mirror of
https://github.com/photonstorm/phaser
synced 2024-12-24 20:13:35 +00:00
2650 lines
99 KiB
JavaScript
2650 lines
99 KiB
JavaScript
/* jshint camelcase: false */
|
|
/**
|
|
* @author Richard Davey <rich@photonstorm.com>
|
|
* @copyright 2016 Photon Storm Ltd.
|
|
* @license {@link https://github.com/photonstorm/phaser/blob/master/license.txt|MIT License}
|
|
*/
|
|
|
|
/**
|
|
* Ninja Physics Circle constructor.
|
|
* Note: This class could be massively optimised and reduced in size. I leave that challenge up to you.
|
|
*
|
|
* @class Phaser.Physics.Ninja.Circle
|
|
* @constructor
|
|
* @param {Phaser.Physics.Ninja.Body} body - The body that owns this shape.
|
|
* @param {number} x - The x coordinate to create this shape at.
|
|
* @param {number} y - The y coordinate to create this shape at.
|
|
* @param {number} radius - The radius of this Circle.
|
|
*/
|
|
Phaser.Physics.Ninja.Circle = function (body, x, y, radius) {
|
|
|
|
/**
|
|
* @property {Phaser.Physics.Ninja.Body} system - A reference to the body that owns this shape.
|
|
*/
|
|
this.body = body;
|
|
|
|
/**
|
|
* @property {Phaser.Physics.Ninja} system - A reference to the physics system.
|
|
*/
|
|
this.system = body.system;
|
|
|
|
/**
|
|
* @property {Phaser.Point} pos - The position of this object.
|
|
*/
|
|
this.pos = new Phaser.Point(x, y);
|
|
|
|
/**
|
|
* @property {Phaser.Point} oldpos - The position of this object in the previous update.
|
|
*/
|
|
this.oldpos = new Phaser.Point(x, y);
|
|
|
|
/**
|
|
* @property {number} radius - The radius of this circle shape.
|
|
*/
|
|
this.radius = radius;
|
|
|
|
/**
|
|
* @property {number} xw - Half the width.
|
|
* @readonly
|
|
*/
|
|
this.xw = radius;
|
|
|
|
/**
|
|
* @property {number} xw - Half the height.
|
|
* @readonly
|
|
*/
|
|
this.yw = radius;
|
|
|
|
/**
|
|
* @property {number} width - The width.
|
|
* @readonly
|
|
*/
|
|
this.width = radius * 2;
|
|
|
|
/**
|
|
* @property {number} height - The height.
|
|
* @readonly
|
|
*/
|
|
this.height = radius * 2;
|
|
|
|
/**
|
|
* @property {number} oH - Internal var.
|
|
* @private
|
|
*/
|
|
this.oH = 0;
|
|
|
|
/**
|
|
* @property {number} oV - Internal var.
|
|
* @private
|
|
*/
|
|
this.oV = 0;
|
|
|
|
/**
|
|
* @property {Phaser.Point} velocity - The velocity of this object.
|
|
*/
|
|
this.velocity = new Phaser.Point();
|
|
|
|
/**
|
|
* @property {object} circleTileProjections - All of the collision response handlers.
|
|
*/
|
|
this.circleTileProjections = {};
|
|
|
|
this.circleTileProjections[Phaser.Physics.Ninja.Tile.TYPE_FULL] = this.projCircle_Full;
|
|
this.circleTileProjections[Phaser.Physics.Ninja.Tile.TYPE_45DEG] = this.projCircle_45Deg;
|
|
this.circleTileProjections[Phaser.Physics.Ninja.Tile.TYPE_CONCAVE] = this.projCircle_Concave;
|
|
this.circleTileProjections[Phaser.Physics.Ninja.Tile.TYPE_CONVEX] = this.projCircle_Convex;
|
|
this.circleTileProjections[Phaser.Physics.Ninja.Tile.TYPE_22DEGs] = this.projCircle_22DegS;
|
|
this.circleTileProjections[Phaser.Physics.Ninja.Tile.TYPE_22DEGb] = this.projCircle_22DegB;
|
|
this.circleTileProjections[Phaser.Physics.Ninja.Tile.TYPE_67DEGs] = this.projCircle_67DegS;
|
|
this.circleTileProjections[Phaser.Physics.Ninja.Tile.TYPE_67DEGb] = this.projCircle_67DegB;
|
|
this.circleTileProjections[Phaser.Physics.Ninja.Tile.TYPE_HALF] = this.projCircle_Half;
|
|
|
|
};
|
|
|
|
Phaser.Physics.Ninja.Circle.prototype.constructor = Phaser.Physics.Ninja.Circle;
|
|
|
|
Phaser.Physics.Ninja.Circle.COL_NONE = 0;
|
|
Phaser.Physics.Ninja.Circle.COL_AXIS = 1;
|
|
Phaser.Physics.Ninja.Circle.COL_OTHER = 2;
|
|
|
|
Phaser.Physics.Ninja.Circle.prototype = {
|
|
|
|
/**
|
|
* Updates this Circles position.
|
|
*
|
|
* @method Phaser.Physics.Ninja.Circle#integrate
|
|
*/
|
|
integrate: function () {
|
|
|
|
var px = this.pos.x;
|
|
var py = this.pos.y;
|
|
|
|
// integrate
|
|
this.pos.x += (this.body.drag * this.pos.x) - (this.body.drag * this.oldpos.x);
|
|
this.pos.y += (this.body.drag * this.pos.y) - (this.body.drag * this.oldpos.y) + (this.system.gravity * this.body.gravityScale);
|
|
|
|
// store
|
|
this.velocity.set(this.pos.x - px, this.pos.y - py);
|
|
this.oldpos.set(px, py);
|
|
|
|
},
|
|
|
|
/**
|
|
* Process a world collision and apply the resulting forces.
|
|
*
|
|
* @method Phaser.Physics.Ninja.Circle#reportCollisionVsWorld
|
|
* @param {number} px - The tangent velocity
|
|
* @param {number} py - The tangent velocity
|
|
* @param {number} dx - Collision normal
|
|
* @param {number} dy - Collision normal
|
|
* @param {number} obj - Object this Circle collided with
|
|
*/
|
|
reportCollisionVsWorld: function (px, py, dx, dy) {
|
|
|
|
var p = this.pos;
|
|
var o = this.oldpos;
|
|
|
|
// Calc velocity
|
|
var vx = p.x - o.x;
|
|
var vy = p.y - o.y;
|
|
|
|
// Find component of velocity parallel to collision normal
|
|
var dp = (vx * dx + vy * dy);
|
|
var nx = dp * dx; //project velocity onto collision normal
|
|
|
|
var ny = dp * dy; //nx,ny is normal velocity
|
|
|
|
var tx = vx - nx; //px,py is tangent velocity
|
|
var ty = vy - ny;
|
|
|
|
// We only want to apply collision response forces if the object is travelling into, and not out of, the collision
|
|
var b, bx, by, fx, fy;
|
|
|
|
if (dp < 0)
|
|
{
|
|
fx = tx * this.body.friction;
|
|
fy = ty * this.body.friction;
|
|
|
|
b = 1 + this.body.bounce;
|
|
|
|
bx = (nx * b);
|
|
by = (ny * b);
|
|
|
|
if (dx === 1)
|
|
{
|
|
this.body.touching.left = true;
|
|
}
|
|
else if (dx === -1)
|
|
{
|
|
this.body.touching.right = true;
|
|
}
|
|
|
|
if (dy === 1)
|
|
{
|
|
this.body.touching.up = true;
|
|
}
|
|
else if (dy === -1)
|
|
{
|
|
this.body.touching.down = true;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Moving out of collision, do not apply forces
|
|
bx = by = fx = fy = 0;
|
|
}
|
|
|
|
// Project object out of collision
|
|
p.x += px;
|
|
p.y += py;
|
|
|
|
// Apply bounce+friction impulses which alter velocity
|
|
o.x += px + bx + fx;
|
|
o.y += py + by + fy;
|
|
|
|
},
|
|
|
|
/**
|
|
* Collides this Circle against the world bounds.
|
|
*
|
|
* @method Phaser.Physics.Ninja.Circle#collideWorldBounds
|
|
*/
|
|
collideWorldBounds: function () {
|
|
|
|
var dx = this.system.bounds.x - (this.pos.x - this.radius);
|
|
|
|
if (0 < dx)
|
|
{
|
|
this.reportCollisionVsWorld(dx, 0, 1, 0, null);
|
|
}
|
|
else
|
|
{
|
|
dx = (this.pos.x + this.radius) - this.system.bounds.right;
|
|
|
|
if (0 < dx)
|
|
{
|
|
this.reportCollisionVsWorld(-dx, 0, -1, 0, null);
|
|
}
|
|
}
|
|
|
|
var dy = this.system.bounds.y - (this.pos.y - this.radius);
|
|
|
|
if (0 < dy)
|
|
{
|
|
this.reportCollisionVsWorld(0, dy, 0, 1, null);
|
|
}
|
|
else
|
|
{
|
|
dy = (this.pos.y + this.radius) - this.system.bounds.bottom;
|
|
|
|
if (0 < dy)
|
|
{
|
|
this.reportCollisionVsWorld(0, -dy, 0, -1, null);
|
|
}
|
|
}
|
|
|
|
},
|
|
|
|
/**
|
|
* Collides this Circle with a Tile.
|
|
*
|
|
* @method Phaser.Physics.Ninja.Circle#collideCircleVsTile
|
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
|
* @return {boolean} True if they collide, otherwise false.
|
|
*/
|
|
collideCircleVsTile: function (tile) {
|
|
|
|
var pos = this.pos;
|
|
var r = this.radius;
|
|
var c = tile;
|
|
|
|
var tx = c.pos.x;
|
|
var ty = c.pos.y;
|
|
var txw = c.xw;
|
|
var tyw = c.yw;
|
|
|
|
var dx = pos.x - tx; // tile->obj delta
|
|
var px = (txw + r) - Math.abs(dx); // penetration depth in x
|
|
|
|
if (0 < px)
|
|
{
|
|
var dy = pos.y - ty; // tile->obj delta
|
|
var py = (tyw + r) - Math.abs(dy); // pen depth in y
|
|
|
|
if (0 < py)
|
|
{
|
|
// object may be colliding with tile
|
|
|
|
// determine grid/voronoi region of circle center
|
|
this.oH = 0;
|
|
this.oV = 0;
|
|
|
|
if (dx < -txw)
|
|
{
|
|
// circle is on left side of tile
|
|
this.oH = -1;
|
|
}
|
|
else if (txw < dx)
|
|
{
|
|
// circle is on right side of tile
|
|
this.oH = 1;
|
|
}
|
|
|
|
if (dy < -tyw)
|
|
{
|
|
// circle is on top side of tile
|
|
this.oV = -1;
|
|
}
|
|
else if (tyw < dy)
|
|
{
|
|
// circle is on bottom side of tile
|
|
this.oV = 1;
|
|
}
|
|
|
|
return this.resolveCircleTile(px, py, this.oH, this.oV, this, c);
|
|
|
|
}
|
|
}
|
|
},
|
|
|
|
/**
|
|
* Resolves tile collision.
|
|
*
|
|
* @method Phaser.Physics.Ninja.Circle#resolveCircleTile
|
|
* @param {number} x - Penetration depth on the x axis.
|
|
* @param {number} y - Penetration depth on the y axis.
|
|
* @param {number} oH - Grid / voronoi region.
|
|
* @param {number} oV - Grid / voronoi region.
|
|
* @param {Phaser.Physics.Ninja.Circle} obj - The Circle involved in the collision.
|
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
|
* @return {number} The result of the collision.
|
|
*/
|
|
resolveCircleTile: function (x, y, oH, oV, obj, t) {
|
|
|
|
if (0 < t.id)
|
|
{
|
|
return this.circleTileProjections[t.type](x, y, oH, oV, obj, t);
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
|
|
},
|
|
|
|
/**
|
|
* Resolves Full tile collision.
|
|
*
|
|
* @method Phaser.Physics.Ninja.Circle#projCircle_Full
|
|
* @param {number} x - Penetration depth on the x axis.
|
|
* @param {number} y - Penetration depth on the y axis.
|
|
* @param {number} oH - Grid / voronoi region.
|
|
* @param {number} oV - Grid / voronoi region.
|
|
* @param {Phaser.Physics.Ninja.Circle} obj - The Circle involved in the collision.
|
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
|
* @return {number} The result of the collision.
|
|
*/
|
|
projCircle_Full: function (x, y, oH, oV, obj, t) {
|
|
|
|
//if we're colliding vs. the current cell, we need to project along the
|
|
//smallest penetration vector.
|
|
//if we're colliding vs. horiz. or vert. neighb, we simply project horiz/vert
|
|
//if we're colliding diagonally, we need to collide vs. tile corner
|
|
|
|
if (oH === 0)
|
|
{
|
|
if (oV === 0)
|
|
{
|
|
//collision with current cell
|
|
if (x < y)
|
|
{
|
|
//penetration in x is smaller; project in x
|
|
var dx = obj.pos.x - t.pos.x;//get sign for projection along x-axis
|
|
|
|
//NOTE: should we handle the delta === 0 case?! and how? (project towards oldpos?)
|
|
if (dx < 0)
|
|
{
|
|
obj.reportCollisionVsWorld(-x, 0, -1, 0, t);
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
obj.reportCollisionVsWorld(x, 0, 1, 0, t);
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//penetration in y is smaller; project in y
|
|
var dy = obj.pos.y - t.pos.y;//get sign for projection along y-axis
|
|
|
|
//NOTE: should we handle the delta === 0 case?! and how? (project towards oldpos?)
|
|
if (dy < 0)
|
|
{
|
|
obj.reportCollisionVsWorld(0, -y, 0, -1, t);
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
obj.reportCollisionVsWorld(0, y, 0, 1, t);
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//collision with vertical neighbor
|
|
obj.reportCollisionVsWorld(0, y * oV, 0, oV, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
}
|
|
else if (oV === 0)
|
|
{
|
|
//collision with horizontal neighbor
|
|
obj.reportCollisionVsWorld(x * oH, 0, oH, 0, t);
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
//diagonal collision
|
|
|
|
//get diag vertex position
|
|
var vx = t.pos.x + (oH * t.xw);
|
|
var vy = t.pos.y + (oV * t.yw);
|
|
|
|
var dx = obj.pos.x - vx;//calc vert->circle vector
|
|
var dy = obj.pos.y - vy;
|
|
|
|
var len = Math.sqrt(dx * dx + dy * dy);
|
|
var pen = obj.radius - len;
|
|
|
|
if (0 < pen)
|
|
{
|
|
//vertex is in the circle; project outward
|
|
if (len === 0)
|
|
{
|
|
//project out by 45deg
|
|
dx = oH / Math.SQRT2;
|
|
dy = oV / Math.SQRT2;
|
|
}
|
|
else
|
|
{
|
|
dx /= len;
|
|
dy /= len;
|
|
}
|
|
|
|
obj.reportCollisionVsWorld(dx * pen, dy * pen, dx, dy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_NONE;
|
|
|
|
},
|
|
|
|
/**
|
|
* Resolves 45 Degree tile collision.
|
|
*
|
|
* @method Phaser.Physics.Ninja.Circle#projCircle_45Deg
|
|
* @param {number} x - Penetration depth on the x axis.
|
|
* @param {number} y - Penetration depth on the y axis.
|
|
* @param {number} oH - Grid / voronoi region.
|
|
* @param {number} oV - Grid / voronoi region.
|
|
* @param {Phaser.Physics.Ninja.Circle} obj - The Circle involved in the collision.
|
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
|
* @return {number} The result of the collision.
|
|
*/
|
|
projCircle_45Deg: function (x, y, oH, oV, obj, t) {
|
|
|
|
//if we're colliding diagonally:
|
|
// -if obj is in the diagonal pointed to by the slope normal: we can't collide, do nothing
|
|
// -else, collide vs. the appropriate vertex
|
|
//if obj is in this tile: perform collision as for aabb-ve-45deg
|
|
//if obj is horiz OR very neighb in direction of slope: collide only vs. slope
|
|
//if obj is horiz or vert neigh against direction of slope: collide vs. face
|
|
|
|
var signx = t.signx;
|
|
var signy = t.signy;
|
|
var lenP;
|
|
|
|
if (oH === 0)
|
|
{
|
|
if (oV === 0)
|
|
{
|
|
//colliding with current tile
|
|
|
|
var sx = t.sx;
|
|
var sy = t.sy;
|
|
|
|
var ox = (obj.pos.x - (sx * obj.radius)) - t.pos.x;//this gives is the coordinates of the innermost
|
|
var oy = (obj.pos.y - (sy * obj.radius)) - t.pos.y;//point on the circle, relative to the tile center
|
|
|
|
//if the dotprod of (ox,oy) and (sx,sy) is negative, the innermost point is in the slope
|
|
//and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy)
|
|
var dp = (ox * sx) + (oy * sy);
|
|
|
|
if (dp < 0)
|
|
{
|
|
//collision; project delta onto slope and use this as the slope penetration vector
|
|
sx *= -dp;//(sx,sy) is now the penetration vector
|
|
sy *= -dp;
|
|
|
|
//find the smallest axial projection vector
|
|
if (x < y)
|
|
{
|
|
//penetration in x is smaller
|
|
lenP = x;
|
|
y = 0;
|
|
|
|
//get sign for projection along x-axis
|
|
if ((obj.pos.x - t.pos.x) < 0)
|
|
{
|
|
x *= -1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//penetration in y is smaller
|
|
lenP = y;
|
|
x = 0;
|
|
|
|
//get sign for projection along y-axis
|
|
if ((obj.pos.y - t.pos.y) < 0)
|
|
{
|
|
y *= -1;
|
|
}
|
|
}
|
|
|
|
var lenN = Math.sqrt(sx * sx + sy * sy);
|
|
|
|
if (lenP < lenN)
|
|
{
|
|
obj.reportCollisionVsWorld(x, y, x / lenP, y / lenP, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
obj.reportCollisionVsWorld(sx, sy, t.sx, t.sy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
//colliding vertically
|
|
if ((signy * oV) < 0)
|
|
{
|
|
//colliding with face/edge
|
|
obj.reportCollisionVsWorld(0, y * oV, 0, oV, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
//we could only be colliding vs the slope OR a vertex
|
|
//look at the vector form the closest vert to the circle to decide
|
|
|
|
var sx = t.sx;
|
|
var sy = t.sy;
|
|
|
|
var ox = obj.pos.x - (t.pos.x - (signx * t.xw));//this gives is the coordinates of the innermost
|
|
var oy = obj.pos.y - (t.pos.y + (oV * t.yw));//point on the circle, relative to the closest tile vert
|
|
|
|
//if the component of (ox,oy) parallel to the normal's righthand normal
|
|
//has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy)
|
|
//then we project by the vertex, otherwise by the normal.
|
|
//note that this is simply a VERY tricky/weird method of determining
|
|
//if the circle is in side the slope/face's voronoi region, or that of the vertex.
|
|
var perp = (ox * -sy) + (oy * sx);
|
|
if (0 < (perp * signx * signy))
|
|
{
|
|
//collide vs. vertex
|
|
var len = Math.sqrt(ox * ox + oy * oy);
|
|
var pen = obj.radius - len;
|
|
if (0 < pen)
|
|
{
|
|
//note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0
|
|
ox /= len;
|
|
oy /= len;
|
|
|
|
obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//collide vs. slope
|
|
|
|
//if the component of (ox,oy) parallel to the normal is less than the circle radius, we're
|
|
//penetrating the slope. note that this method of penetration calculation doesn't hold
|
|
//in general (i.e it won't work if the circle is in the slope), but works in this case
|
|
//because we know the circle is in a neighboring cell
|
|
var dp = (ox * sx) + (oy * sy);
|
|
var pen = obj.radius - Math.abs(dp);//note: we don't need the abs because we know the dp will be positive, but just in case..
|
|
if (0 < pen)
|
|
{
|
|
//collision; circle out along normal by penetration amount
|
|
obj.reportCollisionVsWorld(sx * pen, sy * pen, sx, sy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (oV === 0)
|
|
{
|
|
//colliding horizontally
|
|
if ((signx * oH) < 0)
|
|
{
|
|
//colliding with face/edge
|
|
obj.reportCollisionVsWorld(x * oH, 0, oH, 0, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
//we could only be colliding vs the slope OR a vertex
|
|
//look at the vector form the closest vert to the circle to decide
|
|
|
|
var sx = t.sx;
|
|
var sy = t.sy;
|
|
|
|
var ox = obj.pos.x - (t.pos.x + (oH * t.xw));//this gives is the coordinates of the innermost
|
|
var oy = obj.pos.y - (t.pos.y - (signy * t.yw));//point on the circle, relative to the closest tile vert
|
|
|
|
//if the component of (ox,oy) parallel to the normal's righthand normal
|
|
//has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy)
|
|
//then we project by the normal, otherwise by the vertex.
|
|
//(NOTE: this is the opposite logic of the vertical case;
|
|
// for vertical, if the perp prod and the slope's slope agree, it's outside.
|
|
// for horizontal, if the perp prod and the slope's slope agree, circle is inside.
|
|
// ..but this is only a property of flahs' coord system (i.e the rules might swap
|
|
// in righthanded systems))
|
|
//note that this is simply a VERY tricky/weird method of determining
|
|
//if the circle is in side the slope/face's voronio region, or that of the vertex.
|
|
var perp = (ox * -sy) + (oy * sx);
|
|
if ((perp * signx * signy) < 0)
|
|
{
|
|
//collide vs. vertex
|
|
var len = Math.sqrt(ox * ox + oy * oy);
|
|
var pen = obj.radius - len;
|
|
if (0 < pen)
|
|
{
|
|
//note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0
|
|
ox /= len;
|
|
oy /= len;
|
|
|
|
obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//collide vs. slope
|
|
|
|
//if the component of (ox,oy) parallel to the normal is less than the circle radius, we're
|
|
//penetrating the slope. note that this method of penetration calculation doesn't hold
|
|
//in general (i.e it won't work if the circle is in the slope), but works in this case
|
|
//because we know the circle is in a neighboring cell
|
|
var dp = (ox * sx) + (oy * sy);
|
|
var pen = obj.radius - Math.abs(dp);//note: we don't need the abs because we know the dp will be positive, but just in case..
|
|
if (0 < pen)
|
|
{
|
|
//collision; circle out along normal by penetration amount
|
|
obj.reportCollisionVsWorld(sx * pen, sy * pen, sx, sy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//colliding diagonally
|
|
if (0 < ((signx * oH) + (signy * oV)))
|
|
{
|
|
//the dotprod of slope normal and cell offset is strictly positive,
|
|
//therefore obj is in the diagonal neighb pointed at by the normal, and
|
|
//it cannot possibly reach/touch/penetrate the slope
|
|
return Phaser.Physics.Ninja.Circle.COL_NONE;
|
|
}
|
|
else
|
|
{
|
|
//collide vs. vertex
|
|
//get diag vertex position
|
|
var vx = t.pos.x + (oH * t.xw);
|
|
var vy = t.pos.y + (oV * t.yw);
|
|
|
|
var dx = obj.pos.x - vx;//calc vert->circle vector
|
|
var dy = obj.pos.y - vy;
|
|
|
|
var len = Math.sqrt(dx * dx + dy * dy);
|
|
var pen = obj.radius - len;
|
|
if (0 < pen)
|
|
{
|
|
//vertex is in the circle; project outward
|
|
if (len === 0)
|
|
{
|
|
//project out by 45deg
|
|
dx = oH / Math.SQRT2;
|
|
dy = oV / Math.SQRT2;
|
|
}
|
|
else
|
|
{
|
|
dx /= len;
|
|
dy /= len;
|
|
}
|
|
|
|
obj.reportCollisionVsWorld(dx * pen, dy * pen, dx, dy, t);
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_NONE;
|
|
},
|
|
|
|
/**
|
|
* Resolves Concave tile collision.
|
|
*
|
|
* @method Phaser.Physics.Ninja.Circle#projCircle_Concave
|
|
* @param {number} x - Penetration depth on the x axis.
|
|
* @param {number} y - Penetration depth on the y axis.
|
|
* @param {number} oH - Grid / voronoi region.
|
|
* @param {number} oV - Grid / voronoi region.
|
|
* @param {Phaser.Physics.Ninja.Circle} obj - The Circle involved in the collision.
|
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
|
* @return {number} The result of the collision.
|
|
*/
|
|
projCircle_Concave: function (x, y, oH, oV, obj, t) {
|
|
|
|
//if we're colliding diagonally:
|
|
// -if obj is in the diagonal pointed to by the slope normal: we can't collide, do nothing
|
|
// -else, collide vs. the appropriate vertex
|
|
//if obj is in this tile: perform collision as for aabb
|
|
//if obj is horiz OR very neighb in direction of slope: collide vs vert
|
|
//if obj is horiz or vert neigh against direction of slope: collide vs. face
|
|
|
|
var signx = t.signx;
|
|
var signy = t.signy;
|
|
var lenP;
|
|
|
|
if (oH === 0)
|
|
{
|
|
if (oV === 0)
|
|
{
|
|
//colliding with current tile
|
|
|
|
var ox = (t.pos.x + (signx * t.xw)) - obj.pos.x;//(ox,oy) is the vector from the circle to
|
|
var oy = (t.pos.y + (signy * t.yw)) - obj.pos.y;//tile-circle's center
|
|
|
|
var twid = t.xw * 2;
|
|
var trad = Math.sqrt(twid * twid + 0);//this gives us the radius of a circle centered on the tile's corner and extending to the opposite edge of the tile;
|
|
//note that this should be precomputed at compile-time since it's constant
|
|
|
|
var len = Math.sqrt(ox * ox + oy * oy);
|
|
var pen = (len + obj.radius) - trad;
|
|
|
|
if (0 < pen)
|
|
{
|
|
//find the smallest axial projection vector
|
|
if (x < y)
|
|
{
|
|
//penetration in x is smaller
|
|
lenP = x;
|
|
y = 0;
|
|
|
|
//get sign for projection along x-axis
|
|
if ((obj.pos.x - t.pos.x) < 0)
|
|
{
|
|
x *= -1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//penetration in y is smaller
|
|
lenP = y;
|
|
x = 0;
|
|
|
|
//get sign for projection along y-axis
|
|
if ((obj.pos.y - t.pos.y) < 0)
|
|
{
|
|
y *= -1;
|
|
}
|
|
}
|
|
|
|
|
|
if (lenP < pen)
|
|
{
|
|
obj.reportCollisionVsWorld(x, y, x / lenP, y / lenP, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
//we can assume that len >0, because if we're here then
|
|
//(len + obj.radius) > trad, and since obj.radius <= trad
|
|
//len MUST be > 0
|
|
ox /= len;
|
|
oy /= len;
|
|
|
|
obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
return Phaser.Physics.Ninja.Circle.COL_NONE;
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
//colliding vertically
|
|
if ((signy * oV) < 0)
|
|
{
|
|
//colliding with face/edge
|
|
obj.reportCollisionVsWorld(0, y * oV, 0, oV, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
//we could only be colliding vs the vertical tip
|
|
|
|
//get diag vertex position
|
|
var vx = t.pos.x - (signx * t.xw);
|
|
var vy = t.pos.y + (oV * t.yw);
|
|
|
|
var dx = obj.pos.x - vx;//calc vert->circle vector
|
|
var dy = obj.pos.y - vy;
|
|
|
|
var len = Math.sqrt(dx * dx + dy * dy);
|
|
var pen = obj.radius - len;
|
|
if (0 < pen)
|
|
{
|
|
//vertex is in the circle; project outward
|
|
if (len === 0)
|
|
{
|
|
//project out vertically
|
|
dx = 0;
|
|
dy = oV;
|
|
}
|
|
else
|
|
{
|
|
dx /= len;
|
|
dy /= len;
|
|
}
|
|
|
|
obj.reportCollisionVsWorld(dx * pen, dy * pen, dx, dy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (oV === 0)
|
|
{
|
|
//colliding horizontally
|
|
if ((signx * oH) < 0)
|
|
{
|
|
//colliding with face/edge
|
|
obj.reportCollisionVsWorld(x * oH, 0, oH, 0, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
//we could only be colliding vs the horizontal tip
|
|
|
|
//get diag vertex position
|
|
var vx = t.pos.x + (oH * t.xw);
|
|
var vy = t.pos.y - (signy * t.yw);
|
|
|
|
var dx = obj.pos.x - vx;//calc vert->circle vector
|
|
var dy = obj.pos.y - vy;
|
|
|
|
var len = Math.sqrt(dx * dx + dy * dy);
|
|
var pen = obj.radius - len;
|
|
if (0 < pen)
|
|
{
|
|
//vertex is in the circle; project outward
|
|
if (len === 0)
|
|
{
|
|
//project out horizontally
|
|
dx = oH;
|
|
dy = 0;
|
|
}
|
|
else
|
|
{
|
|
dx /= len;
|
|
dy /= len;
|
|
}
|
|
|
|
obj.reportCollisionVsWorld(dx * pen, dy * pen, dx, dy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//colliding diagonally
|
|
if (0 < ((signx * oH) + (signy * oV)))
|
|
{
|
|
//the dotprod of slope normal and cell offset is strictly positive,
|
|
//therefore obj is in the diagonal neighb pointed at by the normal, and
|
|
//it cannot possibly reach/touch/penetrate the slope
|
|
return Phaser.Physics.Ninja.Circle.COL_NONE;
|
|
}
|
|
else
|
|
{
|
|
//collide vs. vertex
|
|
//get diag vertex position
|
|
var vx = t.pos.x + (oH * t.xw);
|
|
var vy = t.pos.y + (oV * t.yw);
|
|
|
|
var dx = obj.pos.x - vx;//calc vert->circle vector
|
|
var dy = obj.pos.y - vy;
|
|
|
|
var len = Math.sqrt(dx * dx + dy * dy);
|
|
var pen = obj.radius - len;
|
|
if (0 < pen)
|
|
{
|
|
//vertex is in the circle; project outward
|
|
if (len === 0)
|
|
{
|
|
//project out by 45deg
|
|
dx = oH / Math.SQRT2;
|
|
dy = oV / Math.SQRT2;
|
|
}
|
|
else
|
|
{
|
|
dx /= len;
|
|
dy /= len;
|
|
}
|
|
|
|
obj.reportCollisionVsWorld(dx * pen, dy * pen, dx, dy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_NONE;
|
|
|
|
},
|
|
|
|
/**
|
|
* Resolves Convex tile collision.
|
|
*
|
|
* @method Phaser.Physics.Ninja.Circle#projCircle_Convex
|
|
* @param {number} x - Penetration depth on the x axis.
|
|
* @param {number} y - Penetration depth on the y axis.
|
|
* @param {number} oH - Grid / voronoi region.
|
|
* @param {number} oV - Grid / voronoi region.
|
|
* @param {Phaser.Physics.Ninja.Circle} obj - The Circle involved in the collision.
|
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
|
* @return {number} The result of the collision.
|
|
*/
|
|
projCircle_Convex: function (x, y, oH, oV, obj, t) {
|
|
|
|
//if the object is horiz AND/OR vertical neighbor in the normal (signx,signy)
|
|
//direction, collide vs. tile-circle only.
|
|
//if we're colliding diagonally:
|
|
// -else, collide vs. the appropriate vertex
|
|
//if obj is in this tile: perform collision as for aabb
|
|
//if obj is horiz or vert neigh against direction of slope: collide vs. face
|
|
|
|
var signx = t.signx;
|
|
var signy = t.signy;
|
|
var lenP;
|
|
|
|
if (oH === 0)
|
|
{
|
|
if (oV === 0)
|
|
{
|
|
//colliding with current tile
|
|
|
|
|
|
var ox = obj.pos.x - (t.pos.x - (signx * t.xw));//(ox,oy) is the vector from the tile-circle to
|
|
var oy = obj.pos.y - (t.pos.y - (signy * t.yw));//the circle's center
|
|
|
|
var twid = t.xw * 2;
|
|
var trad = Math.sqrt(twid * twid + 0);//this gives us the radius of a circle centered on the tile's corner and extending to the opposite edge of the tile;
|
|
//note that this should be precomputed at compile-time since it's constant
|
|
|
|
var len = Math.sqrt(ox * ox + oy * oy);
|
|
var pen = (trad + obj.radius) - len;
|
|
|
|
if (0 < pen)
|
|
{
|
|
//find the smallest axial projection vector
|
|
if (x < y)
|
|
{
|
|
//penetration in x is smaller
|
|
lenP = x;
|
|
y = 0;
|
|
|
|
//get sign for projection along x-axis
|
|
if ((obj.pos.x - t.pos.x) < 0)
|
|
{
|
|
x *= -1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//penetration in y is smaller
|
|
lenP = y;
|
|
x = 0;
|
|
|
|
//get sign for projection along y-axis
|
|
if ((obj.pos.y - t.pos.y) < 0)
|
|
{
|
|
y *= -1;
|
|
}
|
|
}
|
|
|
|
|
|
if (lenP < pen)
|
|
{
|
|
obj.reportCollisionVsWorld(x, y, x / lenP, y / lenP, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
//note: len should NEVER be === 0, because if it is,
|
|
//projeciton by an axis shoudl always be shorter, and we should
|
|
//never arrive here
|
|
ox /= len;
|
|
oy /= len;
|
|
|
|
obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//colliding vertically
|
|
if ((signy * oV) < 0)
|
|
{
|
|
//colliding with face/edge
|
|
obj.reportCollisionVsWorld(0, y * oV, 0, oV, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
//obj in neighboring cell pointed at by tile normal;
|
|
//we could only be colliding vs the tile-circle surface
|
|
|
|
var ox = obj.pos.x - (t.pos.x - (signx * t.xw));//(ox,oy) is the vector from the tile-circle to
|
|
var oy = obj.pos.y - (t.pos.y - (signy * t.yw));//the circle's center
|
|
|
|
var twid = t.xw * 2;
|
|
var trad = Math.sqrt(twid * twid + 0);//this gives us the radius of a circle centered on the tile's corner and extending to the opposite edge of the tile;
|
|
//note that this should be precomputed at compile-time since it's constant
|
|
|
|
var len = Math.sqrt(ox * ox + oy * oy);
|
|
var pen = (trad + obj.radius) - len;
|
|
|
|
if (0 < pen)
|
|
{
|
|
|
|
//note: len should NEVER be === 0, because if it is,
|
|
//obj is not in a neighboring cell!
|
|
ox /= len;
|
|
oy /= len;
|
|
|
|
obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (oV === 0)
|
|
{
|
|
//colliding horizontally
|
|
if ((signx * oH) < 0)
|
|
{
|
|
//colliding with face/edge
|
|
obj.reportCollisionVsWorld(x * oH, 0, oH, 0, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
//obj in neighboring cell pointed at by tile normal;
|
|
//we could only be colliding vs the tile-circle surface
|
|
|
|
var ox = obj.pos.x - (t.pos.x - (signx * t.xw));//(ox,oy) is the vector from the tile-circle to
|
|
var oy = obj.pos.y - (t.pos.y - (signy * t.yw));//the circle's center
|
|
|
|
var twid = t.xw * 2;
|
|
var trad = Math.sqrt(twid * twid + 0);//this gives us the radius of a circle centered on the tile's corner and extending to the opposite edge of the tile;
|
|
//note that this should be precomputed at compile-time since it's constant
|
|
|
|
var len = Math.sqrt(ox * ox + oy * oy);
|
|
var pen = (trad + obj.radius) - len;
|
|
|
|
if (0 < pen)
|
|
{
|
|
|
|
//note: len should NEVER be === 0, because if it is,
|
|
//obj is not in a neighboring cell!
|
|
ox /= len;
|
|
oy /= len;
|
|
|
|
obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//colliding diagonally
|
|
if (0 < ((signx * oH) + (signy * oV)))
|
|
{
|
|
//obj in diag neighb cell pointed at by tile normal;
|
|
//we could only be colliding vs the tile-circle surface
|
|
|
|
var ox = obj.pos.x - (t.pos.x - (signx * t.xw));//(ox,oy) is the vector from the tile-circle to
|
|
var oy = obj.pos.y - (t.pos.y - (signy * t.yw));//the circle's center
|
|
|
|
var twid = t.xw * 2;
|
|
var trad = Math.sqrt(twid * twid + 0);//this gives us the radius of a circle centered on the tile's corner and extending to the opposite edge of the tile;
|
|
//note that this should be precomputed at compile-time since it's constant
|
|
|
|
var len = Math.sqrt(ox * ox + oy * oy);
|
|
var pen = (trad + obj.radius) - len;
|
|
|
|
if (0 < pen)
|
|
{
|
|
|
|
//note: len should NEVER be === 0, because if it is,
|
|
//obj is not in a neighboring cell!
|
|
ox /= len;
|
|
oy /= len;
|
|
|
|
obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//collide vs. vertex
|
|
//get diag vertex position
|
|
var vx = t.pos.x + (oH * t.xw);
|
|
var vy = t.pos.y + (oV * t.yw);
|
|
|
|
var dx = obj.pos.x - vx;//calc vert->circle vector
|
|
var dy = obj.pos.y - vy;
|
|
|
|
var len = Math.sqrt(dx * dx + dy * dy);
|
|
var pen = obj.radius - len;
|
|
if (0 < pen)
|
|
{
|
|
//vertex is in the circle; project outward
|
|
if (len === 0)
|
|
{
|
|
//project out by 45deg
|
|
dx = oH / Math.SQRT2;
|
|
dy = oV / Math.SQRT2;
|
|
}
|
|
else
|
|
{
|
|
dx /= len;
|
|
dy /= len;
|
|
}
|
|
|
|
obj.reportCollisionVsWorld(dx * pen, dy * pen, dx, dy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_NONE;
|
|
|
|
},
|
|
|
|
/**
|
|
* Resolves Half tile collision.
|
|
*
|
|
* @method Phaser.Physics.Ninja.Circle#projCircle_Half
|
|
* @param {number} x - Penetration depth on the x axis.
|
|
* @param {number} y - Penetration depth on the y axis.
|
|
* @param {number} oH - Grid / voronoi region.
|
|
* @param {number} oV - Grid / voronoi region.
|
|
* @param {Phaser.Physics.Ninja.Circle} obj - The Circle involved in the collision.
|
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
|
* @return {number} The result of the collision.
|
|
*/
|
|
projCircle_Half: function (x,y,oH,oV,obj,t) {
|
|
|
|
//if obj is in a neighbor pointed at by the halfedge normal,
|
|
//we'll never collide (i.e if the normal is (0,1) and the obj is in the DL.D, or R neighbors)
|
|
//
|
|
//if obj is in a neigbor perpendicular to the halfedge normal, it might
|
|
//collide with the halfedge-vertex, or with the halfedge side.
|
|
//
|
|
//if obj is in a neigb pointing opposite the halfedge normal, obj collides with edge
|
|
//
|
|
//if obj is in a diagonal (pointing away from the normal), obj collides vs vertex
|
|
//
|
|
//if obj is in the halfedge cell, it collides as with aabb
|
|
|
|
var signx = t.signx;
|
|
var signy = t.signy;
|
|
|
|
var celldp = (oH*signx + oV*signy);//this tells us about the configuration of cell-offset relative to tile normal
|
|
if (0 < celldp)
|
|
{
|
|
//obj is in "far" (pointed-at-by-normal) neighbor of halffull tile, and will never hit
|
|
return Phaser.Physics.Ninja.Circle.COL_NONE;
|
|
}
|
|
else if (oH === 0)
|
|
{
|
|
if (oV === 0)
|
|
{
|
|
//colliding with current tile
|
|
var r = obj.radius;
|
|
var ox = (obj.pos.x - (signx*r)) - t.pos.x;//this gives is the coordinates of the innermost
|
|
var oy = (obj.pos.y - (signy*r)) - t.pos.y;//point on the circle, relative to the tile center
|
|
|
|
|
|
//we perform operations analogous to the 45deg tile, except we're using
|
|
//an axis-aligned slope instead of an angled one..
|
|
var sx = signx;
|
|
var sy = signy;
|
|
|
|
//if the dotprod of (ox,oy) and (sx,sy) is negative, the corner is in the slope
|
|
//and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy)
|
|
var dp = (ox*sx) + (oy*sy);
|
|
if (dp < 0)
|
|
{
|
|
//collision; project delta onto slope and use this to displace the object
|
|
sx *= -dp;//(sx,sy) is now the projection vector
|
|
sy *= -dp;
|
|
|
|
|
|
var lenN = Math.sqrt(sx*sx + sy*sy);
|
|
var lenP = Math.sqrt(x*x + y*y);
|
|
|
|
if (lenP < lenN)
|
|
{
|
|
obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP,t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
obj.reportCollisionVsWorld(sx,sy,t.signx,t.signy);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
//colliding vertically
|
|
|
|
if (celldp === 0)
|
|
{
|
|
|
|
var dx = obj.pos.x - t.pos.x;
|
|
|
|
//we're in a cell perpendicular to the normal, and can collide vs. halfedge vertex
|
|
//or halfedge side
|
|
if ((dx*signx) < 0)
|
|
{
|
|
//collision with halfedge side
|
|
obj.reportCollisionVsWorld(0,y*oV,0,oV,t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
//collision with halfedge vertex
|
|
var dy = obj.pos.y - (t.pos.y + oV*t.yw);//(dx,dy) is now the vector from the appropriate halfedge vertex to the circle
|
|
|
|
var len = Math.sqrt(dx*dx + dy*dy);
|
|
var pen = obj.radius - len;
|
|
if (0 < pen)
|
|
{
|
|
//vertex is in the circle; project outward
|
|
if (len === 0)
|
|
{
|
|
//project out by 45deg
|
|
dx = signx / Math.SQRT2;
|
|
dy = oV / Math.SQRT2;
|
|
}
|
|
else
|
|
{
|
|
dx /= len;
|
|
dy /= len;
|
|
}
|
|
|
|
obj.reportCollisionVsWorld(dx*pen, dy*pen, dx, dy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//due to the first conditional (celldp >0), we know we're in the cell "opposite" the normal, and so
|
|
//we can only collide with the cell edge
|
|
//collision with vertical neighbor
|
|
obj.reportCollisionVsWorld(0,y*oV,0,oV,t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
|
|
}
|
|
}
|
|
else if (oV === 0)
|
|
{
|
|
//colliding horizontally
|
|
if (celldp === 0)
|
|
{
|
|
|
|
var dy = obj.pos.y - t.pos.y;
|
|
|
|
//we're in a cell perpendicular to the normal, and can collide vs. halfedge vertex
|
|
//or halfedge side
|
|
if ((dy*signy) < 0)
|
|
{
|
|
//collision with halfedge side
|
|
obj.reportCollisionVsWorld(x*oH,0,oH,0,t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
//collision with halfedge vertex
|
|
var dx = obj.pos.x - (t.pos.x + oH*t.xw);//(dx,dy) is now the vector from the appropriate halfedge vertex to the circle
|
|
|
|
var len = Math.sqrt(dx*dx + dy*dy);
|
|
var pen = obj.radius - len;
|
|
if (0 < pen)
|
|
{
|
|
//vertex is in the circle; project outward
|
|
if (len === 0)
|
|
{
|
|
//project out by 45deg
|
|
dx = signx / Math.SQRT2;
|
|
dy = oV / Math.SQRT2;
|
|
}
|
|
else
|
|
{
|
|
dx /= len;
|
|
dy /= len;
|
|
}
|
|
|
|
obj.reportCollisionVsWorld(dx*pen, dy*pen, dx, dy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//due to the first conditional (celldp >0), we know w're in the cell "opposite" the normal, and so
|
|
//we can only collide with the cell edge
|
|
obj.reportCollisionVsWorld(x*oH, 0, oH, 0, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//colliding diagonally; we know, due to the initial (celldp >0) test which has failed
|
|
//if we've reached this point, that we're in a diagonal neighbor on the non-normal side, so
|
|
//we could only be colliding with the cell vertex, if at all.
|
|
|
|
//get diag vertex position
|
|
var vx = t.pos.x + (oH*t.xw);
|
|
var vy = t.pos.y + (oV*t.yw);
|
|
|
|
var dx = obj.pos.x - vx;//calc vert->circle vector
|
|
var dy = obj.pos.y - vy;
|
|
|
|
var len = Math.sqrt(dx*dx + dy*dy);
|
|
var pen = obj.radius - len;
|
|
if (0 < pen)
|
|
{
|
|
//vertex is in the circle; project outward
|
|
if (len === 0)
|
|
{
|
|
//project out by 45deg
|
|
dx = oH / Math.SQRT2;
|
|
dy = oV / Math.SQRT2;
|
|
}
|
|
else
|
|
{
|
|
dx /= len;
|
|
dy /= len;
|
|
}
|
|
|
|
obj.reportCollisionVsWorld(dx*pen, dy*pen, dx, dy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
|
|
}
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_NONE;
|
|
|
|
},
|
|
|
|
/**
|
|
* Resolves 22 Degree tile collision.
|
|
*
|
|
* @method Phaser.Physics.Ninja.Circle#projCircle_22DegS
|
|
* @param {number} x - Penetration depth on the x axis.
|
|
* @param {number} y - Penetration depth on the y axis.
|
|
* @param {number} oH - Grid / voronoi region.
|
|
* @param {number} oV - Grid / voronoi region.
|
|
* @param {Phaser.Physics.Ninja.Circle} obj - The Circle involved in the collision.
|
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
|
* @return {number} The result of the collision.
|
|
*/
|
|
projCircle_22DegS: function (x,y,oH,oV,obj,t) {
|
|
|
|
//if the object is in a cell pointed at by signy, no collision will ever occur
|
|
//otherwise,
|
|
//
|
|
//if we're colliding diagonally:
|
|
// -collide vs. the appropriate vertex
|
|
//if obj is in this tile: collide vs slope or vertex
|
|
//if obj is horiz neighb in direction of slope: collide vs. slope or vertex
|
|
//if obj is horiz neighb against the slope:
|
|
// if (distance in y from circle to 90deg corner of tile < 1/2 tileheight, collide vs. face)
|
|
// else(collide vs. corner of slope) (vert collision with a non-grid-aligned vert)
|
|
//if obj is vert neighb against direction of slope: collide vs. face
|
|
|
|
var lenP;
|
|
var signx = t.signx;
|
|
var signy = t.signy;
|
|
|
|
if (0 < (signy*oV))
|
|
{
|
|
//object will never collide vs tile, it can't reach that far
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_NONE;
|
|
}
|
|
else if (oH === 0)
|
|
{
|
|
if (oV === 0)
|
|
{
|
|
//colliding with current tile
|
|
//we could only be colliding vs the slope OR a vertex
|
|
//look at the vector form the closest vert to the circle to decide
|
|
|
|
var sx = t.sx;
|
|
var sy = t.sy;
|
|
|
|
var r = obj.radius;
|
|
var ox = obj.pos.x - (t.pos.x - (signx*t.xw));//this gives is the coordinates of the innermost
|
|
var oy = obj.pos.y - t.pos.y;//point on the circle, relative to the tile corner
|
|
|
|
//if the component of (ox,oy) parallel to the normal's righthand normal
|
|
//has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy)
|
|
//then we project by the vertex, otherwise by the normal or axially.
|
|
//note that this is simply a VERY tricky/weird method of determining
|
|
//if the circle is in side the slope/face's voronio region, or that of the vertex.
|
|
|
|
var perp = (ox*-sy) + (oy*sx);
|
|
if (0 < (perp*signx*signy))
|
|
{
|
|
//collide vs. vertex
|
|
var len = Math.sqrt(ox*ox + oy*oy);
|
|
var pen = r - len;
|
|
if (0 < pen)
|
|
{
|
|
//note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0
|
|
ox /= len;
|
|
oy /= len;
|
|
|
|
obj.reportCollisionVsWorld(ox*pen, oy*pen, ox, oy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//collide vs. slope or vs axis
|
|
ox -= r*sx;//this gives us the vector from
|
|
oy -= r*sy;//a point on the slope to the innermost point on the circle
|
|
|
|
//if the dotprod of (ox,oy) and (sx,sy) is negative, the point on the circle is in the slope
|
|
//and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy)
|
|
var dp = (ox*sx) + (oy*sy);
|
|
|
|
if (dp < 0)
|
|
{
|
|
//collision; project delta onto slope and use this to displace the object
|
|
sx *= -dp;//(sx,sy) is now the projection vector
|
|
sy *= -dp;
|
|
|
|
var lenN = Math.sqrt(sx*sx + sy*sy);
|
|
|
|
//find the smallest axial projection vector
|
|
if (x < y)
|
|
{
|
|
//penetration in x is smaller
|
|
lenP = x;
|
|
y = 0;
|
|
//get sign for projection along x-axis
|
|
if ((obj.pos.x - t.pos.x) < 0)
|
|
{
|
|
x *= -1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//penetration in y is smaller
|
|
lenP = y;
|
|
x = 0;
|
|
//get sign for projection along y-axis
|
|
if ((obj.pos.y - t.pos.y)< 0)
|
|
{
|
|
y *= -1;
|
|
}
|
|
}
|
|
|
|
if (lenP < lenN)
|
|
{
|
|
obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
obj.reportCollisionVsWorld(sx,sy,t.sx,t.sy,t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
//colliding vertically; we can assume that (signy*oV) < 0
|
|
//due to the first conditional far above
|
|
|
|
obj.reportCollisionVsWorld(0,y*oV, 0, oV, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
}
|
|
else if (oV === 0)
|
|
{
|
|
//colliding horizontally
|
|
if ((signx*oH) < 0)
|
|
{
|
|
//colliding with face/edge OR with corner of wedge, depending on our position vertically
|
|
|
|
//collide vs. vertex
|
|
//get diag vertex position
|
|
var vx = t.pos.x - (signx*t.xw);
|
|
var vy = t.pos.y;
|
|
|
|
var dx = obj.pos.x - vx;//calc vert->circle vector
|
|
var dy = obj.pos.y - vy;
|
|
|
|
if ((dy*signy) < 0)
|
|
{
|
|
//colliding vs face
|
|
obj.reportCollisionVsWorld(x*oH, 0, oH, 0, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
//colliding vs. vertex
|
|
|
|
var len = Math.sqrt(dx*dx + dy*dy);
|
|
var pen = obj.radius - len;
|
|
if (0 < pen)
|
|
{
|
|
//vertex is in the circle; project outward
|
|
if (len === 0)
|
|
{
|
|
//project out by 45deg
|
|
dx = oH / Math.SQRT2;
|
|
dy = oV / Math.SQRT2;
|
|
}
|
|
else
|
|
{
|
|
dx /= len;
|
|
dy /= len;
|
|
}
|
|
|
|
obj.reportCollisionVsWorld(dx*pen, dy*pen, dx, dy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//we could only be colliding vs the slope OR a vertex
|
|
//look at the vector form the closest vert to the circle to decide
|
|
|
|
var sx = t.sx;
|
|
var sy = t.sy;
|
|
|
|
var ox = obj.pos.x - (t.pos.x + (oH*t.xw));//this gives is the coordinates of the innermost
|
|
var oy = obj.pos.y - (t.pos.y - (signy*t.yw));//point on the circle, relative to the closest tile vert
|
|
|
|
//if the component of (ox,oy) parallel to the normal's righthand normal
|
|
//has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy)
|
|
//then we project by the normal, otherwise by the vertex.
|
|
//(NOTE: this is the opposite logic of the vertical case;
|
|
// for vertical, if the perp prod and the slope's slope agree, it's outside.
|
|
// for horizontal, if the perp prod and the slope's slope agree, circle is inside.
|
|
// ..but this is only a property of flahs' coord system (i.e the rules might swap
|
|
// in righthanded systems))
|
|
//note that this is simply a VERY tricky/weird method of determining
|
|
//if the circle is in side the slope/face's voronio region, or that of the vertex.
|
|
var perp = (ox*-sy) + (oy*sx);
|
|
if ((perp*signx*signy) < 0)
|
|
{
|
|
//collide vs. vertex
|
|
var len = Math.sqrt(ox*ox + oy*oy);
|
|
var pen = obj.radius - len;
|
|
if (0 < pen)
|
|
{
|
|
//note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0
|
|
ox /= len;
|
|
oy /= len;
|
|
|
|
obj.reportCollisionVsWorld(ox*pen, oy*pen, ox, oy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//collide vs. slope
|
|
|
|
//if the component of (ox,oy) parallel to the normal is less than the circle radius, we're
|
|
//penetrating the slope. note that this method of penetration calculation doesn't hold
|
|
//in general (i.e it won't work if the circle is in the slope), but works in this case
|
|
//because we know the circle is in a neighboring cell
|
|
var dp = (ox*sx) + (oy*sy);
|
|
var pen = obj.radius - Math.abs(dp);//note: we don't need the abs because we know the dp will be positive, but just in case..
|
|
|
|
if (0 < pen)
|
|
{
|
|
//collision; circle out along normal by penetration amount
|
|
obj.reportCollisionVsWorld(sx*pen, sy*pen, sx, sy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
|
|
//colliding diagonally; due to the first conditional above,
|
|
//obj is vertically offset against slope, and offset in either direction horizontally
|
|
|
|
//collide vs. vertex
|
|
//get diag vertex position
|
|
var vx = t.pos.x + (oH*t.xw);
|
|
var vy = t.pos.y + (oV*t.yw);
|
|
|
|
var dx = obj.pos.x - vx;//calc vert->circle vector
|
|
var dy = obj.pos.y - vy;
|
|
|
|
var len = Math.sqrt(dx*dx + dy*dy);
|
|
var pen = obj.radius - len;
|
|
if (0 < pen)
|
|
{
|
|
//vertex is in the circle; project outward
|
|
if (len === 0)
|
|
{
|
|
//project out by 45deg
|
|
dx = oH / Math.SQRT2;
|
|
dy = oV / Math.SQRT2;
|
|
}
|
|
else
|
|
{
|
|
dx /= len;
|
|
dy /= len;
|
|
}
|
|
|
|
obj.reportCollisionVsWorld(dx*pen, dy*pen, dx, dy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_NONE;
|
|
|
|
},
|
|
|
|
/**
|
|
* Resolves 22 Degree tile collision.
|
|
*
|
|
* @method Phaser.Physics.Ninja.Circle#projCircle_22DegB
|
|
* @param {number} x - Penetration depth on the x axis.
|
|
* @param {number} y - Penetration depth on the y axis.
|
|
* @param {number} oH - Grid / voronoi region.
|
|
* @param {number} oV - Grid / voronoi region.
|
|
* @param {Phaser.Physics.Ninja.Circle} obj - The Circle involved in the collision.
|
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
|
* @return {number} The result of the collision.
|
|
*/
|
|
projCircle_22DegB: function (x,y,oH, oV, obj,t) {
|
|
|
|
//if we're colliding diagonally:
|
|
// -if we're in the cell pointed at by the normal, collide vs slope, else
|
|
// collide vs. the appropriate corner/vertex
|
|
//
|
|
//if obj is in this tile: collide as with aabb
|
|
//
|
|
//if obj is horiz or vertical neighbor AGAINST the slope: collide with edge
|
|
//
|
|
//if obj is horiz neighb in direction of slope: collide vs. slope or vertex or edge
|
|
//
|
|
//if obj is vert neighb in direction of slope: collide vs. slope or vertex
|
|
|
|
var lenP;
|
|
var signx = t.signx;
|
|
var signy = t.signy;
|
|
|
|
if (oH === 0)
|
|
{
|
|
if (oV === 0)
|
|
{
|
|
//colliding with current cell
|
|
|
|
var sx = t.sx;
|
|
var sy = t.sy;
|
|
|
|
var r = obj.radius;
|
|
var ox = (obj.pos.x - (sx*r)) - (t.pos.x - (signx*t.xw));//this gives is the coordinates of the innermost
|
|
var oy = (obj.pos.y - (sy*r)) - (t.pos.y + (signy*t.yw));//point on the AABB, relative to a point on the slope
|
|
|
|
//if the dotprod of (ox,oy) and (sx,sy) is negative, the point on the circle is in the slope
|
|
//and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy)
|
|
var dp = (ox*sx) + (oy*sy);
|
|
|
|
if (dp < 0)
|
|
{
|
|
//collision; project delta onto slope and use this to displace the object
|
|
sx *= -dp;//(sx,sy) is now the projection vector
|
|
sy *= -dp;
|
|
|
|
var lenN = Math.sqrt(sx*sx + sy*sy);
|
|
|
|
//find the smallest axial projection vector
|
|
if (x < y)
|
|
{
|
|
//penetration in x is smaller
|
|
lenP = x;
|
|
y = 0;
|
|
//get sign for projection along x-axis
|
|
if ((obj.pos.x - t.pos.x) < 0)
|
|
{
|
|
x *= -1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//penetration in y is smaller
|
|
lenP = y;
|
|
x = 0;
|
|
//get sign for projection along y-axis
|
|
if ((obj.pos.y - t.pos.y)< 0)
|
|
{
|
|
y *= -1;
|
|
}
|
|
}
|
|
|
|
if (lenP < lenN)
|
|
{
|
|
obj.reportCollisionVsWorld(x, y, x/lenP, y/lenP, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
obj.reportCollisionVsWorld(sx, sy, t.sx, t.sy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//colliding vertically
|
|
|
|
if ((signy*oV) < 0)
|
|
{
|
|
//colliding with face/edge
|
|
obj.reportCollisionVsWorld(0, y*oV, 0, oV, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
//we could only be colliding vs the slope OR a vertex
|
|
//look at the vector form the closest vert to the circle to decide
|
|
|
|
var sx = t.sx;
|
|
var sy = t.sy;
|
|
|
|
var ox = obj.pos.x - (t.pos.x - (signx*t.xw));//this gives is the coordinates of the innermost
|
|
var oy = obj.pos.y - (t.pos.y + (signy*t.yw));//point on the circle, relative to the closest tile vert
|
|
|
|
//if the component of (ox,oy) parallel to the normal's righthand normal
|
|
//has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy)
|
|
//then we project by the vertex, otherwise by the normal.
|
|
//note that this is simply a VERY tricky/weird method of determining
|
|
//if the circle is in side the slope/face's voronio region, or that of the vertex.
|
|
var perp = (ox*-sy) + (oy*sx);
|
|
if (0 < (perp*signx*signy))
|
|
{
|
|
//collide vs. vertex
|
|
var len = Math.sqrt(ox*ox + oy*oy);
|
|
var pen = obj.radius - len;
|
|
if (0 < pen)
|
|
{
|
|
//note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0
|
|
ox /= len;
|
|
oy /= len;
|
|
|
|
obj.reportCollisionVsWorld(ox*pen, oy*pen, ox, oy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//collide vs. slope
|
|
|
|
//if the component of (ox,oy) parallel to the normal is less than the circle radius, we're
|
|
//penetrating the slope. note that this method of penetration calculation doesn't hold
|
|
//in general (i.e it won't work if the circle is in the slope), but works in this case
|
|
//because we know the circle is in a neighboring cell
|
|
var dp = (ox*sx) + (oy*sy);
|
|
var pen = obj.radius - Math.abs(dp);//note: we don't need the abs because we know the dp will be positive, but just in case..
|
|
if (0 < pen)
|
|
{
|
|
//collision; circle out along normal by penetration amount
|
|
obj.reportCollisionVsWorld(sx*pen, sy*pen,sx, sy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (oV === 0)
|
|
{
|
|
//colliding horizontally
|
|
|
|
if ((signx*oH) < 0)
|
|
{
|
|
//colliding with face/edge
|
|
obj.reportCollisionVsWorld(x*oH, 0, oH, 0, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
//colliding with edge, slope, or vertex
|
|
|
|
var ox = obj.pos.x - (t.pos.x + (signx*t.xw));//this gives is the coordinates of the innermost
|
|
var oy = obj.pos.y - t.pos.y;//point on the circle, relative to the closest tile vert
|
|
|
|
if ((oy*signy) < 0)
|
|
{
|
|
//we're colliding with the halfface
|
|
obj.reportCollisionVsWorld(x*oH, 0, oH, 0, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
//colliding with the vertex or slope
|
|
|
|
var sx = t.sx;
|
|
var sy = t.sy;
|
|
|
|
//if the component of (ox,oy) parallel to the normal's righthand normal
|
|
//has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy)
|
|
//then we project by the slope, otherwise by the vertex.
|
|
//note that this is simply a VERY tricky/weird method of determining
|
|
//if the circle is in side the slope/face's voronio region, or that of the vertex.
|
|
var perp = (ox*-sy) + (oy*sx);
|
|
if ((perp*signx*signy) < 0)
|
|
{
|
|
//collide vs. vertex
|
|
var len = Math.sqrt(ox*ox + oy*oy);
|
|
var pen = obj.radius - len;
|
|
if (0 < pen)
|
|
{
|
|
//note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0
|
|
ox /= len;
|
|
oy /= len;
|
|
|
|
obj.reportCollisionVsWorld(ox*pen, oy*pen, ox, oy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//collide vs. slope
|
|
|
|
//if the component of (ox,oy) parallel to the normal is less than the circle radius, we're
|
|
//penetrating the slope. note that this method of penetration calculation doesn't hold
|
|
//in general (i.e it won't work if the circle is in the slope), but works in this case
|
|
//because we know the circle is in a neighboring cell
|
|
var dp = (ox*sx) + (oy*sy);
|
|
var pen = obj.radius - Math.abs(dp);//note: we don't need the abs because we know the dp will be positive, but just in case..
|
|
if (0 < pen)
|
|
{
|
|
//collision; circle out along normal by penetration amount
|
|
obj.reportCollisionVsWorld(sx*pen, sy*pen, t.sx, t.sy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//colliding diagonally
|
|
if ( 0 < ((signx*oH) + (signy*oV)) )
|
|
{
|
|
//the dotprod of slope normal and cell offset is strictly positive,
|
|
//therefore obj is in the diagonal neighb pointed at by the normal.
|
|
|
|
//collide vs slope
|
|
|
|
//we should really precalc this at compile time, but for now, fuck it
|
|
var slen = Math.sqrt(2*2 + 1*1);//the raw slope is (-2,-1)
|
|
var sx = (signx*1) / slen;//get slope _unit_ normal;
|
|
var sy = (signy*2) / slen;//raw RH normal is (1,-2)
|
|
|
|
var r = obj.radius;
|
|
var ox = (obj.pos.x - (sx*r)) - (t.pos.x - (signx*t.xw));//this gives is the coordinates of the innermost
|
|
var oy = (obj.pos.y - (sy*r)) - (t.pos.y + (signy*t.yw));//point on the circle, relative to a point on the slope
|
|
|
|
//if the dotprod of (ox,oy) and (sx,sy) is negative, the point on the circle is in the slope
|
|
//and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy)
|
|
var dp = (ox*sx) + (oy*sy);
|
|
|
|
if (dp < 0)
|
|
{
|
|
//collision; project delta onto slope and use this to displace the object
|
|
//(sx,sy)*-dp is the projection vector
|
|
obj.reportCollisionVsWorld(-sx*dp, -sy*dp, t.sx, t.sy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
return Phaser.Physics.Ninja.Circle.COL_NONE;
|
|
}
|
|
else
|
|
{
|
|
//collide vs the appropriate vertex
|
|
var vx = t.pos.x + (oH*t.xw);
|
|
var vy = t.pos.y + (oV*t.yw);
|
|
|
|
var dx = obj.pos.x - vx;//calc vert->circle vector
|
|
var dy = obj.pos.y - vy;
|
|
|
|
var len = Math.sqrt(dx*dx + dy*dy);
|
|
var pen = obj.radius - len;
|
|
if (0 < pen)
|
|
{
|
|
//vertex is in the circle; project outward
|
|
if (len === 0)
|
|
{
|
|
//project out by 45deg
|
|
dx = oH / Math.SQRT2;
|
|
dy = oV / Math.SQRT2;
|
|
}
|
|
else
|
|
{
|
|
dx /= len;
|
|
dy /= len;
|
|
}
|
|
|
|
obj.reportCollisionVsWorld(dx*pen, dy*pen, dx, dy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_NONE;
|
|
},
|
|
|
|
/**
|
|
* Resolves 67 Degree tile collision.
|
|
*
|
|
* @method Phaser.Physics.Ninja.Circle#projCircle_67DegS
|
|
* @param {number} x - Penetration depth on the x axis.
|
|
* @param {number} y - Penetration depth on the y axis.
|
|
* @param {number} oH - Grid / voronoi region.
|
|
* @param {number} oV - Grid / voronoi region.
|
|
* @param {Phaser.Physics.Ninja.Circle} obj - The Circle involved in the collision.
|
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
|
* @return {number} The result of the collision.
|
|
*/
|
|
projCircle_67DegS: function (x,y,oH,oV,obj,t) {
|
|
|
|
//if the object is in a cell pointed at by signx, no collision will ever occur
|
|
//otherwise,
|
|
//
|
|
//if we're colliding diagonally:
|
|
// -collide vs. the appropriate vertex
|
|
//if obj is in this tile: collide vs slope or vertex or axis
|
|
//if obj is vert neighb in direction of slope: collide vs. slope or vertex
|
|
//if obj is vert neighb against the slope:
|
|
// if (distance in y from circle to 90deg corner of tile < 1/2 tileheight, collide vs. face)
|
|
// else(collide vs. corner of slope) (vert collision with a non-grid-aligned vert)
|
|
//if obj is horiz neighb against direction of slope: collide vs. face
|
|
|
|
var signx = t.signx;
|
|
var signy = t.signy;
|
|
|
|
if (0 < (signx*oH))
|
|
{
|
|
//object will never collide vs tile, it can't reach that far
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_NONE;
|
|
}
|
|
else if (oH === 0)
|
|
{
|
|
if (oV === 0)
|
|
{
|
|
//colliding with current tile
|
|
//we could only be colliding vs the slope OR a vertex
|
|
//look at the vector form the closest vert to the circle to decide
|
|
|
|
var lenP;
|
|
var sx = t.sx;
|
|
var sy = t.sy;
|
|
|
|
var r = obj.radius;
|
|
var ox = obj.pos.x - t.pos.x;//this gives is the coordinates of the innermost
|
|
var oy = obj.pos.y - (t.pos.y - (signy*t.yw));//point on the circle, relative to the tile corner
|
|
|
|
//if the component of (ox,oy) parallel to the normal's righthand normal
|
|
//has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy)
|
|
//then we project by the normal or axis, otherwise by the corner/vertex
|
|
//note that this is simply a VERY tricky/weird method of determining
|
|
//if the circle is in side the slope/face's voronoi region, or that of the vertex.
|
|
|
|
var perp = (ox*-sy) + (oy*sx);
|
|
if ((perp*signx*signy) < 0)
|
|
{
|
|
//collide vs. vertex
|
|
var len = Math.sqrt(ox*ox + oy*oy);
|
|
var pen = r - len;
|
|
if (0 < pen)
|
|
{
|
|
//note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0
|
|
ox /= len;
|
|
oy /= len;
|
|
|
|
obj.reportCollisionVsWorld(ox*pen, oy*pen, ox, oy, t);
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//collide vs. slope or vs axis
|
|
ox -= r*sx;//this gives us the vector from
|
|
oy -= r*sy;//a point on the slope to the innermost point on the circle
|
|
|
|
//if the dotprod of (ox,oy) and (sx,sy) is negative, the point on the circle is in the slope
|
|
//and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy)
|
|
var dp = (ox*sx) + (oy*sy);
|
|
|
|
if (dp < 0)
|
|
{
|
|
//collision; project delta onto slope and use this to displace the object
|
|
sx *= -dp;//(sx,sy) is now the projection vector
|
|
sy *= -dp;
|
|
|
|
var lenN = Math.sqrt(sx*sx + sy*sy);
|
|
|
|
//find the smallest axial projection vector
|
|
if (x < y)
|
|
{
|
|
//penetration in x is smaller
|
|
lenP = x;
|
|
y = 0;
|
|
//get sign for projection along x-axis
|
|
if ((obj.pos.x - t.pos.x) < 0)
|
|
{
|
|
x *= -1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//penetration in y is smaller
|
|
lenP = y;
|
|
x = 0;
|
|
//get sign for projection along y-axis
|
|
if ((obj.pos.y - t.pos.y)< 0)
|
|
{
|
|
y *= -1;
|
|
}
|
|
}
|
|
|
|
if (lenP < lenN)
|
|
{
|
|
obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
obj.reportCollisionVsWorld(sx,sy,t.sx,t.sy,t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
//colliding vertically
|
|
|
|
if ((signy*oV) < 0)
|
|
{
|
|
//colliding with face/edge OR with corner of wedge, depending on our position vertically
|
|
|
|
//collide vs. vertex
|
|
//get diag vertex position
|
|
var vx = t.pos.x;
|
|
var vy = t.pos.y - (signy*t.yw);
|
|
|
|
var dx = obj.pos.x - vx;//calc vert->circle vector
|
|
var dy = obj.pos.y - vy;
|
|
|
|
if ((dx*signx) < 0)
|
|
{
|
|
//colliding vs face
|
|
obj.reportCollisionVsWorld(0, y*oV, 0, oV, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
//colliding vs. vertex
|
|
|
|
var len = Math.sqrt(dx*dx + dy*dy);
|
|
var pen = obj.radius - len;
|
|
if (0 < pen)
|
|
{
|
|
//vertex is in the circle; project outward
|
|
if (len === 0)
|
|
{
|
|
//project out by 45deg
|
|
dx = oH / Math.SQRT2;
|
|
dy = oV / Math.SQRT2;
|
|
}
|
|
else
|
|
{
|
|
dx /= len;
|
|
dy /= len;
|
|
}
|
|
|
|
obj.reportCollisionVsWorld(dx*pen, dy*pen, dx, dy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//we could only be colliding vs the slope OR a vertex
|
|
//look at the vector form the closest vert to the circle to decide
|
|
|
|
var sx = t.sx;
|
|
var sy = t.sy;
|
|
|
|
var ox = obj.pos.x - (t.pos.x - (signx*t.xw));//this gives is the coordinates of the innermost
|
|
var oy = obj.pos.y - (t.pos.y + (oV*t.yw));//point on the circle, relative to the closest tile vert
|
|
|
|
//if the component of (ox,oy) parallel to the normal's righthand normal
|
|
//has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy)
|
|
//then we project by the vertex, otherwise by the normal.
|
|
//note that this is simply a VERY tricky/weird method of determining
|
|
//if the circle is in side the slope/face's voronio region, or that of the vertex.
|
|
var perp = (ox*-sy) + (oy*sx);
|
|
if (0 < (perp*signx*signy))
|
|
{
|
|
//collide vs. vertex
|
|
var len = Math.sqrt(ox*ox + oy*oy);
|
|
var pen = obj.radius - len;
|
|
if (0 < pen)
|
|
{
|
|
//note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0
|
|
ox /= len;
|
|
oy /= len;
|
|
|
|
obj.reportCollisionVsWorld(ox*pen, oy*pen, ox, oy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//collide vs. slope
|
|
|
|
//if the component of (ox,oy) parallel to the normal is less than the circle radius, we're
|
|
//penetrating the slope. note that this method of penetration calculation doesn't hold
|
|
//in general (i.e it won't work if the circle is in the slope), but works in this case
|
|
//because we know the circle is in a neighboring cell
|
|
var dp = (ox*sx) + (oy*sy);
|
|
var pen = obj.radius - Math.abs(dp);//note: we don't need the abs because we know the dp will be positive, but just in case..
|
|
|
|
if (0 < pen)
|
|
{
|
|
//collision; circle out along normal by penetration amount
|
|
obj.reportCollisionVsWorld(sx*pen, sy*pen, t.sx, t.sy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (oV === 0)
|
|
{
|
|
//colliding horizontally; we can assume that (signy*oV) < 0
|
|
//due to the first conditional far above
|
|
|
|
obj.reportCollisionVsWorld(x*oH, 0, oH, 0, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
//colliding diagonally; due to the first conditional above,
|
|
//obj is vertically offset against slope, and offset in either direction horizontally
|
|
|
|
//collide vs. vertex
|
|
//get diag vertex position
|
|
var vx = t.pos.x + (oH*t.xw);
|
|
var vy = t.pos.y + (oV*t.yw);
|
|
|
|
var dx = obj.pos.x - vx;//calc vert->circle vector
|
|
var dy = obj.pos.y - vy;
|
|
|
|
var len = Math.sqrt(dx*dx + dy*dy);
|
|
var pen = obj.radius - len;
|
|
if (0 < pen)
|
|
{
|
|
//vertex is in the circle; project outward
|
|
if (len === 0)
|
|
{
|
|
//project out by 45deg
|
|
dx = oH / Math.SQRT2;
|
|
dy = oV / Math.SQRT2;
|
|
}
|
|
else
|
|
{
|
|
dx /= len;
|
|
dy /= len;
|
|
}
|
|
|
|
obj.reportCollisionVsWorld(dx*pen, dy*pen, dx, dy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_NONE;
|
|
|
|
},
|
|
|
|
/**
|
|
* Resolves 67 Degree tile collision.
|
|
*
|
|
* @method Phaser.Physics.Ninja.Circle#projCircle_67DegB
|
|
* @param {number} x - Penetration depth on the x axis.
|
|
* @param {number} y - Penetration depth on the y axis.
|
|
* @param {number} oH - Grid / voronoi region.
|
|
* @param {number} oV - Grid / voronoi region.
|
|
* @param {Phaser.Physics.Ninja.Circle} obj - The Circle involved in the collision.
|
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
|
* @return {number} The result of the collision.
|
|
*/
|
|
projCircle_67DegB: function (x,y,oH, oV, obj,t) {
|
|
|
|
//if we're colliding diagonally:
|
|
// -if we're in the cell pointed at by the normal, collide vs slope, else
|
|
// collide vs. the appropriate corner/vertex
|
|
//
|
|
//if obj is in this tile: collide as with aabb
|
|
//
|
|
//if obj is horiz or vertical neighbor AGAINST the slope: collide with edge
|
|
//
|
|
//if obj is vert neighb in direction of slope: collide vs. slope or vertex or halfedge
|
|
//
|
|
//if obj is horiz neighb in direction of slope: collide vs. slope or vertex
|
|
|
|
var signx = t.signx;
|
|
var signy = t.signy;
|
|
|
|
if (oH === 0)
|
|
{
|
|
if (oV === 0)
|
|
{
|
|
//colliding with current cell
|
|
|
|
var lenP;
|
|
var sx = t.sx;
|
|
var sy = t.sy;
|
|
|
|
var r = obj.radius;
|
|
var ox = (obj.pos.x - (sx*r)) - (t.pos.x + (signx*t.xw));//this gives is the coordinates of the innermost
|
|
var oy = (obj.pos.y - (sy*r)) - (t.pos.y - (signy*t.yw));//point on the AABB, relative to a point on the slope
|
|
|
|
//if the dotprod of (ox,oy) and (sx,sy) is negative, the point on the circle is in the slope
|
|
//and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy)
|
|
var dp = (ox*sx) + (oy*sy);
|
|
|
|
if (dp < 0)
|
|
{
|
|
//collision; project delta onto slope and use this to displace the object
|
|
sx *= -dp;//(sx,sy) is now the projection vector
|
|
sy *= -dp;
|
|
|
|
var lenN = Math.sqrt(sx*sx + sy*sy);
|
|
|
|
//find the smallest axial projection vector
|
|
if (x < y)
|
|
{
|
|
//penetration in x is smaller
|
|
lenP = x;
|
|
y = 0;
|
|
//get sign for projection along x-axis
|
|
if ((obj.pos.x - t.pos.x) < 0)
|
|
{
|
|
x *= -1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//penetration in y is smaller
|
|
lenP = y;
|
|
x = 0;
|
|
//get sign for projection along y-axis
|
|
if ((obj.pos.y - t.pos.y)< 0)
|
|
{
|
|
y *= -1;
|
|
}
|
|
}
|
|
|
|
if (lenP < lenN)
|
|
{
|
|
obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
obj.reportCollisionVsWorld(sx, sy, t.sx, t.sy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//colliding vertically
|
|
|
|
if ((signy*oV) < 0)
|
|
{
|
|
//colliding with face/edge
|
|
obj.reportCollisionVsWorld(0, y*oV, 0, oV, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
//colliding with edge, slope, or vertex
|
|
|
|
var ox = obj.pos.x - t.pos.x;//this gives is the coordinates of the innermost
|
|
var oy = obj.pos.y - (t.pos.y + (signy*t.yw));//point on the circle, relative to the closest tile vert
|
|
|
|
if ((ox*signx) < 0)
|
|
{
|
|
//we're colliding with the halfface
|
|
obj.reportCollisionVsWorld(0, y*oV, 0, oV, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
//colliding with the vertex or slope
|
|
|
|
var sx = t.sx;
|
|
var sy = t.sy;
|
|
|
|
//if the component of (ox,oy) parallel to the normal's righthand normal
|
|
//has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy)
|
|
//then we project by the vertex, otherwise by the slope.
|
|
//note that this is simply a VERY tricky/weird method of determining
|
|
//if the circle is in side the slope/face's voronio region, or that of the vertex.
|
|
var perp = (ox*-sy) + (oy*sx);
|
|
if (0 < (perp*signx*signy))
|
|
{
|
|
//collide vs. vertex
|
|
var len = Math.sqrt(ox*ox + oy*oy);
|
|
var pen = obj.radius - len;
|
|
if (0 < pen)
|
|
{
|
|
//note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0
|
|
ox /= len;
|
|
oy /= len;
|
|
|
|
obj.reportCollisionVsWorld(ox*pen, oy*pen, ox, oy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//collide vs. slope
|
|
|
|
//if the component of (ox,oy) parallel to the normal is less than the circle radius, we're
|
|
//penetrating the slope. note that this method of penetration calculation doesn't hold
|
|
//in general (i.e it won't work if the circle is in the slope), but works in this case
|
|
//because we know the circle is in a neighboring cell
|
|
var dp = (ox*sx) + (oy*sy);
|
|
var pen = obj.radius - Math.abs(dp);//note: we don't need the abs because we know the dp will be positive, but just in case..
|
|
if (0 < pen)
|
|
{
|
|
//collision; circle out along normal by penetration amount
|
|
obj.reportCollisionVsWorld(sx*pen, sy*pen, sx, sy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (oV === 0)
|
|
{
|
|
//colliding horizontally
|
|
|
|
if ((signx*oH) < 0)
|
|
{
|
|
//colliding with face/edge
|
|
obj.reportCollisionVsWorld(x*oH, 0, oH, 0, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
//we could only be colliding vs the slope OR a vertex
|
|
//look at the vector form the closest vert to the circle to decide
|
|
|
|
var slen = Math.sqrt(2*2 + 1*1);//the raw slope is (-2,-1)
|
|
var sx = (signx*2) / slen;//get slope _unit_ normal;
|
|
var sy = (signy*1) / slen;//raw RH normal is (1,-2)
|
|
|
|
var ox = obj.pos.x - (t.pos.x + (signx*t.xw));//this gives is the coordinates of the innermost
|
|
var oy = obj.pos.y - (t.pos.y - (signy*t.yw));//point on the circle, relative to the closest tile vert
|
|
|
|
//if the component of (ox,oy) parallel to the normal's righthand normal
|
|
//has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy)
|
|
//then we project by the slope, otherwise by the vertex.
|
|
//note that this is simply a VERY tricky/weird method of determining
|
|
//if the circle is in side the slope/face's voronio region, or that of the vertex.
|
|
var perp = (ox*-sy) + (oy*sx);
|
|
if ((perp*signx*signy) < 0)
|
|
{
|
|
//collide vs. vertex
|
|
var len = Math.sqrt(ox*ox + oy*oy);
|
|
var pen = obj.radius - len;
|
|
if (0 < pen)
|
|
{
|
|
//note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0
|
|
ox /= len;
|
|
oy /= len;
|
|
|
|
obj.reportCollisionVsWorld(ox*pen, oy*pen, ox, oy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//collide vs. slope
|
|
|
|
//if the component of (ox,oy) parallel to the normal is less than the circle radius, we're
|
|
//penetrating the slope. note that this method of penetration calculation doesn't hold
|
|
//in general (i.e it won't work if the circle is in the slope), but works in this case
|
|
//because we know the circle is in a neighboring cell
|
|
var dp = (ox*sx) + (oy*sy);
|
|
var pen = obj.radius - Math.abs(dp);//note: we don't need the abs because we know the dp will be positive, but just in case..
|
|
if (0 < pen)
|
|
{
|
|
//collision; circle out along normal by penetration amount
|
|
obj.reportCollisionVsWorld(sx*pen, sy*pen, t.sx, t.sy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//colliding diagonally
|
|
if ( 0 < ((signx*oH) + (signy*oV)) )
|
|
{
|
|
//the dotprod of slope normal and cell offset is strictly positive,
|
|
//therefore obj is in the diagonal neighb pointed at by the normal.
|
|
|
|
//collide vs slope
|
|
|
|
var sx = t.sx;
|
|
var sy = t.sy;
|
|
|
|
var r = obj.radius;
|
|
var ox = (obj.pos.x - (sx*r)) - (t.pos.x + (signx*t.xw));//this gives is the coordinates of the innermost
|
|
var oy = (obj.pos.y - (sy*r)) - (t.pos.y - (signy*t.yw));//point on the circle, relative to a point on the slope
|
|
|
|
//if the dotprod of (ox,oy) and (sx,sy) is negative, the point on the circle is in the slope
|
|
//and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy)
|
|
var dp = (ox*sx) + (oy*sy);
|
|
|
|
if (dp < 0)
|
|
{
|
|
//collision; project delta onto slope and use this to displace the object
|
|
//(sx,sy)*-dp is the projection vector
|
|
|
|
obj.reportCollisionVsWorld(-sx*dp, -sy*dp, t.sx, t.sy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
return Phaser.Physics.Ninja.Circle.COL_NONE;
|
|
}
|
|
else
|
|
{
|
|
|
|
//collide vs the appropriate vertex
|
|
var vx = t.pos.x + (oH*t.xw);
|
|
var vy = t.pos.y + (oV*t.yw);
|
|
|
|
var dx = obj.pos.x - vx;//calc vert->circle vector
|
|
var dy = obj.pos.y - vy;
|
|
|
|
var len = Math.sqrt(dx*dx + dy*dy);
|
|
var pen = obj.radius - len;
|
|
if (0 < pen)
|
|
{
|
|
//vertex is in the circle; project outward
|
|
if (len === 0)
|
|
{
|
|
//project out by 45deg
|
|
dx = oH / Math.SQRT2;
|
|
dy = oV / Math.SQRT2;
|
|
}
|
|
else
|
|
{
|
|
dx /= len;
|
|
dy /= len;
|
|
}
|
|
|
|
obj.reportCollisionVsWorld(dx*pen, dy*pen, dx, dy, t);
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_OTHER;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
return Phaser.Physics.Ninja.Circle.COL_NONE;
|
|
},
|
|
|
|
/**
|
|
* Destroys this Circle's reference to Body and System
|
|
*
|
|
* @method Phaser.Physics.Ninja.Circle#destroy
|
|
*/
|
|
destroy: function() {
|
|
this.body = null;
|
|
this.system = null;
|
|
},
|
|
|
|
/**
|
|
* Render this circle for debugging purposes.
|
|
*
|
|
* @method Phaser.Physics.Ninja.Circle#render
|
|
* @param {object} context - The context to render to.
|
|
* @param {number} xOffset - X offset from circle's position to render at.
|
|
* @param {number} yOffset - Y offset from circle's position to render at.
|
|
* @param {string} color - color of the debug shape to be rendered. (format is css color string).
|
|
* @param {boolean} filled - Render the shape as solid (true) or hollow (false).
|
|
*/
|
|
render: function(context, xOffset, yOffset, color, filled) {
|
|
var x = this.pos.x - xOffset;
|
|
var y = this.pos.y - yOffset;
|
|
|
|
context.beginPath();
|
|
context.arc(x, y, this.radius, 0, 2 * Math.PI, false);
|
|
|
|
if (filled)
|
|
{
|
|
context.fillStyle = color;
|
|
context.fill();
|
|
}
|
|
else
|
|
{
|
|
context.strokeStyle = color;
|
|
context.stroke();
|
|
}
|
|
}
|
|
};
|