mirror of
https://github.com/photonstorm/phaser
synced 2024-12-20 18:14:13 +00:00
1028 lines
33 KiB
JavaScript
1028 lines
33 KiB
JavaScript
/* jshint camelcase: false */
|
|
/**
|
|
* @author Richard Davey <rich@photonstorm.com>
|
|
* @copyright 2016 Photon Storm Ltd.
|
|
* @license {@link https://github.com/photonstorm/phaser/blob/master/license.txt|MIT License}
|
|
*/
|
|
|
|
/**
|
|
* Ninja Physics AABB constructor.
|
|
* Note: This class could be massively optimised and reduced in size. I leave that challenge up to you.
|
|
*
|
|
* @class Phaser.Physics.Ninja.AABB
|
|
* @constructor
|
|
* @param {Phaser.Physics.Ninja.Body} body - The body that owns this shape.
|
|
* @param {number} x - The x coordinate to create this shape at.
|
|
* @param {number} y - The y coordinate to create this shape at.
|
|
* @param {number} width - The width of this AABB.
|
|
* @param {number} height - The height of this AABB.
|
|
*/
|
|
Phaser.Physics.Ninja.AABB = function (body, x, y, width, height) {
|
|
|
|
/**
|
|
* @property {Phaser.Physics.Ninja.Body} system - A reference to the body that owns this shape.
|
|
*/
|
|
this.body = body;
|
|
|
|
/**
|
|
* @property {Phaser.Physics.Ninja} system - A reference to the physics system.
|
|
*/
|
|
this.system = body.system;
|
|
|
|
/**
|
|
* @property {Phaser.Point} pos - The position of this object.
|
|
*/
|
|
this.pos = new Phaser.Point(x, y);
|
|
|
|
/**
|
|
* @property {Phaser.Point} oldpos - The position of this object in the previous update.
|
|
*/
|
|
this.oldpos = new Phaser.Point(x, y);
|
|
|
|
/**
|
|
* @property {number} xw - Half the width.
|
|
* @readonly
|
|
*/
|
|
this.xw = Math.abs(width / 2);
|
|
|
|
/**
|
|
* @property {number} xw - Half the height.
|
|
* @readonly
|
|
*/
|
|
this.yw = Math.abs(height / 2);
|
|
|
|
/**
|
|
* @property {number} width - The width.
|
|
* @readonly
|
|
*/
|
|
this.width = width;
|
|
|
|
/**
|
|
* @property {number} height - The height.
|
|
* @readonly
|
|
*/
|
|
this.height = height;
|
|
|
|
/**
|
|
* @property {number} oH - Internal var.
|
|
* @private
|
|
*/
|
|
this.oH = 0;
|
|
|
|
/**
|
|
* @property {number} oV - Internal var.
|
|
* @private
|
|
*/
|
|
this.oV = 0;
|
|
|
|
/**
|
|
* @property {Phaser.Point} velocity - The velocity of this object.
|
|
*/
|
|
this.velocity = new Phaser.Point();
|
|
|
|
/**
|
|
* @property {object} aabbTileProjections - All of the collision response handlers.
|
|
*/
|
|
this.aabbTileProjections = {};
|
|
|
|
this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_FULL] = this.projAABB_Full;
|
|
this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_45DEG] = this.projAABB_45Deg;
|
|
this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_CONCAVE] = this.projAABB_Concave;
|
|
this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_CONVEX] = this.projAABB_Convex;
|
|
this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_22DEGs] = this.projAABB_22DegS;
|
|
this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_22DEGb] = this.projAABB_22DegB;
|
|
this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_67DEGs] = this.projAABB_67DegS;
|
|
this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_67DEGb] = this.projAABB_67DegB;
|
|
this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_HALF] = this.projAABB_Half;
|
|
|
|
};
|
|
|
|
Phaser.Physics.Ninja.AABB.prototype.constructor = Phaser.Physics.Ninja.AABB;
|
|
|
|
Phaser.Physics.Ninja.AABB.COL_NONE = 0;
|
|
Phaser.Physics.Ninja.AABB.COL_AXIS = 1;
|
|
Phaser.Physics.Ninja.AABB.COL_OTHER = 2;
|
|
|
|
Phaser.Physics.Ninja.AABB.prototype = {
|
|
|
|
/**
|
|
* Updates this AABBs position.
|
|
*
|
|
* @method Phaser.Physics.Ninja.AABB#integrate
|
|
*/
|
|
integrate: function () {
|
|
|
|
var px = this.pos.x;
|
|
var py = this.pos.y;
|
|
|
|
// integrate
|
|
this.pos.x += (this.body.drag * this.pos.x) - (this.body.drag * this.oldpos.x);
|
|
this.pos.y += (this.body.drag * this.pos.y) - (this.body.drag * this.oldpos.y) + (this.system.gravity * this.body.gravityScale);
|
|
|
|
// store
|
|
this.velocity.set(this.pos.x - px, this.pos.y - py);
|
|
this.oldpos.set(px, py);
|
|
|
|
},
|
|
|
|
/**
|
|
* Process a collision partner-agnostic collision response and apply the resulting forces.
|
|
*
|
|
* @method Phaser.Physics.Ninja.AABB#reportCollision
|
|
* @param {number} px - The tangent velocity
|
|
* @param {number} py - The tangent velocity
|
|
* @param {number} dx - Collision normal
|
|
* @param {number} dy - Collision normal
|
|
*/
|
|
reportCollision: function(px, py, dx, dy) {
|
|
|
|
var p = this.pos;
|
|
var o = this.oldpos;
|
|
|
|
// Calc velocity
|
|
var vx = p.x - o.x;
|
|
var vy = p.y - o.y;
|
|
|
|
// Find component of velocity parallel to collision normal
|
|
var dp = (vx * dx + vy * dy);
|
|
var nx = dp * dx; //project velocity onto collision normal
|
|
|
|
var ny = dp * dy; //nx,ny is normal velocity
|
|
|
|
var tx = vx - nx; //tx,ty is tangent velocity
|
|
var ty = vy - ny;
|
|
|
|
// We only want to apply collision response forces if the object is travelling into, and not out of, the collision
|
|
var b, bx, by, fx, fy;
|
|
|
|
if (dp < 0)
|
|
{
|
|
fx = tx * this.body.friction;
|
|
fy = ty * this.body.friction;
|
|
|
|
b = 1 + this.body.bounce;
|
|
|
|
bx = (nx * b);
|
|
by = (ny * b);
|
|
|
|
if (dx === 1)
|
|
{
|
|
this.body.touching.left = true;
|
|
}
|
|
else if (dx === -1)
|
|
{
|
|
this.body.touching.right = true;
|
|
}
|
|
|
|
if (dy === 1)
|
|
{
|
|
this.body.touching.up = true;
|
|
}
|
|
else if (dy === -1)
|
|
{
|
|
this.body.touching.down = true;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Moving out of collision, do not apply forces
|
|
bx = by = fx = fy = 0;
|
|
}
|
|
|
|
// Project object out of collision
|
|
p.x += px;
|
|
p.y += py;
|
|
|
|
// Apply bounce+friction impulses which alter velocity
|
|
o.x += px + bx + fx;
|
|
o.y += py + by + fy;
|
|
|
|
},
|
|
|
|
/**
|
|
* Process a world collision and apply the resulting forces.
|
|
*
|
|
* @method Phaser.Physics.Ninja.AABB#reportCollisionVsWorld
|
|
* @param {number} px - The tangent velocity
|
|
* @param {number} py - The tangent velocity
|
|
* @param {number} dx - Collision normal
|
|
* @param {number} dy - Collision normal
|
|
*/
|
|
reportCollisionVsWorld: function (px, py, dx, dy) {
|
|
|
|
this.reportCollision(px,py,dx,dy);
|
|
},
|
|
|
|
/**
|
|
* @method Phaser.Physics.Ninja.AABB#reverse
|
|
*/
|
|
reverse: function () {
|
|
|
|
var vx = this.pos.x - this.oldpos.x;
|
|
var vy = this.pos.y - this.oldpos.y;
|
|
|
|
if (this.oldpos.x < this.pos.x)
|
|
{
|
|
this.oldpos.x = this.pos.x + vx;
|
|
// this.oldpos.x = this.pos.x + (vx + 1 + this.body.bounce);
|
|
}
|
|
else if (this.oldpos.x > this.pos.x)
|
|
{
|
|
this.oldpos.x = this.pos.x - vx;
|
|
// this.oldpos.x = this.pos.x - (vx + 1 + this.body.bounce);
|
|
}
|
|
|
|
if (this.oldpos.y < this.pos.y)
|
|
{
|
|
this.oldpos.y = this.pos.y + vy;
|
|
// this.oldpos.y = this.pos.y + (vy + 1 + this.body.bounce);
|
|
}
|
|
else if (this.oldpos.y > this.pos.y)
|
|
{
|
|
this.oldpos.y = this.pos.y - vy;
|
|
// this.oldpos.y = this.pos.y - (vy + 1 + this.body.bounce);
|
|
}
|
|
|
|
},
|
|
|
|
/**
|
|
* Process a body collision and apply the resulting forces. Still very much WIP and doesn't work fully. Feel free to fix!
|
|
*
|
|
* @method Phaser.Physics.Ninja.AABB#reportCollisionVsBody
|
|
* @param {number} px - The tangent velocity
|
|
* @param {number} py - The tangent velocity
|
|
* @param {number} dx - Collision normal
|
|
* @param {number} dy - Collision normal
|
|
* @param {number} obj - Object this AABB collided with
|
|
*/
|
|
reportCollisionVsBody: function (px, py, dx, dy, obj) {
|
|
|
|
// We only want to apply collision response forces if the object is travelling into, and not out of, the collision
|
|
if (this.body.immovable && obj.body.immovable)
|
|
{
|
|
// Split the separation then return, no forces applied as they come to a stand-still
|
|
px *= 0.5;
|
|
py *= 0.5;
|
|
|
|
this.pos.add(px, py);
|
|
this.oldpos.set(this.pos.x, this.pos.y);
|
|
|
|
obj.pos.subtract(px, py);
|
|
obj.oldpos.set(obj.pos.x, obj.pos.y);
|
|
|
|
return;
|
|
}
|
|
else if (!this.body.immovable && !obj.body.immovable)
|
|
{
|
|
// separate
|
|
px *= 0.5;
|
|
py *= 0.5;
|
|
|
|
this.reportCollision(px, py, dx, dy);
|
|
obj.reportCollision(-px, -py, -dx, -dy);
|
|
}
|
|
else if (!this.body.immovable)
|
|
{
|
|
this.reportCollision(px,py,dx,dy);
|
|
}
|
|
else if (!obj.body.immovable)
|
|
{
|
|
obj.reportCollision(-px, -py, -dx, -dy);
|
|
}
|
|
|
|
},
|
|
|
|
/**
|
|
* Collides this AABB against the world bounds.
|
|
*
|
|
* @method Phaser.Physics.Ninja.AABB#collideWorldBounds
|
|
*/
|
|
collideWorldBounds: function () {
|
|
|
|
var dx = this.system.bounds.x - (this.pos.x - this.xw);
|
|
|
|
if (0 < dx)
|
|
{
|
|
this.reportCollisionVsWorld(dx, 0, 1, 0, null);
|
|
}
|
|
else
|
|
{
|
|
dx = (this.pos.x + this.xw) - this.system.bounds.right;
|
|
|
|
if (0 < dx)
|
|
{
|
|
this.reportCollisionVsWorld(-dx, 0, -1, 0, null);
|
|
}
|
|
}
|
|
|
|
var dy = this.system.bounds.y - (this.pos.y - this.yw);
|
|
|
|
if (0 < dy)
|
|
{
|
|
this.reportCollisionVsWorld(0, dy, 0, 1, null);
|
|
}
|
|
else
|
|
{
|
|
dy = (this.pos.y + this.yw) - this.system.bounds.bottom;
|
|
|
|
if (0 < dy)
|
|
{
|
|
this.reportCollisionVsWorld(0, -dy, 0, -1, null);
|
|
}
|
|
}
|
|
|
|
},
|
|
|
|
/**
|
|
* Collides this AABB against a AABB.
|
|
*
|
|
* @method Phaser.Physics.Ninja.AABB#collideAABBVsAABB
|
|
* @param {Phaser.Physics.Ninja.AABB} aabb - The AABB to collide against.
|
|
*/
|
|
collideAABBVsAABB: function (aabb) {
|
|
|
|
var pos = this.pos;
|
|
var c = aabb;
|
|
|
|
var tx = c.pos.x;
|
|
var ty = c.pos.y;
|
|
var txw = c.xw;
|
|
var tyw = c.yw;
|
|
|
|
var dx = pos.x - tx;//tile->obj delta
|
|
var px = (txw + this.xw) - Math.abs(dx);//penetration depth in x
|
|
|
|
if (0 < px)
|
|
{
|
|
var dy = pos.y - ty;//tile->obj delta
|
|
var py = (tyw + this.yw) - Math.abs(dy);//pen depth in y
|
|
|
|
if (0 < py)
|
|
{
|
|
//object may be colliding with tile; call tile-specific collision function
|
|
|
|
//calculate projection vectors
|
|
if (px < py)
|
|
{
|
|
//project in x
|
|
if (dx < 0)
|
|
{
|
|
//project to the left
|
|
px *= -1;
|
|
py = 0;
|
|
}
|
|
else
|
|
{
|
|
//proj to right
|
|
py = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//project in y
|
|
if (dy < 0)
|
|
{
|
|
//project up
|
|
px = 0;
|
|
py *= -1;
|
|
}
|
|
else
|
|
{
|
|
//project down
|
|
px = 0;
|
|
}
|
|
}
|
|
|
|
var l = Math.sqrt(px * px + py * py);
|
|
this.reportCollisionVsBody(px, py, px / l, py / l, c);
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_AXIS;
|
|
|
|
}
|
|
}
|
|
|
|
return false;
|
|
|
|
},
|
|
|
|
/**
|
|
* Collides this AABB against a Tile.
|
|
*
|
|
* @method Phaser.Physics.Ninja.AABB#collideAABBVsTile
|
|
* @param {Phaser.Physics.Ninja.Tile} tile - The Tile to collide against.
|
|
*/
|
|
collideAABBVsTile: function (tile) {
|
|
|
|
var dx = this.pos.x - tile.pos.x; // tile->obj delta
|
|
var px = (tile.xw + this.xw) - Math.abs(dx); // penetration depth in x
|
|
|
|
if (0 < px)
|
|
{
|
|
var dy = this.pos.y - tile.pos.y; // tile->obj delta
|
|
var py = (tile.yw + this.yw) - Math.abs(dy); // pen depth in y
|
|
|
|
if (0 < py)
|
|
{
|
|
// Calculate projection vectors
|
|
if (px < py)
|
|
{
|
|
// Project in x
|
|
if (dx < 0)
|
|
{
|
|
// Project to the left
|
|
px *= -1;
|
|
py = 0;
|
|
}
|
|
else
|
|
{
|
|
// Project to the right
|
|
py = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Project in y
|
|
if (dy < 0)
|
|
{
|
|
// Project up
|
|
px = 0;
|
|
py *= -1;
|
|
}
|
|
else
|
|
{
|
|
// Project down
|
|
px = 0;
|
|
}
|
|
}
|
|
|
|
// Object may be colliding with tile; call tile-specific collision function
|
|
return this.resolveTile(px, py, this, tile);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
|
|
},
|
|
|
|
/**
|
|
* Resolves tile collision.
|
|
*
|
|
* @method Phaser.Physics.Ninja.AABB#resolveTile
|
|
* @param {number} x - Penetration depth on the x axis.
|
|
* @param {number} y - Penetration depth on the y axis.
|
|
* @param {Phaser.Physics.Ninja.AABB} body - The AABB involved in the collision.
|
|
* @param {Phaser.Physics.Ninja.Tile} tile - The Tile involved in the collision.
|
|
* @return {boolean} True if the collision was processed, otherwise false.
|
|
*/
|
|
resolveTile: function (x, y, body, tile) {
|
|
|
|
if (0 < tile.id)
|
|
{
|
|
return this.aabbTileProjections[tile.type](x, y, body, tile);
|
|
}
|
|
else
|
|
{
|
|
// console.warn("Ninja.AABB.resolveTile was called with an empty (or unknown) tile!: id=" + tile.id + ")");
|
|
return false;
|
|
}
|
|
|
|
},
|
|
|
|
/**
|
|
* Resolves Full tile collision.
|
|
*
|
|
* @method Phaser.Physics.Ninja.AABB#projAABB_Full
|
|
* @param {number} x - Penetration depth on the x axis.
|
|
* @param {number} y - Penetration depth on the y axis.
|
|
* @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision.
|
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
|
* @return {number} The result of the collision.
|
|
*/
|
|
projAABB_Full: function (x, y, obj, t) {
|
|
|
|
var l = Math.sqrt(x * x + y * y);
|
|
obj.reportCollisionVsWorld(x, y, x / l, y / l, t);
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_AXIS;
|
|
|
|
},
|
|
|
|
/**
|
|
* Resolves Half tile collision.
|
|
*
|
|
* @method Phaser.Physics.Ninja.AABB#projAABB_Half
|
|
* @param {number} x - Penetration depth on the x axis.
|
|
* @param {number} y - Penetration depth on the y axis.
|
|
* @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision.
|
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
|
* @return {number} The result of the collision.
|
|
*/
|
|
projAABB_Half: function (x, y, obj, t) {
|
|
|
|
//signx or signy must be 0; the other must be -1 or 1
|
|
//calculate the projection vector for the half-edge, and then
|
|
//(if collision is occuring) pick the minimum
|
|
|
|
var sx = t.signx;
|
|
var sy = t.signy;
|
|
|
|
var ox = (obj.pos.x - (sx*obj.xw)) - t.pos.x;//this gives is the coordinates of the innermost
|
|
var oy = (obj.pos.y - (sy*obj.yw)) - t.pos.y;//point on the AABB, relative to the tile center
|
|
|
|
//we perform operations analogous to the 45deg tile, except we're using
|
|
//an axis-aligned slope instead of an angled one..
|
|
|
|
//if the dotprod of (ox,oy) and (sx,sy) is negative, the corner is in the slope
|
|
//and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy)
|
|
var dp = (ox*sx) + (oy*sy);
|
|
|
|
if (dp < 0)
|
|
{
|
|
//collision; project delta onto slope and use this to displace the object
|
|
sx *= -dp;//(sx,sy) is now the projection vector
|
|
sy *= -dp;
|
|
|
|
var lenN = Math.sqrt(sx*sx + sy*sy);
|
|
var lenP = Math.sqrt(x*x + y*y);
|
|
|
|
if (lenP < lenN)
|
|
{
|
|
//project along axis; note that we're assuming that this tile is horizontal OR vertical
|
|
//relative to the AABB's current tile, and not diagonal OR the current tile.
|
|
obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP, t);
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
//note that we could use -= instead of -dp
|
|
obj.reportCollisionVsWorld(sx,sy,t.signx, t.signy, t);
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_OTHER;
|
|
}
|
|
}
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_NONE;
|
|
|
|
},
|
|
|
|
/**
|
|
* Resolves 45 Degree tile collision.
|
|
*
|
|
* @method Phaser.Physics.Ninja.AABB#projAABB_45Deg
|
|
* @param {number} x - Penetration depth on the x axis.
|
|
* @param {number} y - Penetration depth on the y axis.
|
|
* @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision.
|
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
|
* @return {number} The result of the collision.
|
|
*/
|
|
projAABB_45Deg: function (x, y, obj, t) {
|
|
|
|
var signx = t.signx;
|
|
var signy = t.signy;
|
|
|
|
var ox = (obj.pos.x - (signx*obj.xw)) - t.pos.x;//this gives is the coordinates of the innermost
|
|
var oy = (obj.pos.y - (signy*obj.yw)) - t.pos.y;//point on the AABB, relative to the tile center
|
|
|
|
var sx = t.sx;
|
|
var sy = t.sy;
|
|
|
|
//if the dotprod of (ox,oy) and (sx,sy) is negative, the corner is in the slope
|
|
//and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy)
|
|
var dp = (ox*sx) + (oy*sy);
|
|
|
|
if (dp < 0)
|
|
{
|
|
//collision; project delta onto slope and use this to displace the object
|
|
sx *= -dp;//(sx,sy) is now the projection vector
|
|
sy *= -dp;
|
|
|
|
var lenN = Math.sqrt(sx*sx + sy*sy);
|
|
var lenP = Math.sqrt(x*x + y*y);
|
|
|
|
if (lenP < lenN)
|
|
{
|
|
//project along axis
|
|
obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP, t);
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
//project along slope
|
|
obj.reportCollisionVsWorld(sx,sy,t.sx,t.sy);
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_OTHER;
|
|
}
|
|
}
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_NONE;
|
|
},
|
|
|
|
/**
|
|
* Resolves 22 Degree tile collision.
|
|
*
|
|
* @method Phaser.Physics.Ninja.AABB#projAABB_22DegS
|
|
* @param {number} x - Penetration depth on the x axis.
|
|
* @param {number} y - Penetration depth on the y axis.
|
|
* @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision.
|
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
|
* @return {number} The result of the collision.
|
|
*/
|
|
projAABB_22DegS: function (x, y, obj, t) {
|
|
|
|
var signx = t.signx;
|
|
var signy = t.signy;
|
|
|
|
//first we need to check to make sure we're colliding with the slope at all
|
|
var py = obj.pos.y - (signy*obj.yw);
|
|
var penY = t.pos.y - py;//this is the vector from the innermost point on the box to the highest point on
|
|
//the tile; if it is positive, this means the box is above the tile and
|
|
//no collision is occuring
|
|
if (0 < (penY*signy))
|
|
{
|
|
var ox = (obj.pos.x - (signx*obj.xw)) - (t.pos.x + (signx*t.xw));//this gives is the coordinates of the innermost
|
|
var oy = (obj.pos.y - (signy*obj.yw)) - (t.pos.y - (signy*t.yw));//point on the AABB, relative to a point on the slope
|
|
|
|
var sx = t.sx;//get slope unit normal
|
|
var sy = t.sy;
|
|
|
|
//if the dotprod of (ox,oy) and (sx,sy) is negative, the corner is in the slope
|
|
//and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy)
|
|
var dp = (ox*sx) + (oy*sy);
|
|
|
|
if (dp < 0)
|
|
{
|
|
//collision; project delta onto slope and use this to displace the object
|
|
sx *= -dp;//(sx,sy) is now the projection vector
|
|
sy *= -dp;
|
|
|
|
var lenN = Math.sqrt(sx*sx + sy*sy);
|
|
var lenP = Math.sqrt(x*x + y*y);
|
|
|
|
var aY = Math.abs(penY);
|
|
|
|
if (lenP < lenN)
|
|
{
|
|
if (aY < lenP)
|
|
{
|
|
obj.reportCollisionVsWorld(0, penY, 0, penY/aY, t);
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_OTHER;
|
|
}
|
|
else
|
|
{
|
|
obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP, t);
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_AXIS;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (aY < lenN)
|
|
{
|
|
obj.reportCollisionVsWorld(0, penY, 0, penY/aY, t);
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_OTHER;
|
|
}
|
|
else
|
|
{
|
|
obj.reportCollisionVsWorld(sx,sy,t.sx,t.sy,t);
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_OTHER;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//if we've reached this point, no collision has occured
|
|
return Phaser.Physics.Ninja.AABB.COL_NONE;
|
|
},
|
|
|
|
/**
|
|
* Resolves 22 Degree tile collision.
|
|
*
|
|
* @method Phaser.Physics.Ninja.AABB#projAABB_22DegB
|
|
* @param {number} x - Penetration depth on the x axis.
|
|
* @param {number} y - Penetration depth on the y axis.
|
|
* @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision.
|
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
|
* @return {number} The result of the collision.
|
|
*/
|
|
projAABB_22DegB: function (x, y, obj, t) {
|
|
|
|
var signx = t.signx;
|
|
var signy = t.signy;
|
|
|
|
var ox = (obj.pos.x - (signx*obj.xw)) - (t.pos.x - (signx*t.xw));//this gives is the coordinates of the innermost
|
|
var oy = (obj.pos.y - (signy*obj.yw)) - (t.pos.y + (signy*t.yw));//point on the AABB, relative to a point on the slope
|
|
|
|
var sx = t.sx;//get slope unit normal
|
|
var sy = t.sy;
|
|
|
|
//if the dotprod of (ox,oy) and (sx,sy) is negative, the corner is in the slope
|
|
//and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy)
|
|
var dp = (ox*sx) + (oy*sy);
|
|
|
|
if (dp < 0)
|
|
{
|
|
//collision; project delta onto slope and use this to displace the object
|
|
sx *= -dp;//(sx,sy) is now the projection vector
|
|
sy *= -dp;
|
|
|
|
var lenN = Math.sqrt(sx*sx + sy*sy);
|
|
var lenP = Math.sqrt(x*x + y*y);
|
|
|
|
if (lenP < lenN)
|
|
{
|
|
obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP, t);
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
obj.reportCollisionVsWorld(sx,sy,t.sx,t.sy,t);
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_OTHER;
|
|
}
|
|
|
|
}
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_NONE;
|
|
|
|
},
|
|
|
|
/**
|
|
* Resolves 67 Degree tile collision.
|
|
*
|
|
* @method Phaser.Physics.Ninja.AABB#projAABB_67DegS
|
|
* @param {number} x - Penetration depth on the x axis.
|
|
* @param {number} y - Penetration depth on the y axis.
|
|
* @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision.
|
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
|
* @return {number} The result of the collision.
|
|
*/
|
|
projAABB_67DegS: function (x, y, obj, t) {
|
|
|
|
var signx = t.signx;
|
|
var signy = t.signy;
|
|
|
|
var px = obj.pos.x - (signx*obj.xw);
|
|
var penX = t.pos.x - px;
|
|
|
|
if (0 < (penX*signx))
|
|
{
|
|
var ox = (obj.pos.x - (signx*obj.xw)) - (t.pos.x - (signx*t.xw));//this gives is the coordinates of the innermost
|
|
var oy = (obj.pos.y - (signy*obj.yw)) - (t.pos.y + (signy*t.yw));//point on the AABB, relative to a point on the slope
|
|
|
|
var sx = t.sx;//get slope unit normal
|
|
var sy = t.sy;
|
|
|
|
//if the dotprod of (ox,oy) and (sx,sy) is negative, the corner is in the slope
|
|
//and we need to project it out by the magnitude of the projection of (ox,oy) onto (sx,sy)
|
|
var dp = (ox*sx) + (oy*sy);
|
|
|
|
if (dp < 0)
|
|
{
|
|
//collision; project delta onto slope and use this to displace the object
|
|
sx *= -dp;//(sx,sy) is now the projection vector
|
|
sy *= -dp;
|
|
|
|
var lenN = Math.sqrt(sx*sx + sy*sy);
|
|
var lenP = Math.sqrt(x*x + y*y);
|
|
|
|
var aX = Math.abs(penX);
|
|
|
|
if (lenP < lenN)
|
|
{
|
|
if (aX < lenP)
|
|
{
|
|
obj.reportCollisionVsWorld(penX, 0, penX/aX, 0, t);
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_OTHER;
|
|
}
|
|
else
|
|
{
|
|
obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP, t);
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_AXIS;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (aX < lenN)
|
|
{
|
|
obj.reportCollisionVsWorld(penX, 0, penX/aX, 0, t);
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_OTHER;
|
|
}
|
|
else
|
|
{
|
|
obj.reportCollisionVsWorld(sx,sy,t.sx,t.sy,t);
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_OTHER;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//if we've reached this point, no collision has occured
|
|
return Phaser.Physics.Ninja.AABB.COL_NONE;
|
|
|
|
},
|
|
|
|
/**
|
|
* Resolves 67 Degree tile collision.
|
|
*
|
|
* @method Phaser.Physics.Ninja.AABB#projAABB_67DegB
|
|
* @param {number} x - Penetration depth on the x axis.
|
|
* @param {number} y - Penetration depth on the y axis.
|
|
* @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision.
|
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
|
* @return {number} The result of the collision.
|
|
*/
|
|
projAABB_67DegB: function (x, y, obj, t) {
|
|
|
|
var signx = t.signx;
|
|
var signy = t.signy;
|
|
|
|
var ox = (obj.pos.x - (signx*obj.xw)) - (t.pos.x + (signx*t.xw));//this gives is the coordinates of the innermost
|
|
var oy = (obj.pos.y - (signy*obj.yw)) - (t.pos.y - (signy*t.yw));//point on the AABB, relative to a point on the slope
|
|
|
|
var sx = t.sx;//get slope unit normal
|
|
var sy = t.sy;
|
|
|
|
//if the dotprod of (ox,oy) and (sx,sy) is negative, the corner is in the slope
|
|
//and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy)
|
|
var dp = (ox*sx) + (oy*sy);
|
|
|
|
if (dp < 0)
|
|
{
|
|
//collision; project delta onto slope and use this to displace the object
|
|
sx *= -dp;//(sx,sy) is now the projection vector
|
|
sy *= -dp;
|
|
|
|
var lenN = Math.sqrt(sx*sx + sy*sy);
|
|
var lenP = Math.sqrt(x*x + y*y);
|
|
|
|
if (lenP < lenN)
|
|
{
|
|
obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP, t);
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
obj.reportCollisionVsWorld(sx,sy,t.sx,t.sy,t);
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_OTHER;
|
|
}
|
|
}
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_NONE;
|
|
},
|
|
|
|
/**
|
|
* Resolves Convex tile collision.
|
|
*
|
|
* @method Phaser.Physics.Ninja.AABB#projAABB_Convex
|
|
* @param {number} x - Penetration depth on the x axis.
|
|
* @param {number} y - Penetration depth on the y axis.
|
|
* @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision.
|
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
|
* @return {number} The result of the collision.
|
|
*/
|
|
projAABB_Convex: function (x, y, obj, t) {
|
|
|
|
//if distance from "innermost" corner of AABB is less than than tile radius,
|
|
//collision is occuring and we need to project
|
|
|
|
var signx = t.signx;
|
|
var signy = t.signy;
|
|
|
|
var ox = (obj.pos.x - (signx * obj.xw)) - (t.pos.x - (signx * t.xw));//(ox,oy) is the vector from the circle center to
|
|
var oy = (obj.pos.y - (signy * obj.yw)) - (t.pos.y - (signy * t.yw));//the AABB
|
|
var len = Math.sqrt(ox * ox + oy * oy);
|
|
|
|
var twid = t.xw * 2;
|
|
var rad = Math.sqrt(twid * twid + 0);//this gives us the radius of a circle centered on the tile's corner and extending to the opposite edge of the tile;
|
|
//note that this should be precomputed at compile-time since it's constant
|
|
|
|
var pen = rad - len;
|
|
|
|
if (((signx * ox) < 0) || ((signy * oy) < 0))
|
|
{
|
|
//the test corner is "outside" the 1/4 of the circle we're interested in
|
|
var lenP = Math.sqrt(x * x + y * y);
|
|
obj.reportCollisionVsWorld(x, y, x / lenP, y / lenP, t);
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_AXIS;//we need to report
|
|
}
|
|
else if (0 < pen)
|
|
{
|
|
//project along corner->circle vector
|
|
ox /= len;
|
|
oy /= len;
|
|
obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t);
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_OTHER;
|
|
}
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_NONE;
|
|
|
|
},
|
|
|
|
/**
|
|
* Resolves Concave tile collision.
|
|
*
|
|
* @method Phaser.Physics.Ninja.AABB#projAABB_Concave
|
|
* @param {number} x - Penetration depth on the x axis.
|
|
* @param {number} y - Penetration depth on the y axis.
|
|
* @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision.
|
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
|
* @return {number} The result of the collision.
|
|
*/
|
|
projAABB_Concave: function (x, y, obj, t) {
|
|
|
|
//if distance from "innermost" corner of AABB is further than tile radius,
|
|
//collision is occuring and we need to project
|
|
|
|
var signx = t.signx;
|
|
var signy = t.signy;
|
|
|
|
var ox = (t.pos.x + (signx * t.xw)) - (obj.pos.x - (signx * obj.xw));//(ox,oy) is the vector form the innermost AABB corner to the
|
|
var oy = (t.pos.y + (signy * t.yw)) - (obj.pos.y - (signy * obj.yw));//circle's center
|
|
|
|
var twid = t.xw * 2;
|
|
var rad = Math.sqrt(twid * twid + 0);//this gives us the radius of a circle centered on the tile's corner and extending to the opposite edge of the tile;
|
|
//note that this should be precomputed at compile-time since it's constant
|
|
|
|
var len = Math.sqrt(ox * ox + oy * oy);
|
|
var pen = len - rad;
|
|
|
|
if (0 < pen)
|
|
{
|
|
//collision; we need to either project along the axes, or project along corner->circlecenter vector
|
|
|
|
var lenP = Math.sqrt(x * x + y * y);
|
|
|
|
if (lenP < pen)
|
|
{
|
|
//it's shorter to move along axis directions
|
|
obj.reportCollisionVsWorld(x, y, x / lenP, y / lenP, t);
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_AXIS;
|
|
}
|
|
else
|
|
{
|
|
//project along corner->circle vector
|
|
ox /= len;//len should never be 0, since if it IS 0, rad should be > than len
|
|
oy /= len;//and we should never reach here
|
|
|
|
obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t);
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_OTHER;
|
|
}
|
|
|
|
}
|
|
|
|
return Phaser.Physics.Ninja.AABB.COL_NONE;
|
|
|
|
},
|
|
|
|
/**
|
|
* Destroys this AABB's reference to Body and System
|
|
*
|
|
* @method Phaser.Physics.Ninja.AABB#destroy
|
|
*/
|
|
destroy: function() {
|
|
this.body = null;
|
|
this.system = null;
|
|
},
|
|
|
|
/**
|
|
* Render this AABB for debugging purposes.
|
|
*
|
|
* @method Phaser.Physics.Ninja.AABB#render
|
|
* @param {object} context - The context to render to.
|
|
* @param {number} xOffset - X offset from AABB's position to render at.
|
|
* @param {number} yOffset - Y offset from AABB's position to render at.
|
|
* @param {string} color - color of the debug shape to be rendered. (format is css color string).
|
|
* @param {boolean} filled - Render the shape as solid (true) or hollow (false).
|
|
*/
|
|
render: function(context, xOffset, yOffset, color, filled) {
|
|
var left = this.pos.x - this.xw - xOffset;
|
|
var top = this.pos.y - this.yw - yOffset;
|
|
|
|
if (filled)
|
|
{
|
|
context.fillStyle = color;
|
|
context.fillRect(left, top, this.width, this.height);
|
|
}
|
|
else
|
|
{
|
|
context.strokeStyle = color;
|
|
context.strokeRect(left, top, this.width, this.height);
|
|
}
|
|
}
|
|
};
|