mirror of
https://github.com/photonstorm/phaser
synced 2024-12-18 00:53:42 +00:00
1702 lines
No EOL
70 KiB
TypeScript
1702 lines
No EOL
70 KiB
TypeScript
/// <reference path="Game.ts" />
|
|
/// <reference path="core/Point.ts" />
|
|
/// <reference path="core/Rectangle.ts" />
|
|
/// <reference path="core/Circle.ts" />
|
|
/// <reference path="geom/Line.ts" />
|
|
/// <reference path="geom/IntersectResult.ts" />
|
|
/// <reference path="geom/Response.ts" />
|
|
/// <reference path="core/Vec2.ts" />
|
|
/// <reference path="math/QuadTree.ts" />
|
|
|
|
/**
|
|
* Phaser - Collision
|
|
*
|
|
* A set of extremely useful collision and geometry intersection functions.
|
|
*/
|
|
|
|
module Phaser {
|
|
|
|
export class Collision {
|
|
|
|
/**
|
|
* Collision constructor
|
|
* @param game A reference to the current Game
|
|
*/
|
|
constructor(game: Game) {
|
|
|
|
this._game = game;
|
|
|
|
Collision.T_VECTORS = [];
|
|
|
|
for (var i = 0; i < 10; i++)
|
|
{
|
|
Collision.T_VECTORS.push(new Vec2);
|
|
}
|
|
|
|
Collision.T_ARRAYS = [];
|
|
|
|
for (var i = 0; i < 5; i++)
|
|
{
|
|
Collision.T_ARRAYS.push([]);
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Local private reference to Game
|
|
*/
|
|
private _game: Game;
|
|
|
|
/**
|
|
* Flag used to allow GameObjects to collide on their left side
|
|
* @type {number}
|
|
*/
|
|
public static LEFT: number = 0x0001;
|
|
|
|
/**
|
|
* Flag used to allow GameObjects to collide on their right side
|
|
* @type {number}
|
|
*/
|
|
public static RIGHT: number = 0x0010;
|
|
|
|
/**
|
|
* Flag used to allow GameObjects to collide on their top side
|
|
* @type {number}
|
|
*/
|
|
public static UP: number = 0x0100;
|
|
|
|
/**
|
|
* Flag used to allow GameObjects to collide on their bottom side
|
|
* @type {number}
|
|
*/
|
|
public static DOWN: number = 0x1000;
|
|
|
|
/**
|
|
* Flag used with GameObjects to disable collision
|
|
* @type {number}
|
|
*/
|
|
public static NONE: number = 0;
|
|
|
|
/**
|
|
* Flag used to allow GameObjects to collide with a ceiling
|
|
* @type {number}
|
|
*/
|
|
public static CEILING: number = Collision.UP;
|
|
|
|
/**
|
|
* Flag used to allow GameObjects to collide with a floor
|
|
* @type {number}
|
|
*/
|
|
public static FLOOR: number = Collision.DOWN;
|
|
|
|
/**
|
|
* Flag used to allow GameObjects to collide with a wall (same as LEFT+RIGHT)
|
|
* @type {number}
|
|
*/
|
|
public static WALL: number = Collision.LEFT | Collision.RIGHT;
|
|
|
|
/**
|
|
* Flag used to allow GameObjects to collide on any face
|
|
* @type {number}
|
|
*/
|
|
public static ANY: number = Collision.LEFT | Collision.RIGHT | Collision.UP | Collision.DOWN;
|
|
|
|
/**
|
|
* The overlap bias is used when calculating hull overlap before separation - change it if you have especially small or large GameObjects
|
|
* @type {number}
|
|
*/
|
|
public static OVERLAP_BIAS: number = 4;
|
|
|
|
/**
|
|
* This holds the result of the tile separation check, true if the object was moved, otherwise false
|
|
* @type {boolean}
|
|
*/
|
|
public static TILE_OVERLAP: bool = false;
|
|
|
|
/**
|
|
* A temporary Rectangle used in the separation process to help avoid gc spikes
|
|
* @type {Rectangle}
|
|
*/
|
|
public static _tempBounds: Rectangle;
|
|
|
|
/**
|
|
* Checks for Line to Line intersection and returns an IntersectResult object containing the results of the intersection.
|
|
* @param line1 The first Line object to check
|
|
* @param line2 The second Line object to check
|
|
* @param [output] An optional IntersectResult object to store the intersection values in. One is created if none given.
|
|
* @returns {IntersectResult=} An IntersectResult object containing the results of the intersection
|
|
*/
|
|
public static lineToLine(line1: Line, line2: Line, output?: IntersectResult = new IntersectResult): IntersectResult {
|
|
|
|
var denominator = (line1.x1 - line1.x2) * (line2.y1 - line2.y2) - (line1.y1 - line1.y2) * (line2.x1 - line2.x2);
|
|
|
|
if (denominator !== 0)
|
|
{
|
|
output.result = true;
|
|
output.x = ((line1.x1 * line1.y2 - line1.y1 * line1.x2) * (line2.x1 - line2.x2) - (line1.x1 - line1.x2) * (line2.x1 * line2.y2 - line2.y1 * line2.x2)) / denominator;
|
|
output.y = ((line1.x1 * line1.y2 - line1.y1 * line1.x2) * (line2.y1 - line2.y2) - (line1.y1 - line1.y2) * (line2.x1 * line2.y2 - line2.y1 * line2.x2)) / denominator;
|
|
}
|
|
|
|
return output;
|
|
}
|
|
|
|
/**
|
|
* Checks for Line to Line Segment intersection and returns an IntersectResult object containing the results of the intersection.
|
|
* @param line The Line object to check
|
|
* @param seg The Line segment object to check
|
|
* @param [output] An optional IntersectResult object to store the intersection values in. One is created if none given.
|
|
* @returns {IntersectResult=} An IntersectResult object containing the results of the intersection
|
|
*/
|
|
public static lineToLineSegment(line: Line, seg: Line, output?: IntersectResult = new IntersectResult): IntersectResult {
|
|
|
|
var denominator = (line.x1 - line.x2) * (seg.y1 - seg.y2) - (line.y1 - line.y2) * (seg.x1 - seg.x2);
|
|
|
|
if (denominator !== 0)
|
|
{
|
|
output.x = ((line.x1 * line.y2 - line.y1 * line.x2) * (seg.x1 - seg.x2) - (line.x1 - line.x2) * (seg.x1 * seg.y2 - seg.y1 * seg.x2)) / denominator;
|
|
output.y = ((line.x1 * line.y2 - line.y1 * line.x2) * (seg.y1 - seg.y2) - (line.y1 - line.y2) * (seg.x1 * seg.y2 - seg.y1 * seg.x2)) / denominator;
|
|
|
|
var maxX = Math.max(seg.x1, seg.x2);
|
|
var minX = Math.min(seg.x1, seg.x2);
|
|
var maxY = Math.max(seg.y1, seg.y2);
|
|
var minY = Math.min(seg.y1, seg.y2);
|
|
|
|
if ((output.x <= maxX && output.x >= minX) === true || (output.y <= maxY && output.y >= minY) === true)
|
|
{
|
|
output.result = true;
|
|
}
|
|
|
|
}
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
/**
|
|
* Checks for Line to Raw Line Segment intersection and returns the result in the IntersectResult object.
|
|
* @param line The Line object to check
|
|
* @param x1 The start x coordinate of the raw segment
|
|
* @param y1 The start y coordinate of the raw segment
|
|
* @param x2 The end x coordinate of the raw segment
|
|
* @param y2 The end y coordinate of the raw segment
|
|
* @param [output] An optional IntersectResult object to store the intersection values in. One is created if none given.
|
|
* @returns {IntersectResult=} An IntersectResult object containing the results of the intersection
|
|
*/
|
|
public static lineToRawSegment(line: Line, x1: number, y1: number, x2: number, y2: number, output?: IntersectResult = new IntersectResult): IntersectResult {
|
|
|
|
var denominator = (line.x1 - line.x2) * (y1 - y2) - (line.y1 - line.y2) * (x1 - x2);
|
|
|
|
if (denominator !== 0)
|
|
{
|
|
output.x = ((line.x1 * line.y2 - line.y1 * line.x2) * (x1 - x2) - (line.x1 - line.x2) * (x1 * y2 - y1 * x2)) / denominator;
|
|
output.y = ((line.x1 * line.y2 - line.y1 * line.x2) * (y1 - y2) - (line.y1 - line.y2) * (x1 * y2 - y1 * x2)) / denominator;
|
|
|
|
var maxX = Math.max(x1, x2);
|
|
var minX = Math.min(x1, x2);
|
|
var maxY = Math.max(y1, y2);
|
|
var minY = Math.min(y1, y2);
|
|
|
|
if ((output.x <= maxX && output.x >= minX) === true || (output.y <= maxY && output.y >= minY) === true)
|
|
{
|
|
output.result = true;
|
|
}
|
|
|
|
}
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
/**
|
|
* Checks for Line to Ray intersection and returns the result in an IntersectResult object.
|
|
* @param line1 The Line object to check
|
|
* @param ray The Ray object to check
|
|
* @param [output] An optional IntersectResult object to store the intersection values in. One is created if none given.
|
|
* @returns {IntersectResult=} An IntersectResult object containing the results of the intersection
|
|
*/
|
|
public static lineToRay(line1: Line, ray: Line, output?: IntersectResult = new IntersectResult): IntersectResult {
|
|
|
|
var denominator = (line1.x1 - line1.x2) * (ray.y1 - ray.y2) - (line1.y1 - line1.y2) * (ray.x1 - ray.x2);
|
|
|
|
if (denominator !== 0)
|
|
{
|
|
output.x = ((line1.x1 * line1.y2 - line1.y1 * line1.x2) * (ray.x1 - ray.x2) - (line1.x1 - line1.x2) * (ray.x1 * ray.y2 - ray.y1 * ray.x2)) / denominator;
|
|
output.y = ((line1.x1 * line1.y2 - line1.y1 * line1.x2) * (ray.y1 - ray.y2) - (line1.y1 - line1.y2) * (ray.x1 * ray.y2 - ray.y1 * ray.x2)) / denominator;
|
|
output.result = true; // true unless either of the 2 following conditions are met
|
|
|
|
if (!(ray.x1 >= ray.x2) && output.x < ray.x1)
|
|
{
|
|
output.result = false;
|
|
}
|
|
|
|
if (!(ray.y1 >= ray.y2) && output.y < ray.y1)
|
|
{
|
|
output.result = false;
|
|
}
|
|
}
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
* Check if the Line and Circle objects intersect
|
|
* @param line The Line object to check
|
|
* @param circle The Circle object to check
|
|
* @param [output] An optional IntersectResult object to store the intersection values in. One is created if none given.
|
|
* @returns {IntersectResult=} An IntersectResult object containing the results of the intersection
|
|
*/
|
|
public static lineToCircle(line: Line, circle: Circle, output?: IntersectResult = new IntersectResult): IntersectResult {
|
|
|
|
// Get a perpendicular line running to the center of the circle
|
|
if (line.perp(circle.x, circle.y).length <= circle.radius)
|
|
{
|
|
output.result = true;
|
|
}
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
/**
|
|
* Check if the Line intersects each side of the Rectangle
|
|
* @param line The Line object to check
|
|
* @param rect The Rectangle object to check
|
|
* @param [output] An optional IntersectResult object to store the intersection values in. One is created if none given.
|
|
* @returns {IntersectResult=} An IntersectResult object containing the results of the intersection
|
|
*/
|
|
public static lineToRectangle(line: Line, rect: Rectangle, output?: IntersectResult = new IntersectResult): IntersectResult {
|
|
|
|
// Top of the Rectangle vs the Line
|
|
Collision.lineToRawSegment(line, rect.x, rect.y, rect.right, rect.y, output);
|
|
|
|
if (output.result === true)
|
|
{
|
|
return output;
|
|
}
|
|
|
|
// Left of the Rectangle vs the Line
|
|
Collision.lineToRawSegment(line, rect.x, rect.y, rect.x, rect.bottom, output);
|
|
|
|
if (output.result === true)
|
|
{
|
|
return output;
|
|
}
|
|
|
|
// Bottom of the Rectangle vs the Line
|
|
Collision.lineToRawSegment(line, rect.x, rect.bottom, rect.right, rect.bottom, output);
|
|
|
|
if (output.result === true)
|
|
{
|
|
return output;
|
|
}
|
|
|
|
// Right of the Rectangle vs the Line
|
|
Collision.lineToRawSegment(line, rect.right, rect.y, rect.right, rect.bottom, output);
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
/**
|
|
* Check if the two Line Segments intersect and returns the result in an IntersectResult object.
|
|
* @param line1 The first Line Segment to check
|
|
* @param line2 The second Line Segment to check
|
|
* @param [output] An optional IntersectResult object to store the intersection values in. One is created if none given.
|
|
* @returns {IntersectResult=} An IntersectResult object containing the results of the intersection
|
|
*/
|
|
public static lineSegmentToLineSegment(line1: Line, line2: Line, output?: IntersectResult = new IntersectResult): IntersectResult {
|
|
|
|
Collision.lineToLineSegment(line1, line2);
|
|
|
|
if (output.result === true)
|
|
{
|
|
if (!(output.x >= Math.min(line1.x1, line1.x2) && output.x <= Math.max(line1.x1, line1.x2)
|
|
&& output.y >= Math.min(line1.y1, line1.y2) && output.y <= Math.max(line1.y1, line1.y2)))
|
|
{
|
|
output.result = false;
|
|
}
|
|
}
|
|
|
|
return output;
|
|
}
|
|
|
|
/**
|
|
* Check if the Line Segment intersects with the Ray and returns the result in an IntersectResult object.
|
|
* @param line The Line Segment to check.
|
|
* @param ray The Ray to check.
|
|
* @param [output] An optional IntersectResult object to store the intersection values in. One is created if none given.
|
|
* @returns {IntersectResult=} An IntersectResult object containing the results of the intersection
|
|
*/
|
|
public static lineSegmentToRay(line: Line, ray: Line, output?: IntersectResult = new IntersectResult): IntersectResult {
|
|
|
|
Collision.lineToRay(line, ray, output);
|
|
|
|
if (output.result === true)
|
|
{
|
|
if (!(output.x >= Math.min(line.x1, line.x2) && output.x <= Math.max(line.x1, line.x2)
|
|
&& output.y >= Math.min(line.y1, line.y2) && output.y <= Math.max(line.y1, line.y2)))
|
|
{
|
|
output.result = false;
|
|
}
|
|
}
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
/**
|
|
* Check if the Line Segment intersects with the Circle and returns the result in an IntersectResult object.
|
|
* @param seg The Line Segment to check.
|
|
* @param circle The Circle to check
|
|
* @param [output] An optional IntersectResult object to store the intersection values in. One is created if none given.
|
|
* @returns {IntersectResult=} An IntersectResult object containing the results of the intersection
|
|
*/
|
|
public static lineSegmentToCircle(seg: Line, circle: Circle, output?: IntersectResult = new IntersectResult): IntersectResult {
|
|
|
|
var perp = seg.perp(circle.x, circle.y);
|
|
|
|
if (perp.length <= circle.radius)
|
|
{
|
|
// Line intersects circle - check if segment does
|
|
var maxX = Math.max(seg.x1, seg.x2);
|
|
var minX = Math.min(seg.x1, seg.x2);
|
|
var maxY = Math.max(seg.y1, seg.y2);
|
|
var minY = Math.min(seg.y1, seg.y2);
|
|
|
|
if ((perp.x2 <= maxX && perp.x2 >= minX) && (perp.y2 <= maxY && perp.y2 >= minY))
|
|
{
|
|
output.result = true;
|
|
}
|
|
else
|
|
{
|
|
// Worst case - segment doesn't traverse center, so no perpendicular connection.
|
|
if (Collision.circleContainsPoint(circle, <Point> { x: seg.x1, y: seg.y1 }) || Collision.circleContainsPoint(circle, <Point> { x: seg.x2, y: seg.y2 }))
|
|
{
|
|
output.result = true;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
return output;
|
|
}
|
|
|
|
/**
|
|
* Check if the Line Segment intersects with the Rectangle and returns the result in an IntersectResult object.
|
|
* @param seg The Line Segment to check.
|
|
* @param rect The Rectangle to check.
|
|
* @param [output] An optional IntersectResult object to store the intersection values in. One is created if none given.
|
|
* @returns {IntersectResult=} An IntersectResult object containing the results of the intersection
|
|
*/
|
|
public static lineSegmentToRectangle(seg: Line, rect: Rectangle, output?: IntersectResult = new IntersectResult): IntersectResult {
|
|
|
|
if (rect.contains(seg.x1, seg.y1) && rect.contains(seg.x2, seg.y2))
|
|
{
|
|
output.result = true;
|
|
}
|
|
else
|
|
{
|
|
// Top of the Rectangle vs the Line
|
|
Collision.lineToRawSegment(seg, rect.x, rect.y, rect.right, rect.bottom, output);
|
|
|
|
if (output.result === true)
|
|
{
|
|
return output;
|
|
}
|
|
|
|
// Left of the Rectangle vs the Line
|
|
Collision.lineToRawSegment(seg, rect.x, rect.y, rect.x, rect.bottom, output);
|
|
|
|
if (output.result === true)
|
|
{
|
|
return output;
|
|
}
|
|
|
|
// Bottom of the Rectangle vs the Line
|
|
Collision.lineToRawSegment(seg, rect.x, rect.bottom, rect.right, rect.bottom, output);
|
|
|
|
if (output.result === true)
|
|
{
|
|
return output;
|
|
}
|
|
|
|
// Right of the Rectangle vs the Line
|
|
Collision.lineToRawSegment(seg, rect.right, rect.y, rect.right, rect.bottom, output);
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
/**
|
|
* Check for Ray to Rectangle intersection and returns the result in an IntersectResult object.
|
|
* @param ray The Ray to check.
|
|
* @param rect The Rectangle to check.
|
|
* @param [output] An optional IntersectResult object to store the intersection values in. One is created if none given.
|
|
* @returns {IntersectResult=} An IntersectResult object containing the results of the intersection
|
|
*/
|
|
public static rayToRectangle(ray: Line, rect: Rectangle, output?: IntersectResult = new IntersectResult): IntersectResult {
|
|
|
|
// Currently just finds first intersection - might not be closest to ray pt1
|
|
Collision.lineToRectangle(ray, rect, output);
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
* Check whether a Ray intersects a Line segment and returns the parametric value where the intersection occurs in an IntersectResult object.
|
|
* @param rayX1
|
|
* @param rayY1
|
|
* @param rayX2
|
|
* @param rayY2
|
|
* @param lineX1
|
|
* @param lineY1
|
|
* @param lineX2
|
|
* @param lineY2
|
|
* @param [output] An optional IntersectResult object to store the intersection values in. One is created if none given.
|
|
* @returns {IntersectResult=} An IntersectResult object containing the results of the intersection
|
|
*/
|
|
public static rayToLineSegment(rayX1, rayY1, rayX2, rayY2, lineX1, lineY1, lineX2, lineY2, output?: IntersectResult = new IntersectResult): IntersectResult {
|
|
|
|
var r:number;
|
|
var s:number;
|
|
var d:number;
|
|
|
|
// Check lines are not parallel
|
|
if ((rayY2 - rayY1) / (rayX2 - rayX1) != (lineY2 - lineY1) / (lineX2 - lineX1))
|
|
{
|
|
d = (((rayX2 - rayX1) * (lineY2 - lineY1)) - (rayY2 - rayY1) * (lineX2 - lineX1));
|
|
|
|
if (d != 0)
|
|
{
|
|
r = (((rayY1 - lineY1) * (lineX2 - lineX1)) - (rayX1 - lineX1) * (lineY2 - lineY1)) / d;
|
|
s = (((rayY1 - lineY1) * (rayX2 - rayX1)) - (rayX1 - lineX1) * (rayY2 - rayY1)) / d;
|
|
|
|
if (r >= 0)
|
|
{
|
|
if (s >= 0 && s <= 1)
|
|
{
|
|
output.result = true;
|
|
output.x = rayX1 + r * (rayX2 - rayX1);
|
|
output.y = rayY1 + r * (rayY2 - rayY1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
/**
|
|
* Determines whether the specified point is contained within the rectangular region defined by the Rectangle object and returns the result in an IntersectResult object.
|
|
* @param point The Point or Point object to check, or any object with x and y properties.
|
|
* @param rect The Rectangle object to check the point against
|
|
* @param [output] An optional IntersectResult object to store the intersection values in. One is created if none given.
|
|
* @returns {IntersectResult=} An IntersectResult object containing the results of the intersection
|
|
*/
|
|
public static pointToRectangle(point, rect: Rectangle, output?: IntersectResult = new IntersectResult): IntersectResult {
|
|
|
|
output.setTo(point.x, point.y);
|
|
|
|
//output.result = rect.containsPoint(point);
|
|
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
/**
|
|
* Check whether two axis aligned Rectangles intersect and returns the intersecting rectangle dimensions in an IntersectResult object if they do.
|
|
* @param rect1 The first Rectangle object.
|
|
* @param rect2 The second Rectangle object.
|
|
* @param [output] An optional IntersectResult object to store the intersection values in. One is created if none given.
|
|
* @returns {IntersectResult=} An IntersectResult object containing the results of the intersection
|
|
*/
|
|
public static rectangleToRectangle(rect1: Rectangle, rect2: Rectangle, output?: IntersectResult = new IntersectResult): IntersectResult {
|
|
|
|
var leftX = Math.max(rect1.x, rect2.x);
|
|
var rightX = Math.min(rect1.right, rect2.right);
|
|
var topY = Math.max(rect1.y, rect2.y);
|
|
var bottomY = Math.min(rect1.bottom, rect2.bottom);
|
|
|
|
output.setTo(leftX, topY, rightX - leftX, bottomY - topY, rightX - leftX, bottomY - topY);
|
|
|
|
var cx = output.x + output.width * .5;
|
|
var cy = output.y + output.height * .5;
|
|
|
|
if ((cx > rect1.x && cx < rect1.right) && (cy > rect1.y && cy < rect1.bottom))
|
|
{
|
|
output.result = true;
|
|
}
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
/**
|
|
* Checks if the Rectangle and Circle objects intersect and returns the result in an IntersectResult object.
|
|
* @param rect The Rectangle object to check
|
|
* @param circle The Circle object to check
|
|
* @param [output] An optional IntersectResult object to store the intersection values in. One is created if none given.
|
|
* @returns {IntersectResult=} An IntersectResult object containing the results of the intersection
|
|
*/
|
|
public static rectangleToCircle(rect: Rectangle, circle: Circle, output?: IntersectResult = new IntersectResult): IntersectResult {
|
|
|
|
return Collision.circleToRectangle(circle, rect, output);
|
|
|
|
}
|
|
|
|
/**
|
|
* Checks if the two Circle objects intersect and returns the result in an IntersectResult object.
|
|
* @param circle1 The first Circle object to check
|
|
* @param circle2 The second Circle object to check
|
|
* @param [output] An optional IntersectResult object to store the intersection values in. One is created if none given.
|
|
* @returns {IntersectResult=} An IntersectResult object containing the results of the intersection
|
|
*/
|
|
public static circleToCircle(circle1: Circle, circle2: Circle, output?: IntersectResult = new IntersectResult): IntersectResult {
|
|
|
|
output.result = ((circle1.radius + circle2.radius) * (circle1.radius + circle2.radius)) >= Collision.distanceSquared(circle1.x, circle1.y, circle2.x, circle2.y);
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
/**
|
|
* Checks if the Circle object intersects with the Rectangle and returns the result in an IntersectResult object.
|
|
* @param circle The Circle object to check
|
|
* @param rect The Rectangle object to check
|
|
* @param [output] An optional IntersectResult object to store the intersection values in. One is created if none given.
|
|
* @returns {IntersectResult=} An IntersectResult object containing the results of the intersection
|
|
*/
|
|
public static circleToRectangle(circle: Circle, rect: Rectangle, output?: IntersectResult = new IntersectResult): IntersectResult {
|
|
|
|
var inflatedRect: Rectangle = rect.clone();
|
|
|
|
inflatedRect.inflate(circle.radius, circle.radius);
|
|
|
|
output.result = inflatedRect.contains(circle.x, circle.y);
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
/**
|
|
* Checks if the Point object is contained within the Circle and returns the result in an IntersectResult object.
|
|
* @param circle The Circle object to check
|
|
* @param point A Point or Point object to check, or any object with x and y properties
|
|
* @param [output] An optional IntersectResult object to store the intersection values in. One is created if none given.
|
|
* @returns {IntersectResult=} An IntersectResult object containing the results of the intersection
|
|
*/
|
|
public static circleContainsPoint(circle: Circle, point, output?: IntersectResult = new IntersectResult): IntersectResult {
|
|
|
|
output.result = circle.radius * circle.radius >= Collision.distanceSquared(circle.x, circle.y, point.x, point.y);
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
/**
|
|
* Checks for overlaps between two objects using the world QuadTree. Can be GameObject vs. GameObject, GameObject vs. Group or Group vs. Group.
|
|
* Note: Does not take the objects scrollFactor into account. All overlaps are check in world space.
|
|
* @param object1 The first GameObject or Group to check. If null the world.group is used.
|
|
* @param object2 The second GameObject or Group to check.
|
|
* @param notifyCallback A callback function that is called if the objects overlap. The two objects will be passed to this function in the same order in which you passed them to Collision.overlap.
|
|
* @param processCallback A callback function that lets you perform additional checks against the two objects if they overlap. If this is set then notifyCallback will only be called if processCallback returns true.
|
|
* @param context The context in which the callbacks will be called
|
|
* @returns {boolean} true if the objects overlap, otherwise false.
|
|
*/
|
|
public overlap(object1: Basic = null, object2: Basic = null, notifyCallback = null, processCallback = null, context = null): bool {
|
|
|
|
if (object1 == null)
|
|
{
|
|
object1 = this._game.world.group;
|
|
}
|
|
|
|
if (object2 == object1)
|
|
{
|
|
object2 = null;
|
|
}
|
|
|
|
QuadTree.divisions = this._game.world.worldDivisions;
|
|
|
|
var quadTree: QuadTree = new QuadTree(this._game.world.bounds.x, this._game.world.bounds.y, this._game.world.bounds.width, this._game.world.bounds.height);
|
|
|
|
quadTree.load(object1, object2, notifyCallback, processCallback, context);
|
|
|
|
var result: bool = quadTree.execute();
|
|
|
|
quadTree.destroy();
|
|
|
|
quadTree = null;
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
/**
|
|
* The core Collision separation function used by Collision.overlap.
|
|
* @param object1 The first GameObject to separate
|
|
* @param object2 The second GameObject to separate
|
|
* @returns {boolean} Returns true if the objects were separated, otherwise false.
|
|
*/
|
|
public static separate(object1, object2): bool {
|
|
|
|
object1.collisionMask.update();
|
|
object2.collisionMask.update();
|
|
|
|
var separatedX: bool = Collision.separateX(object1, object2);
|
|
var separatedY: bool = Collision.separateY(object1, object2);
|
|
|
|
return separatedX || separatedY;
|
|
|
|
}
|
|
|
|
/**
|
|
* Collision resolution specifically for GameObjects vs. Tiles.
|
|
* @param object The GameObject to separate
|
|
* @param tile The Tile to separate
|
|
* @returns {boolean} Whether the objects in fact touched and were separated
|
|
*/
|
|
public static separateTile(object:GameObject, x: number, y: number, width: number, height: number, mass: number, collideLeft: bool, collideRight: bool, collideUp: bool, collideDown: bool, separateX: bool, separateY: bool): bool {
|
|
|
|
object.collisionMask.update();
|
|
|
|
var separatedX: bool = Collision.separateTileX(object, x, y, width, height, mass, collideLeft, collideRight, separateX);
|
|
var separatedY: bool = Collision.separateTileY(object, x, y, width, height, mass, collideUp, collideDown, separateY);
|
|
|
|
return separatedX || separatedY;
|
|
|
|
}
|
|
|
|
/**
|
|
* Separates the two objects on their x axis
|
|
* @param object The GameObject to separate
|
|
* @param tile The Tile to separate
|
|
* @returns {boolean} Whether the objects in fact touched and were separated along the X axis.
|
|
*/
|
|
public static separateTileX(object:GameObject, x: number, y: number, width: number, height: number, mass: number, collideLeft: bool, collideRight: bool, separate: bool): bool {
|
|
|
|
// Can't separate two immovable objects (tiles are always immovable)
|
|
if (object.immovable)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// First, get the object delta
|
|
var overlap: number = 0;
|
|
var objDelta: number = object.x - object.last.x;
|
|
//var objDelta: number = object.collisionMask.deltaX;
|
|
|
|
if (objDelta != 0)
|
|
{
|
|
// Check if the X hulls actually overlap
|
|
var objDeltaAbs: number = (objDelta > 0) ? objDelta : -objDelta;
|
|
//var objDeltaAbs: number = object.collisionMask.deltaXAbs;
|
|
var objBounds: Rectangle = new Rectangle(object.x - ((objDelta > 0) ? objDelta : 0), object.last.y, object.width + ((objDelta > 0) ? objDelta : -objDelta), object.height);
|
|
|
|
if ((objBounds.x + objBounds.width > x) && (objBounds.x < x + width) && (objBounds.y + objBounds.height > y) && (objBounds.y < y + height))
|
|
{
|
|
var maxOverlap: number = objDeltaAbs + Collision.OVERLAP_BIAS;
|
|
|
|
// If they did overlap (and can), figure out by how much and flip the corresponding flags
|
|
if (objDelta > 0)
|
|
{
|
|
overlap = object.x + object.width - x;
|
|
|
|
if ((overlap > maxOverlap) || !(object.allowCollisions & Collision.RIGHT) || collideLeft == false)
|
|
{
|
|
overlap = 0;
|
|
}
|
|
else
|
|
{
|
|
object.touching |= Collision.RIGHT;
|
|
}
|
|
}
|
|
else if (objDelta < 0)
|
|
{
|
|
overlap = object.x - width - x;
|
|
|
|
if ((-overlap > maxOverlap) || !(object.allowCollisions & Collision.LEFT) || collideRight == false)
|
|
{
|
|
overlap = 0;
|
|
}
|
|
else
|
|
{
|
|
object.touching |= Collision.LEFT;
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
// Then adjust their positions and velocities accordingly (if there was any overlap)
|
|
if (overlap != 0)
|
|
{
|
|
if (separate == true)
|
|
{
|
|
//console.log('
|
|
object.x = object.x - overlap;
|
|
object.velocity.x = -(object.velocity.x * object.elasticity);
|
|
}
|
|
|
|
Collision.TILE_OVERLAP = true;
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Separates the two objects on their y axis
|
|
* @param object The first GameObject to separate
|
|
* @param tile The second GameObject to separate
|
|
* @returns {boolean} Whether the objects in fact touched and were separated along the Y axis.
|
|
*/
|
|
public static separateTileY(object: GameObject, x: number, y: number, width: number, height: number, mass: number, collideUp: bool, collideDown: bool, separate: bool): bool {
|
|
|
|
// Can't separate two immovable objects (tiles are always immovable)
|
|
if (object.immovable)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// First, get the two object deltas
|
|
var overlap: number = 0;
|
|
var objDelta: number = object.y - object.last.y;
|
|
|
|
if (objDelta != 0)
|
|
{
|
|
// Check if the Y hulls actually overlap
|
|
var objDeltaAbs: number = (objDelta > 0) ? objDelta : -objDelta;
|
|
var objBounds: Rectangle = new Rectangle(object.x, object.y - ((objDelta > 0) ? objDelta : 0), object.width, object.height + objDeltaAbs);
|
|
|
|
if ((objBounds.x + objBounds.width > x) && (objBounds.x < x + width) && (objBounds.y + objBounds.height > y) && (objBounds.y < y + height))
|
|
{
|
|
var maxOverlap: number = objDeltaAbs + Collision.OVERLAP_BIAS;
|
|
|
|
// If they did overlap (and can), figure out by how much and flip the corresponding flags
|
|
if (objDelta > 0)
|
|
{
|
|
overlap = object.y + object.height - y;
|
|
|
|
if ((overlap > maxOverlap) || !(object.allowCollisions & Collision.DOWN) || collideUp == false)
|
|
{
|
|
overlap = 0;
|
|
}
|
|
else
|
|
{
|
|
object.touching |= Collision.DOWN;
|
|
}
|
|
}
|
|
else if (objDelta < 0)
|
|
{
|
|
overlap = object.y - height - y;
|
|
|
|
if ((-overlap > maxOverlap) || !(object.allowCollisions & Collision.UP) || collideDown == false)
|
|
{
|
|
overlap = 0;
|
|
}
|
|
else
|
|
{
|
|
object.touching |= Collision.UP;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO - with super low velocities you get lots of stuttering, set some kind of base minimum here
|
|
|
|
// Then adjust their positions and velocities accordingly (if there was any overlap)
|
|
if (overlap != 0)
|
|
{
|
|
if (separate == true)
|
|
{
|
|
object.y = object.y - overlap;
|
|
object.velocity.y = -(object.velocity.y * object.elasticity);
|
|
}
|
|
|
|
Collision.TILE_OVERLAP = true;
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Separates the two objects on their x axis
|
|
* @param object The GameObject to separate
|
|
* @param tile The Tile to separate
|
|
* @returns {boolean} Whether the objects in fact touched and were separated along the X axis.
|
|
*/
|
|
public static NEWseparateTileX(object:GameObject, x: number, y: number, width: number, height: number, mass: number, collideLeft: bool, collideRight: bool, separate: bool): bool {
|
|
|
|
// Can't separate two immovable objects (tiles are always immovable)
|
|
if (object.immovable)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// First, get the object delta
|
|
var overlap: number = 0;
|
|
|
|
if (object.collisionMask.deltaX != 0)
|
|
{
|
|
// Check if the X hulls actually overlap
|
|
//var objDeltaAbs: number = (objDelta > 0) ? objDelta : -objDelta;
|
|
//var objBounds: Rectangle = new Rectangle(object.x - ((objDelta > 0) ? objDelta : 0), object.last.y, object.width + ((objDelta > 0) ? objDelta : -objDelta), object.height);
|
|
|
|
//if ((objBounds.x + objBounds.width > x) && (objBounds.x < x + width) && (objBounds.y + objBounds.height > y) && (objBounds.y < y + height))
|
|
if (object.collisionMask.intersectsRaw(x, x + width, y, y + height))
|
|
{
|
|
var maxOverlap: number = object.collisionMask.deltaXAbs + Collision.OVERLAP_BIAS;
|
|
|
|
// If they did overlap (and can), figure out by how much and flip the corresponding flags
|
|
if (object.collisionMask.deltaX > 0)
|
|
{
|
|
//overlap = object.x + object.width - x;
|
|
overlap = object.collisionMask.right - x;
|
|
|
|
if ((overlap > maxOverlap) || !(object.allowCollisions & Collision.RIGHT) || collideLeft == false)
|
|
{
|
|
overlap = 0;
|
|
}
|
|
else
|
|
{
|
|
object.touching |= Collision.RIGHT;
|
|
}
|
|
}
|
|
else if (object.collisionMask.deltaX < 0)
|
|
{
|
|
//overlap = object.x - width - x;
|
|
overlap = object.collisionMask.x - width - x;
|
|
|
|
if ((-overlap > maxOverlap) || !(object.allowCollisions & Collision.LEFT) || collideRight == false)
|
|
{
|
|
overlap = 0;
|
|
}
|
|
else
|
|
{
|
|
object.touching |= Collision.LEFT;
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
// Then adjust their positions and velocities accordingly (if there was any overlap)
|
|
if (overlap != 0)
|
|
{
|
|
if (separate == true)
|
|
{
|
|
object.x = object.x - overlap;
|
|
object.velocity.x = -(object.velocity.x * object.elasticity);
|
|
}
|
|
|
|
Collision.TILE_OVERLAP = true;
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Separates the two objects on their y axis
|
|
* @param object The first GameObject to separate
|
|
* @param tile The second GameObject to separate
|
|
* @returns {boolean} Whether the objects in fact touched and were separated along the Y axis.
|
|
*/
|
|
public static NEWseparateTileY(object: GameObject, x: number, y: number, width: number, height: number, mass: number, collideUp: bool, collideDown: bool, separate: bool): bool {
|
|
|
|
// Can't separate two immovable objects (tiles are always immovable)
|
|
if (object.immovable)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// First, get the two object deltas
|
|
var overlap: number = 0;
|
|
//var objDelta: number = object.y - object.last.y;
|
|
|
|
if (object.collisionMask.deltaY != 0)
|
|
{
|
|
// Check if the Y hulls actually overlap
|
|
//var objDeltaAbs: number = (objDelta > 0) ? objDelta : -objDelta;
|
|
//var objBounds: Rectangle = new Rectangle(object.x, object.y - ((objDelta > 0) ? objDelta : 0), object.width, object.height + objDeltaAbs);
|
|
|
|
//if ((objBounds.x + objBounds.width > x) && (objBounds.x < x + width) && (objBounds.y + objBounds.height > y) && (objBounds.y < y + height))
|
|
if (object.collisionMask.intersectsRaw(x, x + width, y, y + height))
|
|
{
|
|
//var maxOverlap: number = objDeltaAbs + Collision.OVERLAP_BIAS;
|
|
var maxOverlap: number = object.collisionMask.deltaYAbs + Collision.OVERLAP_BIAS;
|
|
|
|
// If they did overlap (and can), figure out by how much and flip the corresponding flags
|
|
if (object.collisionMask.deltaY > 0)
|
|
{
|
|
//overlap = object.y + object.height - y;
|
|
overlap = object.collisionMask.bottom - y;
|
|
|
|
if ((overlap > maxOverlap) || !(object.allowCollisions & Collision.DOWN) || collideUp == false)
|
|
{
|
|
overlap = 0;
|
|
}
|
|
else
|
|
{
|
|
object.touching |= Collision.DOWN;
|
|
}
|
|
}
|
|
else if (object.collisionMask.deltaY < 0)
|
|
{
|
|
//overlap = object.y - height - y;
|
|
overlap = object.collisionMask.y - height - y;
|
|
|
|
if ((-overlap > maxOverlap) || !(object.allowCollisions & Collision.UP) || collideDown == false)
|
|
{
|
|
overlap = 0;
|
|
}
|
|
else
|
|
{
|
|
object.touching |= Collision.UP;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO - with super low velocities you get lots of stuttering, set some kind of base minimum here
|
|
|
|
// Then adjust their positions and velocities accordingly (if there was any overlap)
|
|
if (overlap != 0)
|
|
{
|
|
if (separate == true)
|
|
{
|
|
object.y = object.y - overlap;
|
|
object.velocity.y = -(object.velocity.y * object.elasticity);
|
|
}
|
|
|
|
Collision.TILE_OVERLAP = true;
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Separates the two objects on their x axis
|
|
* @param object1 The first GameObject to separate
|
|
* @param object2 The second GameObject to separate
|
|
* @returns {boolean} Whether the objects in fact touched and were separated along the X axis.
|
|
*/
|
|
public static separateX(object1, object2): bool {
|
|
|
|
// Can't separate two immovable objects
|
|
if (object1.immovable && object2.immovable)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// First, get the two object deltas
|
|
var overlap: number = 0;
|
|
|
|
if (object1.collisionMask.deltaX != object2.collisionMask.deltaX)
|
|
{
|
|
if (object1.collisionMask.intersects(object2.collisionMask))
|
|
{
|
|
var maxOverlap: number = object1.collisionMask.deltaXAbs + object2.collisionMask.deltaXAbs + Collision.OVERLAP_BIAS;
|
|
|
|
// If they did overlap (and can), figure out by how much and flip the corresponding flags
|
|
if (object1.collisionMask.deltaX > object2.collisionMask.deltaX)
|
|
{
|
|
overlap = object1.collisionMask.right - object2.collisionMask.x;
|
|
|
|
if ((overlap > maxOverlap) || !(object1.allowCollisions & Collision.RIGHT) || !(object2.allowCollisions & Collision.LEFT))
|
|
{
|
|
overlap = 0;
|
|
}
|
|
else
|
|
{
|
|
object1.touching |= Collision.RIGHT;
|
|
object2.touching |= Collision.LEFT;
|
|
}
|
|
}
|
|
else if (object1.collisionMask.deltaX < object2.collisionMask.deltaX)
|
|
{
|
|
overlap = object1.collisionMask.x - object2.collisionMask.width - object2.collisionMask.x;
|
|
|
|
if ((-overlap > maxOverlap) || !(object1.allowCollisions & Collision.LEFT) || !(object2.allowCollisions & Collision.RIGHT))
|
|
{
|
|
overlap = 0;
|
|
}
|
|
else
|
|
{
|
|
object1.touching |= Collision.LEFT;
|
|
object2.touching |= Collision.RIGHT;
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
// Then adjust their positions and velocities accordingly (if there was any overlap)
|
|
if (overlap != 0)
|
|
{
|
|
var obj1Velocity: number = object1.velocity.x;
|
|
var obj2Velocity: number = object2.velocity.x;
|
|
|
|
if (!object1.immovable && !object2.immovable)
|
|
{
|
|
overlap *= 0.5;
|
|
object1.x = object1.x - overlap;
|
|
object2.x += overlap;
|
|
|
|
var obj1NewVelocity: number = Math.sqrt((obj2Velocity * obj2Velocity * object2.mass) / object1.mass) * ((obj2Velocity > 0) ? 1 : -1);
|
|
var obj2NewVelocity: number = Math.sqrt((obj1Velocity * obj1Velocity * object1.mass) / object2.mass) * ((obj1Velocity > 0) ? 1 : -1);
|
|
var average: number = (obj1NewVelocity + obj2NewVelocity) * 0.5;
|
|
obj1NewVelocity -= average;
|
|
obj2NewVelocity -= average;
|
|
object1.velocity.x = average + obj1NewVelocity * object1.elasticity;
|
|
object2.velocity.x = average + obj2NewVelocity * object2.elasticity;
|
|
}
|
|
else if (!object1.immovable)
|
|
{
|
|
object1.x = object1.x - overlap;
|
|
object1.velocity.x = obj2Velocity - obj1Velocity * object1.elasticity;
|
|
}
|
|
else if (!object2.immovable)
|
|
{
|
|
object2.x += overlap;
|
|
object2.velocity.x = obj1Velocity - obj2Velocity * object2.elasticity;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Separates the two objects on their y axis
|
|
* @param object1 The first GameObject to separate
|
|
* @param object2 The second GameObject to separate
|
|
* @returns {boolean} Whether the objects in fact touched and were separated along the Y axis.
|
|
*/
|
|
public static separateY(object1, object2): bool {
|
|
|
|
// Can't separate two immovable objects
|
|
if (object1.immovable && object2.immovable) {
|
|
return false;
|
|
}
|
|
|
|
// First, get the two object deltas
|
|
var overlap: number = 0;
|
|
|
|
if (object1.collisionMask.deltaY != object2.collisionMask.deltaY)
|
|
{
|
|
if (object1.collisionMask.intersects(object2.collisionMask))
|
|
{
|
|
// This is the only place to use the DeltaAbs values
|
|
var maxOverlap: number = object1.collisionMask.deltaYAbs + object2.collisionMask.deltaYAbs + Collision.OVERLAP_BIAS;
|
|
|
|
// If they did overlap (and can), figure out by how much and flip the corresponding flags
|
|
if (object1.collisionMask.deltaY > object2.collisionMask.deltaY)
|
|
{
|
|
overlap = object1.collisionMask.bottom - object2.collisionMask.y;
|
|
|
|
if ((overlap > maxOverlap) || !(object1.allowCollisions & Collision.DOWN) || !(object2.allowCollisions & Collision.UP))
|
|
{
|
|
overlap = 0;
|
|
}
|
|
else
|
|
{
|
|
object1.touching |= Collision.DOWN;
|
|
object2.touching |= Collision.UP;
|
|
}
|
|
}
|
|
else if (object1.collisionMask.deltaY < object2.collisionMask.deltaY)
|
|
{
|
|
overlap = object1.collisionMask.y - object2.collisionMask.height - object2.collisionMask.y;
|
|
|
|
if ((-overlap > maxOverlap) || !(object1.allowCollisions & Collision.UP) || !(object2.allowCollisions & Collision.DOWN))
|
|
{
|
|
overlap = 0;
|
|
}
|
|
else
|
|
{
|
|
object1.touching |= Collision.UP;
|
|
object2.touching |= Collision.DOWN;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Then adjust their positions and velocities accordingly (if there was any overlap)
|
|
if (overlap != 0)
|
|
{
|
|
var obj1Velocity: number = object1.velocity.y;
|
|
var obj2Velocity: number = object2.velocity.y;
|
|
|
|
if (!object1.immovable && !object2.immovable)
|
|
{
|
|
overlap *= 0.5;
|
|
object1.y = object1.y - overlap;
|
|
object2.y += overlap;
|
|
|
|
var obj1NewVelocity: number = Math.sqrt((obj2Velocity * obj2Velocity * object2.mass) / object1.mass) * ((obj2Velocity > 0) ? 1 : -1);
|
|
var obj2NewVelocity: number = Math.sqrt((obj1Velocity * obj1Velocity * object1.mass) / object2.mass) * ((obj1Velocity > 0) ? 1 : -1);
|
|
var average: number = (obj1NewVelocity + obj2NewVelocity) * 0.5;
|
|
obj1NewVelocity -= average;
|
|
obj2NewVelocity -= average;
|
|
object1.velocity.y = average + obj1NewVelocity * object1.elasticity;
|
|
object2.velocity.y = average + obj2NewVelocity * object2.elasticity;
|
|
}
|
|
else if (!object1.immovable)
|
|
{
|
|
object1.y = object1.y - overlap;
|
|
object1.velocity.y = obj2Velocity - obj1Velocity * object1.elasticity;
|
|
// This is special case code that handles things like horizontal moving platforms you can ride
|
|
if (object2.active && object2.moves && (object1.collisionMask.deltaY > object2.collisionMask.deltaY))
|
|
{
|
|
object1.x += object2.x - object2.last.x;
|
|
}
|
|
}
|
|
else if (!object2.immovable)
|
|
{
|
|
object2.y += overlap;
|
|
object2.velocity.y = obj1Velocity - obj2Velocity * object2.elasticity;
|
|
// This is special case code that handles things like horizontal moving platforms you can ride
|
|
if (object1.active && object1.moves && (object1.collisionMask.deltaY < object2.collisionMask.deltaY))
|
|
{
|
|
object2.x += object1.x - object1.last.x;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the distance between the two given coordinates.
|
|
* @param x1 The X value of the first coordinate
|
|
* @param y1 The Y value of the first coordinate
|
|
* @param x2 The X value of the second coordinate
|
|
* @param y2 The Y value of the second coordinate
|
|
* @returns {number} The distance between the two coordinates
|
|
*/
|
|
public static distance(x1: number, y1: number, x2: number, y2: number) {
|
|
return Math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1));
|
|
}
|
|
|
|
/**
|
|
* Returns the distanced squared between the two given coordinates.
|
|
* @param x1 The X value of the first coordinate
|
|
* @param y1 The Y value of the first coordinate
|
|
* @param x2 The X value of the second coordinate
|
|
* @param y2 The Y value of the second coordinate
|
|
* @returns {number} The distance between the two coordinates
|
|
*/
|
|
public static distanceSquared(x1: number, y1: number, x2: number, y2: number) {
|
|
return (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1);
|
|
}
|
|
|
|
|
|
|
|
// SAT
|
|
|
|
/**
|
|
* Flattens the specified array of points onto a unit vector axis,
|
|
* resulting in a one dimensional range of the minimum and
|
|
* maximum value on that axis.
|
|
*
|
|
* @param {Array.<Vector>} points The points to flatten.
|
|
* @param {Vector} normal The unit vector axis to flatten on.
|
|
* @param {Array.<number>} result An array. After calling this function,
|
|
* result[0] will be the minimum value,
|
|
* result[1] will be the maximum value.
|
|
*/
|
|
public static flattenPointsOn(points, normal, result) {
|
|
|
|
var min = Number.MAX_VALUE;
|
|
var max = -Number.MAX_VALUE;
|
|
var len = points.length;
|
|
|
|
for (var i = 0; i < len; i++)
|
|
{
|
|
// Get the magnitude of the projection of the point onto the normal
|
|
var dot = points[i].dot(normal);
|
|
if (dot < min) { min = dot; }
|
|
if (dot > max) { max = dot; }
|
|
}
|
|
|
|
result[0] = min; result[1] = max;
|
|
|
|
}
|
|
|
|
/**
|
|
* Pool of Vectors used in calculations.
|
|
*
|
|
* @type {Array.<Vector>}
|
|
*/
|
|
public static T_VECTORS: Vec2[];
|
|
|
|
/**
|
|
* Pool of Arrays used in calculations.
|
|
*
|
|
* @type {Array.<Array.<*>>}
|
|
*/
|
|
public static T_ARRAYS;
|
|
|
|
/**
|
|
* Check whether two convex clockwise polygons are separated by the specified
|
|
* axis (must be a unit vector).
|
|
*
|
|
* @param {Vector} aPos The position of the first polygon.
|
|
* @param {Vector} bPos The position of the second polygon.
|
|
* @param {Array.<Vector>} aPoints The points in the first polygon.
|
|
* @param {Array.<Vector>} bPoints The points in the second polygon.
|
|
* @param {Vector} axis The axis (unit sized) to test against. The points of both polygons
|
|
* will be projected onto this axis.
|
|
* @param {Response=} response A Response object (optional) which will be populated
|
|
* if the axis is not a separating axis.
|
|
* @return {boolean} true if it is a separating axis, false otherwise. If false,
|
|
* and a response is passed in, information about how much overlap and
|
|
* the direction of the overlap will be populated.
|
|
*/
|
|
public static isSeparatingAxis(aPos, bPos, aPoints, bPoints, axis, response?:Response = null): bool {
|
|
|
|
var rangeA = Collision.T_ARRAYS.pop();
|
|
var rangeB = Collision.T_ARRAYS.pop();
|
|
|
|
// Get the magnitude of the offset between the two polygons
|
|
var offsetV = Collision.T_VECTORS.pop().copyFrom(bPos).sub(aPos);
|
|
var projectedOffset = offsetV.dot(axis);
|
|
|
|
// Project the polygons onto the axis.
|
|
Collision.flattenPointsOn(aPoints, axis, rangeA);
|
|
Collision.flattenPointsOn(bPoints, axis, rangeB);
|
|
|
|
// Move B's range to its position relative to A.
|
|
rangeB[0] += projectedOffset;
|
|
rangeB[1] += projectedOffset;
|
|
|
|
// Check if there is a gap. If there is, this is a separating axis and we can stop
|
|
if (rangeA[0] > rangeB[1] || rangeB[0] > rangeA[1])
|
|
{
|
|
Collision.T_VECTORS.push(offsetV);
|
|
Collision.T_ARRAYS.push(rangeA);
|
|
Collision.T_ARRAYS.push(rangeB);
|
|
return true;
|
|
}
|
|
|
|
// If we're calculating a response, calculate the overlap.
|
|
if (response)
|
|
{
|
|
var overlap = 0;
|
|
|
|
// A starts further left than B
|
|
if (rangeA[0] < rangeB[0])
|
|
{
|
|
response.aInB = false;
|
|
|
|
// A ends before B does. We have to pull A out of B
|
|
if (rangeA[1] < rangeB[1])
|
|
{
|
|
overlap = rangeA[1] - rangeB[0];
|
|
response.bInA = false;
|
|
// B is fully inside A. Pick the shortest way out.
|
|
}
|
|
else
|
|
{
|
|
var option1 = rangeA[1] - rangeB[0];
|
|
var option2 = rangeB[1] - rangeA[0];
|
|
overlap = option1 < option2 ? option1 : -option2;
|
|
}
|
|
// B starts further left than A
|
|
}
|
|
else
|
|
{
|
|
response.bInA = false;
|
|
|
|
// B ends before A ends. We have to push A out of B
|
|
if (rangeA[1] > rangeB[1])
|
|
{
|
|
overlap = rangeA[0] - rangeB[1];
|
|
response.aInB = false;
|
|
// A is fully inside B. Pick the shortest way out.
|
|
}
|
|
else
|
|
{
|
|
var option1 = rangeA[1] - rangeB[0];
|
|
var option2 = rangeB[1] - rangeA[0];
|
|
overlap = option1 < option2 ? option1 : -option2;
|
|
}
|
|
}
|
|
|
|
// If this is the smallest amount of overlap we've seen so far, set it as the minimum overlap.
|
|
var absOverlap = Math.abs(overlap);
|
|
|
|
if (absOverlap < response.overlap)
|
|
{
|
|
response.overlap = absOverlap;
|
|
response.overlapN.copyFrom(axis);
|
|
|
|
if (overlap < 0)
|
|
{
|
|
response.overlapN.reverse();
|
|
}
|
|
}
|
|
}
|
|
|
|
Collision.T_VECTORS.push(offsetV);
|
|
Collision.T_ARRAYS.push(rangeA);
|
|
Collision.T_ARRAYS.push(rangeB);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
public static LEFT_VORNOI_REGION:number = -1;
|
|
public static MIDDLE_VORNOI_REGION:number = 0;
|
|
public static RIGHT_VORNOI_REGION:number = 1;
|
|
|
|
/**
|
|
* Calculates which Vornoi region a point is on a line segment.
|
|
* It is assumed that both the line and the point are relative to (0, 0)
|
|
*
|
|
* | (0) |
|
|
* (-1) [0]--------------[1] (1)
|
|
* | (0) |
|
|
*
|
|
* @param {Vector} line The line segment.
|
|
* @param {Vector} point The point.
|
|
* @return {number} LEFT_VORNOI_REGION (-1) if it is the left region,
|
|
* MIDDLE_VORNOI_REGION (0) if it is the middle region,
|
|
* RIGHT_VORNOI_REGION (1) if it is the right region.
|
|
*/
|
|
public static vornoiRegion(line: Vec2, point: Vec2): number {
|
|
|
|
var len2 = line.length2();
|
|
var dp = point.dot(line);
|
|
|
|
if (dp < 0) { return Collision.LEFT_VORNOI_REGION; }
|
|
else if (dp > len2) { return Collision.RIGHT_VORNOI_REGION; }
|
|
else { return Collision.MIDDLE_VORNOI_REGION; }
|
|
|
|
}
|
|
|
|
/**
|
|
* Check if two circles intersect.
|
|
*
|
|
* @param {Circle} a The first circle.
|
|
* @param {Circle} b The second circle.
|
|
* @param {Response=} response Response object (optional) that will be populated if
|
|
* the circles intersect.
|
|
* @return {boolean} true if the circles intersect, false if they don't.
|
|
*/
|
|
public static testCircleCircle(a: Circle, b: Circle, response?: Response = null): bool {
|
|
|
|
var differenceV = Collision.T_VECTORS.pop().copyFrom(b.pos).sub(a.pos);
|
|
var totalRadius = a.radius + b.radius;
|
|
var totalRadiusSq = totalRadius * totalRadius;
|
|
var distanceSq = differenceV.length2();
|
|
|
|
if (distanceSq > totalRadiusSq)
|
|
{
|
|
// They do not intersect
|
|
Collision.T_VECTORS.push(differenceV);
|
|
return false;
|
|
}
|
|
|
|
// They intersect. If we're calculating a response, calculate the overlap.
|
|
if (response)
|
|
{
|
|
var dist = Math.sqrt(distanceSq);
|
|
response.a = a;
|
|
response.b = b;
|
|
response.overlap = totalRadius - dist;
|
|
response.overlapN.copyFrom(differenceV.normalize());
|
|
response.overlapV.copyFrom(differenceV).scale(response.overlap);
|
|
response.aInB = a.radius <= b.radius && dist <= b.radius - a.radius;
|
|
response.bInA = b.radius <= a.radius && dist <= a.radius - b.radius;
|
|
}
|
|
|
|
Collision.T_VECTORS.push(differenceV);
|
|
return true;
|
|
|
|
}
|
|
|
|
/**
|
|
* Check if a polygon and a circle intersect.
|
|
*
|
|
* @param {Polygon} polygon The polygon.
|
|
* @param {Circle} circle The circle.
|
|
* @param {Response=} response Response object (optional) that will be populated if
|
|
* they interset.
|
|
* @return {boolean} true if they intersect, false if they don't.
|
|
*/
|
|
public static testPolygonCircle(polygon: Polygon, circle: Circle, response?: Response = null): bool {
|
|
|
|
var circlePos = Collision.T_VECTORS.pop().copyFrom(circle.pos).sub(polygon.pos);
|
|
var radius = circle.radius;
|
|
var radius2 = radius * radius;
|
|
var points = polygon.points;
|
|
var len = points.length;
|
|
var edge = T_VECTORS.pop();
|
|
var point = T_VECTORS.pop();
|
|
|
|
// For each edge in the polygon
|
|
for (var i = 0; i < len; i++)
|
|
{
|
|
var next = i === len - 1 ? 0 : i + 1;
|
|
var prev = i === 0 ? len - 1 : i - 1;
|
|
var overlap = 0;
|
|
var overlapN = null;
|
|
|
|
// Get the edge
|
|
edge.copyFrom(polygon.edges[i]);
|
|
// Calculate the center of the cirble relative to the starting point of the edge
|
|
point.copyFrom(circlePos).sub(points[i]);
|
|
|
|
// If the distance between the center of the circle and the point
|
|
// is bigger than the radius, the polygon is definitely not fully in
|
|
// the circle.
|
|
if (response && point.length2() > radius2)
|
|
{
|
|
response.aInB = false;
|
|
}
|
|
|
|
// Calculate which Vornoi region the center of the circle is in.
|
|
var region = vornoiRegion(edge, point);
|
|
|
|
if (region === Collision.LEFT_VORNOI_REGION)
|
|
{
|
|
// Need to make sure we're in the RIGHT_VORNOI_REGION of the previous edge.
|
|
edge.copyFrom(polygon.edges[prev]);
|
|
|
|
// Calculate the center of the circle relative the starting point of the previous edge
|
|
var point2 = Collision.T_VECTORS.pop().copyFrom(circlePos).sub(points[prev]);
|
|
region = vornoiRegion(edge, point2);
|
|
|
|
if (region === Collision.RIGHT_VORNOI_REGION)
|
|
{
|
|
// It's in the region we want. Check if the circle intersects the point.
|
|
var dist = point.length2();
|
|
|
|
if (dist > radius)
|
|
{
|
|
// No intersection
|
|
Collision.T_VECTORS.push(circlePos);
|
|
Collision.T_VECTORS.push(edge);
|
|
Collision.T_VECTORS.push(point);
|
|
Collision.T_VECTORS.push(point2);
|
|
return false;
|
|
}
|
|
else if (response)
|
|
{
|
|
// It intersects, calculate the overlap
|
|
response.bInA = false;
|
|
overlapN = point.normalize();
|
|
overlap = radius - dist;
|
|
}
|
|
}
|
|
|
|
Collision.T_VECTORS.push(point2);
|
|
|
|
}
|
|
else if (region === Collision.RIGHT_VORNOI_REGION)
|
|
{
|
|
// Need to make sure we're in the left region on the next edge
|
|
edge.copyFrom(polygon.edges[next]);
|
|
|
|
// Calculate the center of the circle relative to the starting point of the next edge
|
|
point.copyFrom(circlePos).sub(points[next]);
|
|
region = vornoiRegion(edge, point);
|
|
|
|
if (region === Collision.LEFT_VORNOI_REGION)
|
|
{
|
|
// It's in the region we want. Check if the circle intersects the point.
|
|
var dist = point.length2();
|
|
|
|
if (dist > radius)
|
|
{
|
|
// No intersection
|
|
Collision.T_VECTORS.push(circlePos);
|
|
Collision.T_VECTORS.push(edge);
|
|
Collision.T_VECTORS.push(point);
|
|
return false;
|
|
}
|
|
else if (response)
|
|
{
|
|
// It intersects, calculate the overlap
|
|
response.bInA = false;
|
|
overlapN = point.normalize();
|
|
overlap = radius - dist;
|
|
}
|
|
}
|
|
// MIDDLE_VORNOI_REGION
|
|
}
|
|
else
|
|
{
|
|
// Need to check if the circle is intersecting the edge,
|
|
// Change the edge into its "edge normal".
|
|
var normal = edge.perp().normalize();
|
|
|
|
// Find the perpendicular distance between the center of the
|
|
// circle and the edge.
|
|
var dist = point.dot(normal);
|
|
var distAbs = Math.abs(dist);
|
|
|
|
// If the circle is on the outside of the edge, there is no intersection
|
|
if (dist > 0 && distAbs > radius)
|
|
{
|
|
Collision.T_VECTORS.push(circlePos);
|
|
Collision.T_VECTORS.push(normal);
|
|
Collision.T_VECTORS.push(point);
|
|
return false;
|
|
}
|
|
else if (response)
|
|
{
|
|
// It intersects, calculate the overlap.
|
|
overlapN = normal;
|
|
overlap = radius - dist;
|
|
// If the center of the circle is on the outside of the edge, or part of the
|
|
// circle is on the outside, the circle is not fully inside the polygon.
|
|
if (dist >= 0 || overlap < 2 * radius)
|
|
{
|
|
response.bInA = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this is the smallest overlap we've seen, keep it.
|
|
// (overlapN may be null if the circle was in the wrong Vornoi region)
|
|
if (overlapN && response && Math.abs(overlap) < Math.abs(response.overlap))
|
|
{
|
|
response.overlap = overlap;
|
|
response.overlapN.copyFrom(overlapN);
|
|
}
|
|
}
|
|
|
|
// Calculate the final overlap vector - based on the smallest overlap.
|
|
if (response)
|
|
{
|
|
response.a = polygon;
|
|
response.b = circle;
|
|
response.overlapV.copyFrom(response.overlapN).scale(response.overlap);
|
|
}
|
|
|
|
Collision.T_VECTORS.push(circlePos);
|
|
Collision.T_VECTORS.push(edge);
|
|
Collision.T_VECTORS.push(point);
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Check if a circle and a polygon intersect.
|
|
*
|
|
* NOTE: This runs slightly slower than polygonCircle as it just
|
|
* runs polygonCircle and reverses everything at the end.
|
|
*
|
|
* @param {Circle} circle The circle.
|
|
* @param {Polygon} polygon The polygon.
|
|
* @param {Response=} response Response object (optional) that will be populated if
|
|
* they interset.
|
|
* @return {boolean} true if they intersect, false if they don't.
|
|
*/
|
|
public static testCirclePolygon(circle: Circle, polygon: Polygon, response?: Response = null): bool {
|
|
|
|
var result = Collision.testPolygonCircle(polygon, circle, response);
|
|
|
|
if (result && response)
|
|
{
|
|
// Swap A and B in the response.
|
|
var a = response.a;
|
|
var aInB = response.aInB;
|
|
response.overlapN.reverse();
|
|
response.overlapV.reverse();
|
|
response.a = response.b;
|
|
response.b = a;
|
|
response.aInB = response.bInA;
|
|
response.bInA = aInB;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Checks whether two convex, clockwise polygons intersect.
|
|
*
|
|
* @param {Polygon} a The first polygon.
|
|
* @param {Polygon} b The second polygon.
|
|
* @param {Response=} response Response object (optional) that will be populated if
|
|
* they interset.
|
|
* @return {boolean} true if they intersect, false if they don't.
|
|
*/
|
|
public static testPolygonPolygon(a: Polygon, b: Polygon, response?: Response = null): bool {
|
|
|
|
var aPoints = a.points;
|
|
var aLen = aPoints.length;
|
|
var bPoints = b.points;
|
|
var bLen = bPoints.length;
|
|
|
|
// If any of the edge normals of A is a separating axis, no intersection.
|
|
for (var i = 0; i < aLen; i++)
|
|
{
|
|
if (Collision.isSeparatingAxis(a.pos, b.pos, aPoints, bPoints, a.normals[i], response))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If any of the edge normals of B is a separating axis, no intersection.
|
|
for (var i = 0; i < bLen; i++)
|
|
{
|
|
if (Collision.isSeparatingAxis(a.pos, b.pos, aPoints, bPoints, b.normals[i], response))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Since none of the edge normals of A or B are a separating axis, there is an intersection
|
|
// and we've already calculated the smallest overlap (in isSeparatingAxis). Calculate the
|
|
// final overlap vector.
|
|
if (response)
|
|
{
|
|
response.a = a;
|
|
response.b = b;
|
|
response.overlapV.copyFrom(response.overlapN).scale(response.overlap);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
}
|
|
|
|
} |