mirror of
https://github.com/photonstorm/phaser
synced 2024-11-23 21:24:09 +00:00
826 lines
No EOL
27 KiB
TypeScript
826 lines
No EOL
27 KiB
TypeScript
/// <reference path="../Game.ts" />
|
|
/// <reference path="../Basic.ts" />
|
|
/// <reference path="../Signal.ts" />
|
|
|
|
/**
|
|
* Phaser - GameObject
|
|
*
|
|
* This is the base GameObject on which all other game objects are derived. It contains all the logic required for position,
|
|
* motion, size, collision and input.
|
|
*/
|
|
|
|
module Phaser {
|
|
|
|
export class GameObject extends Basic {
|
|
|
|
/**
|
|
* GameObject constructor
|
|
*
|
|
* Create a new <code>GameObject</code> object at specific position with
|
|
* specific width and height.
|
|
*
|
|
* @param x {number} Optinal, the x position of the object.
|
|
* @param y {number} Optinal, the y position of the object.
|
|
* @param width {number} Optinal, the width of the object.
|
|
* @param height {number} Optinal, the height of the object.
|
|
*/
|
|
constructor(game: Game, x?: number = 0, y?: number = 0, width?: number = 16, height?: number = 16) {
|
|
|
|
super(game);
|
|
|
|
this.bounds = new Rectangle(x, y, width, height);
|
|
this.exists = true;
|
|
this.active = true;
|
|
this.visible = true;
|
|
this.alive = true;
|
|
this.isGroup = false;
|
|
this.alpha = 1;
|
|
this.scale = new MicroPoint(1, 1);
|
|
|
|
this.last = new MicroPoint(x, y);
|
|
this.origin = new MicroPoint(this.bounds.halfWidth, this.bounds.halfHeight);
|
|
this.align = GameObject.ALIGN_TOP_LEFT;
|
|
this.mass = 1;
|
|
this.elasticity = 0;
|
|
this.health = 1;
|
|
this.immovable = false;
|
|
this.moves = true;
|
|
this.worldBounds = null;
|
|
|
|
this.touching = Collision.NONE;
|
|
this.wasTouching = Collision.NONE;
|
|
this.allowCollisions = Collision.ANY;
|
|
|
|
this.velocity = new MicroPoint();
|
|
this.acceleration = new MicroPoint();
|
|
this.drag = new MicroPoint();
|
|
this.maxVelocity = new MicroPoint(10000, 10000);
|
|
|
|
this.angle = 0;
|
|
this.angularVelocity = 0;
|
|
this.angularAcceleration = 0;
|
|
this.angularDrag = 0;
|
|
this.maxAngular = 10000;
|
|
|
|
this.cameraBlacklist = [];
|
|
this.scrollFactor = new MicroPoint(1, 1);
|
|
|
|
}
|
|
|
|
/**
|
|
* Angle of this object.
|
|
* @type {number}
|
|
*/
|
|
private _angle: number = 0;
|
|
|
|
/**
|
|
* Pivot position enum: at the top-left corner.
|
|
* @type {number}
|
|
*/
|
|
public static ALIGN_TOP_LEFT: number = 0;
|
|
/**
|
|
* Pivot position enum: at the top-center corner.
|
|
* @type {number}
|
|
*/
|
|
public static ALIGN_TOP_CENTER: number = 1;
|
|
/**
|
|
* Pivot position enum: at the top-right corner.
|
|
* @type {number}
|
|
*/
|
|
public static ALIGN_TOP_RIGHT: number = 2;
|
|
/**
|
|
* Pivot position enum: at the center-left corner.
|
|
* @type {number}
|
|
*/
|
|
public static ALIGN_CENTER_LEFT: number = 3;
|
|
/**
|
|
* Pivot position enum: at the center corner.
|
|
* @type {number}
|
|
*/
|
|
public static ALIGN_CENTER: number = 4;
|
|
/**
|
|
* Pivot position enum: at the center-right corner.
|
|
* @type {number}
|
|
*/
|
|
public static ALIGN_CENTER_RIGHT: number = 5;
|
|
/**
|
|
* Pivot position enum: at the bottom-left corner.
|
|
* @type {number}
|
|
*/
|
|
public static ALIGN_BOTTOM_LEFT: number = 6;
|
|
/**
|
|
* Pivot position enum: at the bottom-center corner.
|
|
* @type {number}
|
|
*/
|
|
public static ALIGN_BOTTOM_CENTER: number = 7;
|
|
/**
|
|
* Pivot position enum: at the bottom-right corner.
|
|
* @type {number}
|
|
*/
|
|
public static ALIGN_BOTTOM_RIGHT: number = 8;
|
|
|
|
/**
|
|
* Enum value for outOfBoundsAction. Stop the object when is out of world bounds.
|
|
* @type {number}
|
|
*/
|
|
public static OUT_OF_BOUNDS_STOP: number = 0;
|
|
/**
|
|
* Enum value for outOfBoundsAction. Kill the object when is out of world bounds.
|
|
* @type {number}
|
|
*/
|
|
public static OUT_OF_BOUNDS_KILL: number = 1;
|
|
|
|
/**
|
|
* Position of this object after scrolling.
|
|
* @type {MicroPoint}
|
|
*/
|
|
public _point: MicroPoint;
|
|
|
|
public cameraBlacklist: number[];
|
|
/**
|
|
* Rectangle container of this object.
|
|
* @type {Rectangle}
|
|
*/
|
|
public bounds: Rectangle;
|
|
/**
|
|
* Bound of world.
|
|
* @type {Quad}
|
|
*/
|
|
public worldBounds: Quad;
|
|
/**
|
|
* What action will be performed when object is out of bounds.
|
|
* This will default to GameObject.OUT_OF_BOUNDS_STOP.
|
|
* @type {number}
|
|
*/
|
|
public outOfBoundsAction: number = 0;
|
|
/**
|
|
* At which point the graphic of this object will align to.
|
|
* Align of the object will default to GameObject.ALIGN_TOP_LEFT.
|
|
* @type {number}
|
|
*/
|
|
public align: number;
|
|
/**
|
|
* Oorientation of the object.
|
|
* @type {number}
|
|
*/
|
|
public facing: number;
|
|
/**
|
|
* Set alpha to a number between 0 and 1 to change the opacity.
|
|
* @type {number}
|
|
*/
|
|
public alpha: number;
|
|
/**
|
|
* Scale factor of the object.
|
|
* @type {MicroPoint}
|
|
*/
|
|
public scale: MicroPoint;
|
|
/**
|
|
* Origin is the anchor point that the object will rotate by.
|
|
* The origin will default to its center.
|
|
* @type {MicroPoint}
|
|
*/
|
|
public origin: MicroPoint;
|
|
/**
|
|
* Z-order value of the object.
|
|
*/
|
|
public z: number = 0;
|
|
|
|
/**
|
|
* This value is added to the angle of the GameObject.
|
|
* For example if you had a sprite drawn facing straight up then you could set
|
|
* rotationOffset to 90 and it would correspond correctly with Phasers rotation system
|
|
* @type {number}
|
|
*/
|
|
public rotationOffset: number = 0;
|
|
|
|
/**
|
|
* Render graphic based on its angle?
|
|
* @type {boolean}
|
|
*/
|
|
public renderRotation: bool = true;
|
|
|
|
// Physics properties
|
|
|
|
/**
|
|
* Whether this object will be moved or not.
|
|
* @type {boolean}
|
|
*/
|
|
public immovable: bool;
|
|
|
|
/**
|
|
* Basic speed of this object.
|
|
*
|
|
* Velocity is given in pixels per second. Therefore a velocity of
|
|
* 100 will move at a rate of 100 pixels every 1000 ms (1sec). It's not balls-on
|
|
* accurate due to the way timers work, but it's pretty close. Expect tolerance
|
|
* of +- 10 px. Also that speed assumes no drag.
|
|
*
|
|
* @type {MicroPoint}
|
|
*/
|
|
public velocity: MicroPoint;
|
|
/**
|
|
* The virtual mass of the object.
|
|
* @type {number}
|
|
*/
|
|
public mass: number;
|
|
/**
|
|
* The bounciness of the object.
|
|
* @type {number}
|
|
*/
|
|
public elasticity: number;
|
|
/**
|
|
* How fast the speed of this object is changing.
|
|
* @type {number}
|
|
*/
|
|
public acceleration: MicroPoint;
|
|
/**
|
|
* This isn't drag exactly, more like deceleration that is only applied
|
|
* when acceleration is not affecting the sprite.
|
|
* @type {MicroPoint}
|
|
*/
|
|
public drag: MicroPoint;
|
|
/**
|
|
* It will cap the speed automatically if you use the acceleration
|
|
* to change its velocity.
|
|
* @type {MicroPoint}
|
|
*/
|
|
public maxVelocity: MicroPoint;
|
|
/**
|
|
* How fast this object is rotating.
|
|
* @type {number}
|
|
*/
|
|
public angularVelocity: number;
|
|
/**
|
|
* How fast angularVelocity of this object is changing.
|
|
* @type {number}
|
|
*/
|
|
public angularAcceleration: number;
|
|
/**
|
|
* Deacceleration of angularVelocity will be applied when it's rotating.
|
|
* @type {number}
|
|
*/
|
|
public angularDrag: number;
|
|
/**
|
|
* It will cap the rotate speed automatically if you use the angularAcceleration
|
|
* to change its angularVelocity.
|
|
* @type {number}
|
|
*/
|
|
public maxAngular: number;
|
|
/**
|
|
* A point that can store numbers from 0 to 1 (for X and Y independently)
|
|
* which governs how much this object is affected by the camera .
|
|
* @type {MicroPoint}
|
|
*/
|
|
public scrollFactor: MicroPoint;
|
|
|
|
/**
|
|
* Handy for storing health percentage or armor points or whatever.
|
|
* @type {number}
|
|
*/
|
|
public health: number;
|
|
/**
|
|
* Set this to false if you want to skip the automatic motion/movement stuff
|
|
* (see updateMotion()).
|
|
* @type {boolean}
|
|
*/
|
|
public moves: bool = true;
|
|
/**
|
|
* Bit field of flags (use with UP, DOWN, LEFT, RIGHT, etc) indicating surface contacts.
|
|
* @type {number}
|
|
*/
|
|
public touching: number;
|
|
/**
|
|
* Bit field of flags (use with UP, DOWN, LEFT, RIGHT, etc) indicating surface contacts from the previous game loop step.
|
|
* @type {number}
|
|
*/
|
|
public wasTouching: number;
|
|
/**
|
|
* Bit field of flags (use with UP, DOWN, LEFT, RIGHT, etc) indicating collision directions.
|
|
* @type {number}
|
|
*/
|
|
public allowCollisions: number;
|
|
/**
|
|
* Important variable for collision processing.
|
|
* @type {MicroPoint}
|
|
*/
|
|
public last: MicroPoint;
|
|
|
|
// Input
|
|
public inputEnabled: bool = false;
|
|
private _inputOver: bool = false;
|
|
|
|
public onInputOver: Phaser.Signal;
|
|
public onInputOut: Phaser.Signal;
|
|
public onInputDown: Phaser.Signal;
|
|
public onInputUp: Phaser.Signal;
|
|
|
|
/**
|
|
* Pre-update is called right before update() on each object in the game loop.
|
|
*/
|
|
public preUpdate() {
|
|
|
|
// flicker time
|
|
|
|
this.last.x = this.bounds.x;
|
|
this.last.y = this.bounds.y;
|
|
|
|
}
|
|
|
|
/**
|
|
* Override this function to update your class's position and appearance.
|
|
*/
|
|
public update() {
|
|
}
|
|
|
|
/**
|
|
* Automatically called after update() by the game loop.
|
|
*/
|
|
public postUpdate() {
|
|
|
|
if (this.moves)
|
|
{
|
|
this.updateMotion();
|
|
}
|
|
|
|
if (this.worldBounds != null)
|
|
{
|
|
if (this.outOfBoundsAction == GameObject.OUT_OF_BOUNDS_KILL)
|
|
{
|
|
if (this.x < this.worldBounds.x || this.x > this.worldBounds.right || this.y < this.worldBounds.y || this.y > this.worldBounds.bottom)
|
|
{
|
|
this.kill();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (this.x < this.worldBounds.x)
|
|
{
|
|
this.x = this.worldBounds.x;
|
|
}
|
|
else if (this.x > this.worldBounds.right)
|
|
{
|
|
this.x = this.worldBounds.right;
|
|
}
|
|
|
|
if (this.y < this.worldBounds.y)
|
|
{
|
|
this.y = this.worldBounds.y;
|
|
}
|
|
else if (this.y > this.worldBounds.bottom)
|
|
{
|
|
this.y = this.worldBounds.bottom;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (this.inputEnabled)
|
|
{
|
|
this.updateInput();
|
|
}
|
|
|
|
this.wasTouching = this.touching;
|
|
this.touching = Collision.NONE;
|
|
|
|
}
|
|
|
|
/**
|
|
* Update input.
|
|
*/
|
|
private updateInput() {
|
|
}
|
|
|
|
/**
|
|
* Internal function for updating the position and speed of this object.
|
|
*/
|
|
private updateMotion() {
|
|
|
|
var delta: number;
|
|
var velocityDelta: number;
|
|
|
|
velocityDelta = (this._game.motion.computeVelocity(this.angularVelocity, this.angularAcceleration, this.angularDrag, this.maxAngular) - this.angularVelocity) / 2;
|
|
this.angularVelocity += velocityDelta;
|
|
this._angle += this.angularVelocity * this._game.time.elapsed;
|
|
this.angularVelocity += velocityDelta;
|
|
|
|
velocityDelta = (this._game.motion.computeVelocity(this.velocity.x, this.acceleration.x, this.drag.x, this.maxVelocity.x) - this.velocity.x) / 2;
|
|
this.velocity.x += velocityDelta;
|
|
delta = this.velocity.x * this._game.time.elapsed;
|
|
this.velocity.x += velocityDelta;
|
|
this.bounds.x += delta;
|
|
|
|
velocityDelta = (this._game.motion.computeVelocity(this.velocity.y, this.acceleration.y, this.drag.y, this.maxVelocity.y) - this.velocity.y) / 2;
|
|
this.velocity.y += velocityDelta;
|
|
delta = this.velocity.y * this._game.time.elapsed;
|
|
this.velocity.y += velocityDelta;
|
|
this.bounds.y += delta;
|
|
|
|
}
|
|
|
|
/**
|
|
* Checks to see if some <code>GameObject</code> overlaps this <code>GameObject</code> or <code>Group</code>.
|
|
* If the group has a LOT of things in it, it might be faster to use <code>Collision.overlaps()</code>.
|
|
* WARNING: Currently tilemaps do NOT support screen space overlap checks!
|
|
*
|
|
* @param ObjectOrGroup {object} The object or group being tested.
|
|
* @param InScreenSpace {boolean} Whether to take scroll factors numbero account when checking for overlap. Default is false, or "only compare in world space."
|
|
* @param Camera {Camera} Specify which game camera you want. If null getScreenXY() will just grab the first global camera.
|
|
*
|
|
* @return {boolean} Whether or not the objects overlap this.
|
|
*/
|
|
public overlaps(ObjectOrGroup, InScreenSpace: bool = false, Camera: Camera = null): bool {
|
|
|
|
if (ObjectOrGroup.isGroup)
|
|
{
|
|
var results: bool = false;
|
|
var i: number = 0;
|
|
var members = <Group> ObjectOrGroup.members;
|
|
|
|
while (i < length)
|
|
{
|
|
if (this.overlaps(members[i++], InScreenSpace, Camera))
|
|
{
|
|
results = true;
|
|
}
|
|
}
|
|
|
|
return results;
|
|
|
|
}
|
|
|
|
if (!InScreenSpace)
|
|
{
|
|
return (ObjectOrGroup.x + ObjectOrGroup.width > this.x) && (ObjectOrGroup.x < this.x + this.width) &&
|
|
(ObjectOrGroup.y + ObjectOrGroup.height > this.y) && (ObjectOrGroup.y < this.y + this.height);
|
|
}
|
|
|
|
if (Camera == null)
|
|
{
|
|
Camera = this._game.camera;
|
|
}
|
|
|
|
var objectScreenPos: Point = ObjectOrGroup.getScreenXY(null, Camera);
|
|
|
|
this.getScreenXY(this._point, Camera);
|
|
|
|
return (objectScreenPos.x + ObjectOrGroup.width > this._point.x) && (objectScreenPos.x < this._point.x + this.width) &&
|
|
(objectScreenPos.y + ObjectOrGroup.height > this._point.y) && (objectScreenPos.y < this._point.y + this.height);
|
|
}
|
|
|
|
/**
|
|
* Checks to see if this <code>GameObject</code> were located at the given position, would it overlap the <code>GameObject</code> or <code>Group</code>?
|
|
* This is distinct from overlapsPoint(), which just checks that point, rather than taking the object's size numbero account.
|
|
* WARNING: Currently tilemaps do NOT support screen space overlap checks!
|
|
*
|
|
* @param X {number} The X position you want to check. Pretends this object (the caller, not the parameter) is located here.
|
|
* @param Y {number} The Y position you want to check. Pretends this object (the caller, not the parameter) is located here.
|
|
* @param ObjectOrGroup {object} The object or group being tested.
|
|
* @param InScreenSpace {boolean} Whether to take scroll factors numbero account when checking for overlap. Default is false, or "only compare in world space."
|
|
* @param Camera {Camera} Specify which game camera you want. If null getScreenXY() will just grab the first global camera.
|
|
*
|
|
* @return {boolean} Whether or not the two objects overlap.
|
|
*/
|
|
public overlapsAt(X: number, Y: number, ObjectOrGroup, InScreenSpace: bool = false, Camera: Camera = null): bool {
|
|
|
|
if (ObjectOrGroup.isGroup)
|
|
{
|
|
var results: bool = false;
|
|
var basic;
|
|
var i: number = 0;
|
|
var members = ObjectOrGroup.members;
|
|
|
|
while (i < length)
|
|
{
|
|
if (this.overlapsAt(X, Y, members[i++], InScreenSpace, Camera))
|
|
{
|
|
results = true;
|
|
}
|
|
}
|
|
|
|
return results;
|
|
}
|
|
|
|
if (!InScreenSpace)
|
|
{
|
|
return (ObjectOrGroup.x + ObjectOrGroup.width > X) && (ObjectOrGroup.x < X + this.width) &&
|
|
(ObjectOrGroup.y + ObjectOrGroup.height > Y) && (ObjectOrGroup.y < Y + this.height);
|
|
}
|
|
|
|
if (Camera == null)
|
|
{
|
|
Camera = this._game.camera;
|
|
}
|
|
|
|
var objectScreenPos: Point = ObjectOrGroup.getScreenXY(null, Camera);
|
|
|
|
this._point.x = X - Camera.scroll.x * this.scrollFactor.x; //copied from getScreenXY()
|
|
this._point.y = Y - Camera.scroll.y * this.scrollFactor.y;
|
|
this._point.x += (this._point.x > 0) ? 0.0000001 : -0.0000001;
|
|
this._point.y += (this._point.y > 0) ? 0.0000001 : -0.0000001;
|
|
|
|
return (objectScreenPos.x + ObjectOrGroup.width > this._point.x) && (objectScreenPos.x < this._point.x + this.width) &&
|
|
(objectScreenPos.y + ObjectOrGroup.height > this._point.y) && (objectScreenPos.y < this._point.y + this.height);
|
|
}
|
|
|
|
/**
|
|
* Checks to see if a point in 2D world space overlaps this <code>GameObject</code>.
|
|
*
|
|
* @param point {Point} The point in world space you want to check.
|
|
* @param InScreenSpace {boolean} Whether to take scroll factors into account when checking for overlap.
|
|
* @param Camera {Camera} Specify which game camera you want. If null getScreenXY() will just grab the first global camera.
|
|
*
|
|
* @return Whether or not the point overlaps this object.
|
|
*/
|
|
public overlapsPoint(point: Point, InScreenSpace: bool = false, Camera: Camera = null): bool {
|
|
|
|
if (!InScreenSpace)
|
|
{
|
|
return (point.x > this.x) && (point.x < this.x + this.width) && (point.y > this.y) && (point.y < this.y + this.height);
|
|
}
|
|
|
|
if (Camera == null)
|
|
{
|
|
Camera = this._game.camera;
|
|
}
|
|
|
|
var X: number = point.x - Camera.scroll.x;
|
|
var Y: number = point.y - Camera.scroll.y;
|
|
|
|
this.getScreenXY(this._point, Camera);
|
|
|
|
return (X > this._point.x) && (X < this._point.x + this.width) && (Y > this._point.y) && (Y < this._point.y + this.height);
|
|
|
|
}
|
|
|
|
/**
|
|
* Check and see if this object is currently on screen.
|
|
*
|
|
* @param Camera {Camera} Specify which game camera you want. If null getScreenXY() will just grab the first global camera.
|
|
*
|
|
* @return {boolean} Whether the object is on screen or not.
|
|
*/
|
|
public onScreen(Camera: Camera = null): bool {
|
|
|
|
if (Camera == null)
|
|
{
|
|
Camera = this._game.camera;
|
|
}
|
|
|
|
this.getScreenXY(this._point, Camera);
|
|
|
|
return (this._point.x + this.width > 0) && (this._point.x < Camera.width) && (this._point.y + this.height > 0) && (this._point.y < Camera.height);
|
|
|
|
}
|
|
|
|
/**
|
|
* Call this to figure out the on-screen position of the object.
|
|
*
|
|
* @param Point {Point} Takes a <code>MicroPoint</code> object and assigns the post-scrolled X and Y values of this object to it.
|
|
* @param Camera {Camera} Specify which game camera you want. If null getScreenXY() will just grab the first global camera.
|
|
*
|
|
* @return {MicroPoint} The <code>MicroPoint</code> you passed in, or a new <code>Point</code> if you didn't pass one, containing the screen X and Y position of this object.
|
|
*/
|
|
public getScreenXY(point: MicroPoint = null, Camera: Camera = null): MicroPoint {
|
|
|
|
if (point == null)
|
|
{
|
|
point = new MicroPoint();
|
|
}
|
|
|
|
if (Camera == null)
|
|
{
|
|
Camera = this._game.camera;
|
|
}
|
|
|
|
point.x = this.x - Camera.scroll.x * this.scrollFactor.x;
|
|
point.y = this.y - Camera.scroll.y * this.scrollFactor.y;
|
|
point.x += (point.x > 0) ? 0.0000001 : -0.0000001;
|
|
point.y += (point.y > 0) ? 0.0000001 : -0.0000001;
|
|
|
|
return point;
|
|
|
|
}
|
|
|
|
/**
|
|
* Whether the object collides or not. For more control over what directions
|
|
* the object will collide from, use collision constants (like LEFT, FLOOR, etc)
|
|
* to set the value of allowCollisions directly.
|
|
*/
|
|
public get solid(): bool {
|
|
return (this.allowCollisions & Collision.ANY) > Collision.NONE;
|
|
}
|
|
|
|
public set solid(Solid: bool) {
|
|
|
|
if (Solid)
|
|
{
|
|
this.allowCollisions = Collision.ANY;
|
|
}
|
|
else
|
|
{
|
|
this.allowCollisions = Collision.NONE;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Retrieve the midpoint of this object in world coordinates.
|
|
*
|
|
* @param point {Point} Allows you to pass in an existing <code>Point</code> object if you're so inclined. Otherwise a new one is created.
|
|
*
|
|
* @return {MicroPoint} A <code>Point</code> object containing the midpoint of this object in world coordinates.
|
|
*/
|
|
public getMidpoint(point: MicroPoint = null): MicroPoint {
|
|
|
|
if (point == null)
|
|
{
|
|
point = new MicroPoint();
|
|
}
|
|
|
|
point.copyFrom(this.bounds.center);
|
|
|
|
return point;
|
|
|
|
}
|
|
|
|
/**
|
|
* Handy for reviving game objects.
|
|
* Resets their existence flags and position.
|
|
*
|
|
* @param X {number} The new X position of this object.
|
|
* @param Y {number} The new Y position of this object.
|
|
*/
|
|
public reset(X: number, Y: number) {
|
|
|
|
this.revive();
|
|
this.touching = Collision.NONE;
|
|
this.wasTouching = Collision.NONE;
|
|
this.x = X;
|
|
this.y = Y;
|
|
this.last.x = X;
|
|
this.last.y = Y;
|
|
this.velocity.x = 0;
|
|
this.velocity.y = 0;
|
|
|
|
}
|
|
|
|
/**
|
|
* Handy for checking if this object is touching a particular surface.
|
|
* For slightly better performance you can just & the value directly numbero <code>touching</code>.
|
|
* However, this method is good for readability and accessibility.
|
|
*
|
|
* @param Direction {number} Any of the collision flags (e.g. LEFT, FLOOR, etc).
|
|
*
|
|
* @return {boolean} Whether the object is touching an object in (any of) the specified direction(s) this frame.
|
|
*/
|
|
public isTouching(Direction: number): bool {
|
|
return (this.touching & Direction) > Collision.NONE;
|
|
}
|
|
|
|
/**
|
|
* Handy for checking if this object is just landed on a particular surface.
|
|
*
|
|
* @param {number} Direction Any of the collision flags (e.g. LEFT, FLOOR, etc).
|
|
*
|
|
* @return {boolean} Whether the object just landed on (any of) the specified surface(s) this frame.
|
|
*/
|
|
|
|
/**
|
|
* Handy function for checking if this object is just landed on a particular surface.
|
|
*
|
|
* @param Direction {number} Any of the collision flags (e.g. LEFT, FLOOR, etc).
|
|
*
|
|
* @returns {boolean} Whether the object just landed on any specicied surfaces.
|
|
*/
|
|
public justTouched(Direction: number): bool {
|
|
return ((this.touching & Direction) > Collision.NONE) && ((this.wasTouching & Direction) <= Collision.NONE);
|
|
}
|
|
|
|
/**
|
|
* Reduces the "health" variable of this sprite by the amount specified in Damage.
|
|
* Calls kill() if health drops to or below zero.
|
|
*
|
|
* @param Damage {number} How much health to take away (use a negative number to give a health bonus).
|
|
*/
|
|
public hurt(Damage: number) {
|
|
|
|
this.health = this.health - Damage;
|
|
|
|
if (this.health <= 0)
|
|
{
|
|
this.kill();
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Set the world bounds that this GameObject can exist within. By default a GameObject can exist anywhere
|
|
* in the world. But by setting the bounds (which are given in world dimensions, not screen dimensions)
|
|
* it can be stopped from leaving the world, or a section of it.
|
|
*
|
|
* @param x {number} x position of the bound
|
|
* @param y {number} y position of the bound
|
|
* @param width {number} width of its bound
|
|
* @param height {number} height of its bound
|
|
*/
|
|
public setBounds(x: number, y: number, width: number, height: number) {
|
|
|
|
this.worldBounds = new Quad(x, y, width, height);
|
|
|
|
}
|
|
|
|
/**
|
|
* If you do not wish this object to be visible to a specific camera, pass the camera here.
|
|
|
|
* @param camera {Camera} The specific camera.
|
|
*/
|
|
public hideFromCamera(camera: Camera) {
|
|
|
|
if (this.cameraBlacklist.indexOf(camera.ID) == -1)
|
|
{
|
|
this.cameraBlacklist.push(camera.ID);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
* Make this object only visible to a specific camera.
|
|
*
|
|
* @param camera {Camera} The camera you wish it to be visible.
|
|
*/
|
|
public showToCamera(camera: Camera) {
|
|
|
|
if (this.cameraBlacklist.indexOf(camera.ID) !== -1)
|
|
{
|
|
this.cameraBlacklist.slice(this.cameraBlacklist.indexOf(camera.ID), 1);
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* This will make the object not visible to any cameras.
|
|
*/
|
|
public clearCameraList() {
|
|
|
|
this.cameraBlacklist.length = 0;
|
|
|
|
}
|
|
|
|
/**
|
|
* Clean up memory.
|
|
*/
|
|
public destroy() {
|
|
|
|
}
|
|
|
|
public get x(): number {
|
|
return this.bounds.x;
|
|
}
|
|
|
|
public set x(value: number) {
|
|
this.bounds.x = value;
|
|
}
|
|
|
|
public get y(): number {
|
|
return this.bounds.y;
|
|
}
|
|
|
|
public set y(value: number) {
|
|
this.bounds.y = value;
|
|
}
|
|
|
|
public get rotation(): number {
|
|
return this._angle;
|
|
}
|
|
|
|
public set rotation(value: number) {
|
|
this._angle = this._game.math.wrap(value, 360, 0);
|
|
}
|
|
|
|
public get angle(): number {
|
|
return this._angle;
|
|
}
|
|
|
|
public set angle(value: number) {
|
|
this._angle = this._game.math.wrap(value, 360, 0);
|
|
}
|
|
|
|
public set width(value:number) {
|
|
this.bounds.width = value;
|
|
}
|
|
|
|
public set height(value:number) {
|
|
this.bounds.height = value;
|
|
}
|
|
|
|
public get width(): number {
|
|
return this.bounds.width;
|
|
}
|
|
|
|
public get height(): number {
|
|
return this.bounds.height;
|
|
}
|
|
|
|
}
|
|
|
|
} |