty_app!(TypeCtor::RawPtr(Mutability::Mut)),
)
| (
ty_app!(TypeCtor::Ref(Mutability::Shared)),
ty_app!(TypeCtor::Ref(Mutability::Mut)),
) => return false,
// `{function_type}` -> `fn()`
(ty_app!(TypeCtor::FnDef(_)), ty_app!(TypeCtor::FnPtr { .. })) => {
match from_ty.callable_sig(self.db) {
None => return false,
Some(sig) => {
let num_args = sig.params_and_return.len() as u16 - 1;
from_ty =
Ty::apply(TypeCtor::FnPtr { num_args }, Substs(sig.params_and_return));
}
}
}
_ => {}
2019-09-12 18:59:21 +00:00
}
if let Some(ret) = self.try_coerce_unsized(&from_ty, &to_ty) {
return ret;
2019-09-12 18:59:21 +00:00
}
// Auto Deref if cannot coerce
match (&from_ty, to_ty) {
// FIXME: DerefMut
2019-09-12 18:59:21 +00:00
(ty_app!(TypeCtor::Ref(_), st1), ty_app!(TypeCtor::Ref(_), st2)) => {
self.unify_autoderef_behind_ref(&st1[0], &st2[0])
}
// Otherwise, normal unify
_ => self.unify(&from_ty, to_ty),
}
}
/// Coerce a type using `from_ty: CoerceUnsized<ty_ty>`
2019-09-12 18:59:21 +00:00
///
/// See: https://doc.rust-lang.org/nightly/std/marker/trait.CoerceUnsized.html
fn try_coerce_unsized(&mut self, from_ty: &Ty, to_ty: &Ty) -> Option<bool> {
let (ctor1, st1, ctor2, st2) = match (from_ty, to_ty) {
(ty_app!(ctor1, st1), ty_app!(ctor2, st2)) => (ctor1, st1, ctor2, st2),
_ => return None,
};
let coerce_generic_index = *self.coerce_unsized_map.get(&(*ctor1, *ctor2))?;
// Check `Unsize` first
match self.check_unsize_and_coerce(
st1.0.get(coerce_generic_index)?,
st2.0.get(coerce_generic_index)?,
0,
) {
Some(true) => {}
ret => return ret,
}
let ret = st1
.iter()
.zip(st2.iter())
.enumerate()
.filter(|&(idx, _)| idx != coerce_generic_index)
.all(|(_, (ty1, ty2))| self.unify(ty1, ty2));
Some(ret)
}
/// Check if `from_ty: Unsize<to_ty>`, and coerce to `to_ty` if it holds.
///
/// It should not be directly called. It is only used by `try_coerce_unsized`.
///
/// See: https://doc.rust-lang.org/nightly/std/marker/trait.Unsize.html
fn check_unsize_and_coerce(&mut self, from_ty: &Ty, to_ty: &Ty, depth: usize) -> Option<bool> {
2019-09-12 18:59:21 +00:00
if depth > 1000 {
panic!("Infinite recursion in coercion");
}
2019-09-12 18:59:21 +00:00
match (&from_ty, &to_ty) {
// `[T; N]` -> `[T]`
(ty_app!(TypeCtor::Array, st1), ty_app!(TypeCtor::Slice, st2)) => {
Some(self.unify(&st1[0], &st2[0]))
2019-09-12 18:59:21 +00:00
}
// `T` -> `dyn Trait` when `T: Trait`
(_, Ty::Dyn(_)) => {
// FIXME: Check predicates
Some(true)
2019-09-12 18:59:21 +00:00
}
// `(..., T)` -> `(..., U)` when `T: Unsize<U>`
(
ty_app!(TypeCtor::Tuple { cardinality: len1 }, st1),
ty_app!(TypeCtor::Tuple { cardinality: len2 }, st2),
) => {
if len1 != len2 || *len1 == 0 {
return None;
}
match self.check_unsize_and_coerce(
st1.last().unwrap(),
st2.last().unwrap(),
depth + 1,
) {
Some(true) => {}
ret => return ret,
}
let ret = st1[..st1.len() - 1]
.iter()
.zip(&st2[..st2.len() - 1])
.all(|(ty1, ty2)| self.unify(ty1, ty2));
Some(ret)
}
// Foo<..., T, ...> is Unsize<Foo<..., U, ...>> if:
// - T: Unsize<U>
// - Foo is a struct
// - Only the last field of Foo has a type involving T
// - T is not part of the type of any other fields
// - Bar<T>: Unsize<Bar<U>>, if the last field of Foo has type Bar<T>
(
ty_app!(TypeCtor::Adt(Adt::Struct(struct1)), st1),
ty_app!(TypeCtor::Adt(Adt::Struct(struct2)), st2),
) if struct1 == struct2 => {
let fields = struct1.fields(self.db);
let (last_field, prev_fields) = fields.split_last()?;
// Get the generic parameter involved in the last field.
let unsize_generic_index = {
let mut index = None;
let mut multiple_param = false;
last_field.ty(self.db).walk(&mut |ty| match ty {
&Ty::Param { idx, .. } => {
if index.is_none() {
index = Some(idx);
} else if Some(idx) != index {
multiple_param = true;
}
}
_ => {}
});
if multiple_param {
return None;
2019-09-12 18:59:21 +00:00
}
index?
};
// Check other fields do not involve it.
let mut multiple_used = false;
prev_fields.iter().for_each(|field| {
field.ty(self.db).walk(&mut |ty| match ty {
&Ty::Param { idx, .. } if idx == unsize_generic_index => {
multiple_used = true
}
_ => {}
})
});
if multiple_used {
return None;
}
let unsize_generic_index = unsize_generic_index as usize;
// Check `Unsize` first
match self.check_unsize_and_coerce(
st1.get(unsize_generic_index)?,
st2.get(unsize_generic_index)?,
depth + 1,
) {
Some(true) => {}
ret => return ret,
}
// Then unify other parameters
let ret = st1
.iter()
.zip(st2.iter())
.enumerate()
.filter(|&(idx, _)| idx != unsize_generic_index)
.all(|(_, (ty1, ty2))| self.unify(ty1, ty2));
Some(ret)
2019-09-12 18:59:21 +00:00
}
_ => None,
2019-09-12 18:59:21 +00:00
}
}
2019-09-12 18:59:21 +00:00
/// Unify `from_ty` to `to_ty` with optional auto Deref
///
/// Note that the parameters are already stripped the outer reference.
fn unify_autoderef_behind_ref(&mut self, from_ty: &Ty, to_ty: &Ty) -> bool {
let canonicalized = self.canonicalizer().canonicalize_ty(from_ty.clone());
let to_ty = self.resolve_ty_shallow(&to_ty);
// FIXME: Auto DerefMut
for derefed_ty in
autoderef::autoderef(self.db, &self.resolver.clone(), canonicalized.value.clone())
{
let derefed_ty = canonicalized.decanonicalize_ty(derefed_ty.value);
2019-09-12 18:59:21 +00:00
match (&*self.resolve_ty_shallow(&derefed_ty), &*to_ty) {
// Stop when constructor matches.
(ty_app!(from_ctor, st1), ty_app!(to_ctor, st2)) if from_ctor == to_ctor => {
// It will not recurse to `coerce`.
return self.unify_substs(st1, st2, 0);
}
_ => {}
}
}
false
}
fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
let ty = self.infer_expr_inner(tgt_expr, expected);
let could_unify = self.unify(&ty, &expected.ty);
if !could_unify {
self.result.type_mismatches.insert(
tgt_expr,
TypeMismatch { expected: expected.ty.clone(), actual: ty.clone() },
);
}
let ty = self.resolve_ty_as_possible(&mut vec![], ty);
ty
}
fn infer_expr_inner(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
let body = Arc::clone(&self.body); // avoid borrow checker problem
let ty = match &body[tgt_expr] {
Expr::Missing => Ty::Unknown,
Expr::If { condition, then_branch, else_branch } => {
// if let is desugared to match, so this is always simple if
2019-03-21 21:20:03 +00:00
self.infer_expr(*condition, &Expectation::has_type(Ty::simple(TypeCtor::Bool)));
2019-08-15 20:53:42 +00:00
let then_ty = self.infer_expr_inner(*then_branch, &expected);
2019-08-26 20:00:35 +00:00
let else_ty = match else_branch {
Some(else_branch) => self.infer_expr_inner(*else_branch, &expected),
None => Ty::unit(),
2019-08-15 20:53:42 +00:00
};
self.coerce_merge_branch(&then_ty, &else_ty)
}
Expr::Block { statements, tail } => self.infer_block(statements, *tail, expected),
2019-06-06 11:36:16 +00:00
Expr::TryBlock { body } => {
let _inner = self.infer_expr(*body, expected);
// FIXME should be std::result::Result<{inner}, _>
Ty::Unknown
}
Expr::Loop { body } => {
self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
2019-03-23 07:53:48 +00:00
// FIXME handle break with value
2019-03-21 21:20:03 +00:00
Ty::simple(TypeCtor::Never)
}
Expr::While { condition, body } => {
// while let is desugared to a match loop, so this is always simple while
2019-03-21 21:20:03 +00:00
self.infer_expr(*condition, &Expectation::has_type(Ty::simple(TypeCtor::Bool)));
self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
Ty::unit()
}
Expr::For { iterable, body, pat } => {
let iterable_ty = self.infer_expr(*iterable, &Expectation::none());
let pat_ty = match self.resolve_into_iter_item() {
Some(into_iter_item_alias) => {
let pat_ty = self.new_type_var();
let projection = ProjectionPredicate {
ty: pat_ty.clone(),
projection_ty: ProjectionTy {
associated_ty: into_iter_item_alias,
parameters: Substs::single(iterable_ty),
},
};
self.obligations.push(Obligation::Projection(projection));
self.resolve_ty_as_possible(&mut vec![], pat_ty)
}
None => Ty::Unknown,
};
self.infer_pat(*pat, &pat_ty, BindingMode::default());
self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
Ty::unit()
}
Expr::Lambda { body, args, arg_types } => {
assert_eq!(args.len(), arg_types.len());
2019-09-07 19:03:03 +00:00
let mut sig_tys = Vec::new();
for (arg_pat, arg_type) in args.iter().zip(arg_types.iter()) {
let expected = if let Some(type_ref) = arg_type {
2019-07-04 17:26:44 +00:00
self.make_ty(type_ref)
} else {
Ty::Unknown
};
2019-09-07 19:03:03 +00:00
let arg_ty = self.infer_pat(*arg_pat, &expected, BindingMode::default());
sig_tys.push(arg_ty);
}
2019-09-07 19:03:03 +00:00
// add return type
let ret_ty = self.new_type_var();
sig_tys.push(ret_ty.clone());
let sig_ty = Ty::apply(
TypeCtor::FnPtr { num_args: sig_tys.len() as u16 - 1 },
Substs(sig_tys.into()),
2019-09-07 19:03:03 +00:00
);
let closure_ty = Ty::apply_one(
TypeCtor::Closure { def: self.body.owner(), expr: tgt_expr },
sig_ty,
);
2019-09-24 17:04:53 +00:00
// Eagerly try to relate the closure type with the expected
// type, otherwise we often won't have enough information to
// infer the body.
self.coerce(&closure_ty, &expected.ty);
2019-09-07 19:03:03 +00:00
self.infer_expr(*body, &Expectation::has_type(ret_ty));
closure_ty
}
Expr::Call { callee, args } => {
let callee_ty = self.infer_expr(*callee, &Expectation::none());
let (param_tys, ret_ty) = match callee_ty.callable_sig(self.db) {
Some(sig) => (sig.params().to_vec(), sig.ret().clone()),
None => {
// Not callable
// FIXME: report an error
(Vec::new(), Ty::Unknown)
}
};
self.register_obligations_for_call(&callee_ty);
self.check_call_arguments(args, &param_tys);
2019-08-11 11:52:34 +00:00
let ret_ty = self.normalize_associated_types_in(ret_ty);
ret_ty
}
2019-04-09 20:04:59 +00:00
Expr::MethodCall { receiver, args, method_name, generic_args } => self
.infer_method_call(tgt_expr, *receiver, &args, &method_name, generic_args.as_ref()),
Expr::Match { expr, arms } => {
2019-08-15 20:53:42 +00:00
let input_ty = self.infer_expr(*expr, &Expectation::none());
let mut result_ty = self.new_maybe_never_type_var();
for arm in arms {
for &pat in &arm.pats {
let _pat_ty = self.infer_pat(pat, &input_ty, BindingMode::default());
}
if let Some(guard_expr) = arm.guard {
self.infer_expr(
guard_expr,
2019-03-21 21:20:03 +00:00
&Expectation::has_type(Ty::simple(TypeCtor::Bool)),
);
}
2019-09-12 18:59:21 +00:00
let arm_ty = self.infer_expr_inner(arm.expr, &expected);
result_ty = self.coerce_merge_branch(&result_ty, &arm_ty);
}
result_ty
}
Expr::Path(p) => {
2019-03-23 07:53:48 +00:00
// FIXME this could be more efficient...
let resolver = expr::resolver_for_expr(self.body.clone(), self.db, tgt_expr);
self.infer_path(&resolver, p, tgt_expr.into()).unwrap_or(Ty::Unknown)
}
2019-03-21 21:20:03 +00:00
Expr::Continue => Ty::simple(TypeCtor::Never),
Expr::Break { expr } => {
if let Some(expr) = expr {
2019-03-23 07:53:48 +00:00
// FIXME handle break with value
self.infer_expr(*expr, &Expectation::none());
}
2019-03-21 21:20:03 +00:00
Ty::simple(TypeCtor::Never)
}
Expr::Return { expr } => {
if let Some(expr) = expr {
self.infer_expr(*expr, &Expectation::has_type(self.return_ty.clone()));
}
2019-03-21 21:20:03 +00:00
Ty::simple(TypeCtor::Never)
}
2019-08-23 12:55:21 +00:00
Expr::RecordLit { path, fields, spread } => {
let (ty, def_id) = self.resolve_variant(path.as_ref());
2019-07-12 16:56:18 +00:00
if let Some(variant) = def_id {
2019-07-21 11:11:45 +00:00
self.write_variant_resolution(tgt_expr.into(), variant);
2019-07-12 16:56:18 +00:00
}
2019-09-25 21:56:55 +00:00
self.unify(&ty, &expected.ty);
let substs = ty.substs().unwrap_or_else(Substs::empty);
2019-06-04 06:28:50 +00:00
for (field_idx, field) in fields.iter().enumerate() {
let field_ty = def_id
2019-03-21 19:13:11 +00:00
.and_then(|it| match it.field(self.db, &field.name) {
Some(field) => Some(field),
None => {
self.push_diagnostic(InferenceDiagnostic::NoSuchField {
2019-03-21 19:13:11 +00:00
expr: tgt_expr,
field: field_idx,
});
None
}
})
.map_or(Ty::Unknown, |field| field.ty(self.db))
.subst(&substs);
2019-09-25 21:56:55 +00:00
self.infer_expr_coerce(field.expr, &Expectation::has_type(field_ty));
}
if let Some(expr) = spread {
self.infer_expr(*expr, &Expectation::has_type(ty.clone()));
}
ty
}
Expr::Field { expr, name } => {
let receiver_ty = self.infer_expr(*expr, &Expectation::none());
let canonicalized = self.canonicalizer().canonicalize_ty(receiver_ty);
let ty = autoderef::autoderef(
self.db,
&self.resolver.clone(),
canonicalized.value.clone(),
)
.find_map(|derefed_ty| match canonicalized.decanonicalize_ty(derefed_ty.value) {
Ty::Apply(a_ty) => match a_ty.ctor {
TypeCtor::Tuple { .. } => name
.as_tuple_index()
.and_then(|idx| a_ty.parameters.0.get(idx).cloned()),
2019-09-12 21:34:52 +00:00
TypeCtor::Adt(Adt::Struct(s)) => s.field(self.db, name).map(|field| {
self.write_field_resolution(tgt_expr, field);
field.ty(self.db).subst(&a_ty.parameters)
}),
_ => None,
},
_ => None,
})
.unwrap_or(Ty::Unknown);
2019-08-11 11:52:34 +00:00
let ty = self.insert_type_vars(ty);
self.normalize_associated_types_in(ty)
}
Expr::Await { expr } => {
let inner_ty = self.infer_expr(*expr, &Expectation::none());
let ty = match self.resolve_future_future_output() {
Some(future_future_output_alias) => {
let ty = self.new_type_var();
let projection = ProjectionPredicate {
ty: ty.clone(),
projection_ty: ProjectionTy {
associated_ty: future_future_output_alias,
parameters: Substs::single(inner_ty),
},
};
self.obligations.push(Obligation::Projection(projection));
self.resolve_ty_as_possible(&mut vec![], ty)
}
None => Ty::Unknown,
};
ty
2019-07-20 10:35:49 +00:00
}
Expr::Try { expr } => {
let inner_ty = self.infer_expr(*expr, &Expectation::none());
let ty = match self.resolve_ops_try_ok() {
Some(ops_try_ok_alias) => {
let ty = self.new_type_var();
let projection = ProjectionPredicate {
ty: ty.clone(),
projection_ty: ProjectionTy {
associated_ty: ops_try_ok_alias,
parameters: Substs::single(inner_ty),
},
};
self.obligations.push(Obligation::Projection(projection));
self.resolve_ty_as_possible(&mut vec![], ty)
}
None => Ty::Unknown,
};
ty
}
Expr::Cast { expr, type_ref } => {
let _inner_ty = self.infer_expr(*expr, &Expectation::none());
let cast_ty = self.make_ty(type_ref);
2019-03-23 07:53:48 +00:00
// FIXME check the cast...
cast_ty
}
Expr::Ref { expr, mutability } => {
let expectation =
if let Some((exp_inner, exp_mutability)) = &expected.ty.as_reference() {
if *exp_mutability == Mutability::Mut && *mutability == Mutability::Shared {
2019-03-23 07:53:48 +00:00
// FIXME: throw type error - expected mut reference but found shared ref,
// which cannot be coerced
}
Expectation::has_type(Ty::clone(exp_inner))
} else {
Expectation::none()
};
2019-03-23 07:53:48 +00:00
// FIXME reference coercions etc.
let inner_ty = self.infer_expr(*expr, &expectation);
2019-03-21 21:20:03 +00:00
Ty::apply_one(TypeCtor::Ref(*mutability), inner_ty)
}
2019-09-11 15:53:41 +00:00
Expr::Box { expr } => {
let inner_ty = self.infer_expr(*expr, &Expectation::none());
if let Some(box_) = self.resolve_boxed_box() {
Ty::apply_one(TypeCtor::Adt(box_), inner_ty)
} else {
Ty::Unknown
}
}
Expr::UnaryOp { expr, op } => {
let inner_ty = self.infer_expr(*expr, &Expectation::none());
match op {
UnaryOp::Deref => {
let canonicalized = self.canonicalizer().canonicalize_ty(inner_ty);
if let Some(derefed_ty) =
autoderef::deref(self.db, &self.resolver, &canonicalized.value)
{
canonicalized.decanonicalize_ty(derefed_ty.value)
} else {
Ty::Unknown
}
}
UnaryOp::Neg => {
match &inner_ty {
2019-03-21 21:29:12 +00:00
Ty::Apply(a_ty) => match a_ty.ctor {
2019-03-21 21:20:03 +00:00
TypeCtor::Int(primitive::UncertainIntTy::Unknown)
| TypeCtor::Int(primitive::UncertainIntTy::Known(
primitive::IntTy {
signedness: primitive::Signedness::Signed,
..
},
))
2019-03-21 21:20:03 +00:00
| TypeCtor::Float(..) => inner_ty,
_ => Ty::Unknown,
},
Ty::Infer(InferTy::IntVar(..)) | Ty::Infer(InferTy::FloatVar(..)) => {
inner_ty
}
2019-03-23 07:53:48 +00:00
// FIXME: resolve ops::Neg trait
_ => Ty::Unknown,
}
}
UnaryOp::Not => {
match &inner_ty {
2019-03-21 21:29:12 +00:00
Ty::Apply(a_ty) => match a_ty.ctor {
2019-03-21 21:20:03 +00:00
TypeCtor::Bool | TypeCtor::Int(_) => inner_ty,
_ => Ty::Unknown,
},
Ty::Infer(InferTy::IntVar(..)) => inner_ty,
2019-03-23 07:53:48 +00:00
// FIXME: resolve ops::Not trait for inner_ty
_ => Ty::Unknown,
}
}
}
}
Expr::BinaryOp { lhs, rhs, op } => match op {
Some(op) => {
let lhs_expectation = match op {
BinaryOp::LogicOp(..) => Expectation::has_type(Ty::simple(TypeCtor::Bool)),
_ => Expectation::none(),
};
let lhs_ty = self.infer_expr(*lhs, &lhs_expectation);
2019-03-23 07:53:48 +00:00
// FIXME: find implementation of trait corresponding to operation
// symbol and resolve associated `Output` type
let rhs_expectation = op::binary_op_rhs_expectation(*op, lhs_ty);
let rhs_ty = self.infer_expr(*rhs, &Expectation::has_type(rhs_expectation));
2019-03-23 07:53:48 +00:00
// FIXME: similar as above, return ty is often associated trait type
op::binary_op_return_ty(*op, rhs_ty)
}
_ => Ty::Unknown,
},
Expr::Index { base, index } => {
let _base_ty = self.infer_expr(*base, &Expectation::none());
let _index_ty = self.infer_expr(*index, &Expectation::none());
// FIXME: use `std::ops::Index::Output` to figure out the real return type
Ty::Unknown
}
Expr::Tuple { exprs } => {
2019-09-25 21:56:55 +00:00
let mut tys = match &expected.ty {
ty_app!(TypeCtor::Tuple { .. }, st) => st
.iter()
.cloned()
.chain(repeat_with(|| self.new_type_var()))
.take(exprs.len())
.collect::<Vec<_>>(),
_ => (0..exprs.len()).map(|_| self.new_type_var()).collect(),
};
for (expr, ty) in exprs.iter().zip(tys.iter_mut()) {
self.infer_expr_coerce(*expr, &Expectation::has_type(ty.clone()));
}
2019-09-25 21:56:55 +00:00
Ty::apply(TypeCtor::Tuple { cardinality: tys.len() as u16 }, Substs(tys.into()))
}
Expr::Array(array) => {
let elem_ty = match &expected.ty {
2019-09-25 21:56:55 +00:00
ty_app!(TypeCtor::Array, st) | ty_app!(TypeCtor::Slice, st) => {
st.as_single().clone()
}
_ => self.new_type_var(),
};
match array {
Array::ElementList(items) => {
for expr in items.iter() {
2019-09-25 21:56:55 +00:00
self.infer_expr_coerce(*expr, &Expectation::has_type(elem_ty.clone()));
}
}
Array::Repeat { initializer, repeat } => {
2019-09-25 21:56:55 +00:00
self.infer_expr_coerce(
*initializer,
&Expectation::has_type(elem_ty.clone()),
);
self.infer_expr(
*repeat,
&Expectation::has_type(Ty::simple(TypeCtor::Int(
primitive::UncertainIntTy::Known(primitive::IntTy::usize()),
))),
);
}
2019-04-03 22:23:58 +00:00
}
2019-03-21 21:20:03 +00:00
Ty::apply_one(TypeCtor::Array, elem_ty)
}
Expr::Literal(lit) => match lit {
2019-03-21 21:20:03 +00:00
Literal::Bool(..) => Ty::simple(TypeCtor::Bool),
Literal::String(..) => {
2019-03-21 21:20:03 +00:00
Ty::apply_one(TypeCtor::Ref(Mutability::Shared), Ty::simple(TypeCtor::Str))
}
Literal::ByteString(..) => {
let byte_type = Ty::simple(TypeCtor::Int(primitive::UncertainIntTy::Known(
primitive::IntTy::u8(),
)));
2019-03-21 21:20:03 +00:00
let slice_type = Ty::apply_one(TypeCtor::Slice, byte_type);
Ty::apply_one(TypeCtor::Ref(Mutability::Shared), slice_type)
}
2019-03-21 21:20:03 +00:00
Literal::Char(..) => Ty::simple(TypeCtor::Char),
Literal::Int(_v, ty) => Ty::simple(TypeCtor::Int(*ty)),
Literal::Float(_v, ty) => Ty::simple(TypeCtor::Float(*ty)),
},
};
// use a new type variable if we got Ty::Unknown here
let ty = self.insert_type_vars_shallow(ty);
let ty = self.resolve_ty_as_possible(&mut vec![], ty);
self.write_expr_ty(tgt_expr, ty.clone());
ty
}
fn infer_block(
&mut self,
statements: &[Statement],
tail: Option<ExprId>,
expected: &Expectation,
) -> Ty {
let mut diverges = false;
for stmt in statements {
match stmt {
Statement::Let { pat, type_ref, initializer } => {
let decl_ty =
type_ref.as_ref().map(|tr| self.make_ty(tr)).unwrap_or(Ty::Unknown);
2019-09-25 21:56:55 +00:00
// Always use the declared type when specified
let mut ty = decl_ty.clone();
if let Some(expr) = initializer {
2019-09-25 21:56:55 +00:00
let actual_ty =
self.infer_expr_coerce(*expr, &Expectation::has_type(decl_ty.clone()));
if decl_ty == Ty::Unknown {
ty = actual_ty;
}
}
2019-09-25 21:56:55 +00:00
let ty = self.resolve_ty_as_possible(&mut vec![], ty);
self.infer_pat(*pat, &ty, BindingMode::default());
}
Statement::Expr(expr) => {
if let ty_app!(TypeCtor::Never) = self.infer_expr(*expr, &Expectation::none()) {
diverges = true;
}
}
}
}
2019-09-25 21:56:55 +00:00
let ty = if let Some(expr) = tail {
2019-09-25 21:56:55 +00:00
self.infer_expr_coerce(expr, expected)
} else {
self.coerce(&Ty::unit(), &expected.ty);
Ty::unit()
};
if diverges {
Ty::simple(TypeCtor::Never)
} else {
ty
2019-09-25 21:56:55 +00:00
}
}
fn check_call_arguments(&mut self, args: &[ExprId], param_tys: &[Ty]) {
// Quoting https://github.com/rust-lang/rust/blob/6ef275e6c3cb1384ec78128eceeb4963ff788dca/src/librustc_typeck/check/mod.rs#L3325 --
// We do this in a pretty awful way: first we type-check any arguments
// that are not closures, then we type-check the closures. This is so
// that we have more information about the types of arguments when we
// type-check the functions. This isn't really the right way to do this.
for &check_closures in &[false, true] {
let param_iter = param_tys.iter().cloned().chain(repeat(Ty::Unknown));
for (&arg, param_ty) in args.iter().zip(param_iter) {
let is_closure = match &self.body[arg] {
Expr::Lambda { .. } => true,
_ => false,
};
if is_closure != check_closures {
continue;
}
let param_ty = self.normalize_associated_types_in(param_ty);
2019-09-12 18:59:21 +00:00
self.infer_expr_coerce(arg, &Expectation::has_type(param_ty.clone()));
}
}
}
2019-06-18 17:07:35 +00:00
fn collect_const(&mut self, data: &ConstData) {
self.return_ty = self.make_ty(data.type_ref());
}
2019-06-18 17:07:35 +00:00
fn collect_fn(&mut self, data: &FnData) {
let body = Arc::clone(&self.body); // avoid borrow checker problem
2019-06-18 17:07:35 +00:00
for (type_ref, pat) in data.params().iter().zip(body.params()) {
let ty = self.make_ty(type_ref);
self.infer_pat(*pat, &ty, BindingMode::default());
}
2019-06-18 17:07:35 +00:00
self.return_ty = self.make_ty(data.ret_type());
}
fn infer_body(&mut self) {
self.infer_expr(self.body.body_expr(), &Expectation::has_type(self.return_ty.clone()));
}
fn resolve_into_iter_item(&self) -> Option<TypeAlias> {
2019-09-15 12:14:33 +00:00
let path = known::std_iter_into_iterator();
let trait_ = self.resolver.resolve_known_trait(self.db, &path)?;
trait_.associated_type_by_name(self.db, &name::ITEM_TYPE)
}
fn resolve_ops_try_ok(&self) -> Option<TypeAlias> {
2019-09-15 12:14:33 +00:00
let path = known::std_ops_try();
let trait_ = self.resolver.resolve_known_trait(self.db, &path)?;
trait_.associated_type_by_name(self.db, &name::OK_TYPE)
}
fn resolve_future_future_output(&self) -> Option<TypeAlias> {
2019-09-15 12:14:33 +00:00
let path = known::std_future_future();
let trait_ = self.resolver.resolve_known_trait(self.db, &path)?;
trait_.associated_type_by_name(self.db, &name::OUTPUT_TYPE)
}
2019-09-11 15:53:41 +00:00
2019-09-12 21:34:52 +00:00
fn resolve_boxed_box(&self) -> Option<Adt> {
2019-09-15 12:14:33 +00:00
let path = known::std_boxed_box();
let struct_ = self.resolver.resolve_known_struct(self.db, &path)?;
2019-09-12 21:34:52 +00:00
Some(Adt::Struct(struct_))
2019-09-11 15:53:41 +00:00
}
}
/// The ID of a type variable.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub struct TypeVarId(pub(super) u32);
impl UnifyKey for TypeVarId {
type Value = TypeVarValue;
fn index(&self) -> u32 {
self.0
}
fn from_index(i: u32) -> Self {
TypeVarId(i)
}
fn tag() -> &'static str {
"TypeVarId"
}
}
/// The value of a type variable: either we already know the type, or we don't
/// know it yet.
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum TypeVarValue {
Known(Ty),
Unknown,
}
impl TypeVarValue {
fn known(&self) -> Option<&Ty> {
match self {
TypeVarValue::Known(ty) => Some(ty),
TypeVarValue::Unknown => None,
}
}
}
impl UnifyValue for TypeVarValue {
type Error = NoError;
fn unify_values(value1: &Self, value2: &Self) -> Result<Self, NoError> {
match (value1, value2) {
// We should never equate two type variables, both of which have
// known types. Instead, we recursively equate those types.
(TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!(
"equating two type variables, both of which have known types: {:?} and {:?}",
t1, t2
),
// If one side is known, prefer that one.
(TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()),
(TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()),
(TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown),
}
}
}
/// The kinds of placeholders we need during type inference. There's separate
/// values for general types, and for integer and float variables. The latter
/// two are used for inference of literal values (e.g. `100` could be one of
/// several integer types).
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub enum InferTy {
TypeVar(TypeVarId),
IntVar(TypeVarId),
FloatVar(TypeVarId),
MaybeNeverTypeVar(TypeVarId),
}
impl InferTy {
fn to_inner(self) -> TypeVarId {
match self {
InferTy::TypeVar(ty)
| InferTy::IntVar(ty)
| InferTy::FloatVar(ty)
| InferTy::MaybeNeverTypeVar(ty) => ty,
}
}
fn fallback_value(self) -> Ty {
match self {
InferTy::TypeVar(..) => Ty::Unknown,
InferTy::IntVar(..) => {
Ty::simple(TypeCtor::Int(primitive::UncertainIntTy::Known(primitive::IntTy::i32())))
}
2019-03-21 21:20:03 +00:00
InferTy::FloatVar(..) => Ty::simple(TypeCtor::Float(
primitive::UncertainFloatTy::Known(primitive::FloatTy::f64()),
)),
InferTy::MaybeNeverTypeVar(..) => Ty::simple(TypeCtor::Never),
}
}
}
/// When inferring an expression, we propagate downward whatever type hint we
/// are able in the form of an `Expectation`.
#[derive(Clone, PartialEq, Eq, Debug)]
struct Expectation {
ty: Ty,
2019-03-23 07:53:48 +00:00
// FIXME: In some cases, we need to be aware whether the expectation is that
// the type match exactly what we passed, or whether it just needs to be
// coercible to the expected type. See Expectation::rvalue_hint in rustc.
}
impl Expectation {
/// The expectation that the type of the expression needs to equal the given
/// type.
fn has_type(ty: Ty) -> Self {
Expectation { ty }
}
/// This expresses no expectation on the type.
fn none() -> Self {
Expectation { ty: Ty::Unknown }
}
}
2019-03-23 13:28:47 +00:00
mod diagnostics {
2019-05-23 17:18:47 +00:00
use crate::{
2019-09-08 06:53:49 +00:00
db::HirDatabase,
2019-05-23 17:18:47 +00:00
diagnostics::{DiagnosticSink, NoSuchField},
expr::ExprId,
2019-09-08 06:53:49 +00:00
Function, HasSource,
};
2019-03-23 13:28:47 +00:00
#[derive(Debug, PartialEq, Eq, Clone)]
pub(super) enum InferenceDiagnostic {
NoSuchField { expr: ExprId, field: usize },
}
impl InferenceDiagnostic {
2019-03-23 15:35:14 +00:00
pub(super) fn add_to(
&self,
db: &impl HirDatabase,
owner: Function,
2019-03-23 17:41:59 +00:00
sink: &mut DiagnosticSink,
2019-03-23 15:35:14 +00:00
) {
2019-03-23 13:28:47 +00:00
match self {
InferenceDiagnostic::NoSuchField { expr, field } => {
2019-06-11 13:49:56 +00:00
let file = owner.source(db).file_id;
2019-03-23 13:28:47 +00:00
let field = owner.body_source_map(db).field_syntax(*expr, *field);
2019-03-23 15:35:14 +00:00
sink.push(NoSuchField { file, field })
2019-03-23 13:28:47 +00:00
}
}
}
}
}