ratatui/examples/colors_rgb.rs
Josh McKinney 815757fcbb
feat(widgets): implement Widget for Widget refs (#833)
Many widgets can be rendered without changing their state.

This commit implements The `Widget` trait for references to
widgets and changes their implementations to be immutable.

This allows us to render widgets without consuming them by passing a ref
to the widget when calling `Frame::render_widget()`.

```rust
// this might be stored in a struct
let paragraph = Paragraph::new("Hello world!");

let [left, right] = area.split(&Layout::horizontal([20, 20]));
frame.render_widget(&paragraph, left);
frame.render_widget(&paragraph, right); // we can reuse the widget
```

Implemented for all widgets except BarChart (which has an implementation
that modifies the internal state and requires a rewrite to fix.

Other widgets will be implemented in follow up commits.

Fixes: https://github.com/ratatui-org/ratatui/discussions/164
Replaces PRs: https://github.com/ratatui-org/ratatui/pull/122 and
https://github.com/ratatui-org/ratatui/pull/16
Enables: https://github.com/ratatui-org/ratatui/issues/132
Validated as a viable working solution by:
https://github.com/ratatui-org/ratatui/pull/836
2024-01-24 10:34:10 -08:00

272 lines
9.5 KiB
Rust

/// This example shows the full range of RGB colors that can be displayed in the terminal.
///
/// Requires a terminal that supports 24-bit color (true color) and unicode.
///
/// This example also demonstrates how implementing the Widget trait on a mutable reference
/// allows the widget to update its state while it is being rendered. This allows the fps
/// widget to update the fps calculation and the colors widget to update a cached version of
/// the colors to render instead of recalculating them every frame.
///
/// This is an alternative to using the StatefulWidget trait and a separate state struct. It is
/// useful when the state is only used by the widget and doesn't need to be shared with other
/// widgets.
use std::{
io::stdout,
panic,
time::{Duration, Instant},
};
use color_eyre::{config::HookBuilder, eyre, Result};
use crossterm::{
event::{self, Event, KeyCode, KeyEventKind},
terminal::{disable_raw_mode, enable_raw_mode, EnterAlternateScreen, LeaveAlternateScreen},
ExecutableCommand,
};
use palette::{convert::FromColorUnclamped, Okhsv, Srgb};
use ratatui::prelude::*;
#[derive(Debug, Default)]
struct App {
/// The current state of the app (running or quit)
state: AppState,
/// A widget that displays the current frames per second
fps_widget: FpsWidget,
/// A widget that displays the full range of RGB colors that can be displayed in the terminal.
colors_widget: ColorsWidget,
}
#[derive(Debug, Default, PartialEq, Eq)]
enum AppState {
/// The app is running
#[default]
Running,
/// The user has requested the app to quit
Quit,
}
/// A widget that displays the current frames per second
#[derive(Debug)]
struct FpsWidget {
/// The number of elapsed frames that have passed - used to calculate the fps
frame_count: usize,
/// The last instant that the fps was calculated
last_instant: Instant,
/// The current frames per second
fps: Option<f32>,
}
/// A widget that displays the full range of RGB colors that can be displayed in the terminal.
///
/// This widget is animated and will change colors over time.
#[derive(Debug, Default)]
struct ColorsWidget {
/// The colors to render - should be double the height of the area as we render two rows of
/// pixels for each row of the widget using the half block character. This is computed any time
/// the size of the widget changes.
colors: Vec<Vec<Color>>,
/// the number of elapsed frames that have passed - used to animate the colors by shifting the
/// x index by the frame number
frame_count: usize,
}
fn main() -> Result<()> {
install_error_hooks()?;
let terminal = init_terminal()?;
App::default().run(terminal)?;
restore_terminal()?;
Ok(())
}
impl App {
/// Run the app
///
/// This is the main event loop for the app.
pub fn run(mut self, mut terminal: Terminal<impl Backend>) -> Result<()> {
while self.is_running() {
terminal.draw(|frame| frame.render_widget(&mut self, frame.size()))?;
self.handle_events()?;
}
Ok(())
}
fn is_running(&self) -> bool {
matches!(self.state, AppState::Running)
}
/// Handle any events that have occurred since the last time the app was rendered.
///
/// Currently, this only handles the q key to quit the app.
fn handle_events(&mut self) -> Result<()> {
// Ensure that the app only blocks for a period that allows the app to render at
// approximately 60 FPS (this doesn't account for the time to render the frame, and will
// also update the app immediately any time an event occurs)
let timeout = Duration::from_secs_f32(1.0 / 60.0);
if event::poll(timeout)? {
if let Event::Key(key) = event::read()? {
if key.kind == KeyEventKind::Press && key.code == KeyCode::Char('q') {
self.state = AppState::Quit;
};
}
}
Ok(())
}
}
/// Implement the Widget trait for &mut App so that it can be rendered
///
/// This is implemented on a mutable reference so that the app can update its state while it is
/// being rendered. This allows the fps widget to update the fps calculation and the colors widget
/// to update the colors to render.
impl Widget for &mut App {
fn render(self, area: Rect, buf: &mut Buffer) {
use Constraint::*;
let [top, colors] = area.split(&Layout::vertical([Length(1), Min(0)]));
let [title, fps] = top.split(&Layout::horizontal([Min(0), Length(8)]));
Text::from("colors_rgb example. Press q to quit")
.centered()
.render(title, buf);
self.fps_widget.render(fps, buf);
self.colors_widget.render(colors, buf);
}
}
/// Default impl for FpsWidget
///
/// Manual impl is required because we need to initialize the last_instant field to the current
/// instant.
impl Default for FpsWidget {
fn default() -> Self {
Self {
frame_count: 0,
last_instant: Instant::now(),
fps: None,
}
}
}
/// Widget impl for FpsWidget
///
/// This is implemented on a mutable reference so that we can update the frame count and fps
/// calculation while rendering.
impl Widget for &mut FpsWidget {
fn render(self, area: Rect, buf: &mut Buffer) {
self.calculate_fps();
if let Some(fps) = self.fps {
let text = format!("{:.1} fps", fps);
Text::from(text).render(area, buf);
}
}
}
impl FpsWidget {
/// Update the fps calculation.
///
/// This updates the fps once a second, but only if the widget has rendered at least 2 frames
/// since the last calculation. This avoids noise in the fps calculation when rendering on slow
/// machines that can't render at least 2 frames per second.
fn calculate_fps(&mut self) {
self.frame_count += 1;
let elapsed = self.last_instant.elapsed();
if elapsed > Duration::from_secs(1) && self.frame_count > 2 {
self.fps = Some(self.frame_count as f32 / elapsed.as_secs_f32());
self.frame_count = 0;
self.last_instant = Instant::now();
}
}
}
/// Widget impl for ColorsWidget
///
/// This is implemented on a mutable reference so that we can update the frame count and store a
/// cached version of the colors to render instead of recalculating them every frame.
impl Widget for &mut ColorsWidget {
/// Render the widget
fn render(self, area: Rect, buf: &mut Buffer) {
self.setup_colors(area);
let colors = &self.colors;
for (xi, x) in (area.left()..area.right()).enumerate() {
// animate the colors by shifting the x index by the frame number
let xi = (xi + self.frame_count) % (area.width as usize);
for (yi, y) in (area.top()..area.bottom()).enumerate() {
// render a half block character for each row of pixels with the foreground color
// set to the color of the pixel and the background color set to the color of the
// pixel below it
let fg = colors[yi * 2][xi];
let bg = colors[yi * 2 + 1][xi];
buf.get_mut(x, y).set_char('▀').set_fg(fg).set_bg(bg);
}
}
self.frame_count += 1;
}
}
impl ColorsWidget {
/// Setup the colors to render.
///
/// This is called once per frame to setup the colors to render. It caches the colors so that
/// they don't need to be recalculated every frame.
fn setup_colors(&mut self, size: Rect) {
let Rect { width, height, .. } = size;
// double the height because each screen row has two rows of half block pixels
let height = height as usize * 2;
let width = width as usize;
// only update the colors if the size has changed since the last time we rendered
if self.colors.len() == height && self.colors[0].len() == width {
return;
}
self.colors = Vec::with_capacity(height);
for y in 0..height {
let mut row = Vec::with_capacity(width);
for x in 0..width {
let hue = x as f32 * 360.0 / width as f32;
let value = (height - y) as f32 / height as f32;
let saturation = Okhsv::max_saturation();
let color = Okhsv::new(hue, saturation, value);
let color = Srgb::<f32>::from_color_unclamped(color);
let color: Srgb<u8> = color.into_format();
let color = Color::Rgb(color.red, color.green, color.blue);
row.push(color);
}
self.colors.push(row);
}
}
}
/// Install color_eyre panic and error hooks
///
/// The hooks restore the terminal to a usable state before printing the error message.
fn install_error_hooks() -> Result<()> {
let (panic, error) = HookBuilder::default().into_hooks();
let panic = panic.into_panic_hook();
let error = error.into_eyre_hook();
eyre::set_hook(Box::new(move |e| {
let _ = restore_terminal();
error(e)
}))?;
panic::set_hook(Box::new(move |info| {
let _ = restore_terminal();
panic(info)
}));
Ok(())
}
fn init_terminal() -> Result<Terminal<impl Backend>> {
enable_raw_mode()?;
stdout().execute(EnterAlternateScreen)?;
let mut terminal = Terminal::new(CrosstermBackend::new(stdout()))?;
terminal.clear()?;
terminal.hide_cursor()?;
Ok(terminal)
}
fn restore_terminal() -> Result<()> {
disable_raw_mode()?;
stdout().execute(LeaveAlternateScreen)?;
Ok(())
}