mirror of
https://github.com/photonstorm/phaser
synced 2025-01-10 20:28:56 +00:00
606 lines
17 KiB
JavaScript
606 lines
17 KiB
JavaScript
/**
|
|
* @author Vladimir Agafonkin
|
|
* @author Richard Davey <rich@phaser.io>
|
|
* @copyright 2013-2024 Phaser Studio Inc.
|
|
* @license {@link https://opensource.org/licenses/MIT|MIT License}
|
|
*/
|
|
|
|
var quickselect = require('../utils/array/QuickSelect');
|
|
|
|
/**
|
|
* @classdesc
|
|
* RBush is a high-performance JavaScript library for 2D spatial indexing of points and rectangles.
|
|
* It's based on an optimized R-tree data structure with bulk insertion support.
|
|
*
|
|
* Spatial index is a special data structure for points and rectangles that allows you to perform queries like
|
|
* "all items within this bounding box" very efficiently (e.g. hundreds of times faster than looping over all items).
|
|
*
|
|
* This version of RBush uses a fixed min/max accessor structure of `[ '.left', '.top', '.right', '.bottom' ]`.
|
|
* This is to avoid the eval like function creation that the original library used, which caused CSP policy violations.
|
|
*
|
|
* rbush is forked from https://github.com/mourner/rbush by Vladimir Agafonkin
|
|
*
|
|
* @class RTree
|
|
* @memberof Phaser.Structs
|
|
* @constructor
|
|
* @since 3.0.0
|
|
*/
|
|
|
|
function rbush (maxEntries)
|
|
{
|
|
var format = [ '.left', '.top', '.right', '.bottom' ];
|
|
|
|
if (!(this instanceof rbush)) return new rbush(maxEntries, format);
|
|
|
|
// max entries in a node is 9 by default; min node fill is 40% for best performance
|
|
this._maxEntries = Math.max(4, maxEntries || 9);
|
|
this._minEntries = Math.max(2, Math.ceil(this._maxEntries * 0.4));
|
|
|
|
this.clear();
|
|
}
|
|
|
|
rbush.prototype = {
|
|
|
|
all: function ()
|
|
{
|
|
return this._all(this.data, []);
|
|
},
|
|
|
|
search: function (bbox)
|
|
{
|
|
var node = this.data,
|
|
result = [],
|
|
toBBox = this.toBBox;
|
|
|
|
if (!intersects(bbox, node)) return result;
|
|
|
|
var nodesToSearch = [],
|
|
i, len, child, childBBox;
|
|
|
|
while (node) {
|
|
for (i = 0, len = node.children.length; i < len; i++) {
|
|
|
|
child = node.children[i];
|
|
childBBox = node.leaf ? toBBox(child) : child;
|
|
|
|
if (intersects(bbox, childBBox)) {
|
|
if (node.leaf) result.push(child);
|
|
else if (contains(bbox, childBBox)) this._all(child, result);
|
|
else nodesToSearch.push(child);
|
|
}
|
|
}
|
|
node = nodesToSearch.pop();
|
|
}
|
|
|
|
return result;
|
|
},
|
|
|
|
collides: function (bbox)
|
|
{
|
|
var node = this.data,
|
|
toBBox = this.toBBox;
|
|
|
|
if (!intersects(bbox, node)) return false;
|
|
|
|
var nodesToSearch = [],
|
|
i, len, child, childBBox;
|
|
|
|
while (node) {
|
|
for (i = 0, len = node.children.length; i < len; i++) {
|
|
|
|
child = node.children[i];
|
|
childBBox = node.leaf ? toBBox(child) : child;
|
|
|
|
if (intersects(bbox, childBBox)) {
|
|
if (node.leaf || contains(bbox, childBBox)) return true;
|
|
nodesToSearch.push(child);
|
|
}
|
|
}
|
|
node = nodesToSearch.pop();
|
|
}
|
|
|
|
return false;
|
|
},
|
|
|
|
load: function (data)
|
|
{
|
|
if (!(data && data.length)) return this;
|
|
|
|
if (data.length < this._minEntries) {
|
|
for (var i = 0, len = data.length; i < len; i++) {
|
|
this.insert(data[i]);
|
|
}
|
|
return this;
|
|
}
|
|
|
|
// recursively build the tree with the given data from scratch using OMT algorithm
|
|
var node = this._build(data.slice(), 0, data.length - 1, 0);
|
|
|
|
if (!this.data.children.length) {
|
|
// save as is if tree is empty
|
|
this.data = node;
|
|
|
|
} else if (this.data.height === node.height) {
|
|
// split root if trees have the same height
|
|
this._splitRoot(this.data, node);
|
|
|
|
} else {
|
|
if (this.data.height < node.height) {
|
|
// swap trees if inserted one is bigger
|
|
var tmpNode = this.data;
|
|
this.data = node;
|
|
node = tmpNode;
|
|
}
|
|
|
|
// insert the small tree into the large tree at appropriate level
|
|
this._insert(node, this.data.height - node.height - 1, true);
|
|
}
|
|
|
|
return this;
|
|
},
|
|
|
|
insert: function (item)
|
|
{
|
|
if (item) this._insert(item, this.data.height - 1);
|
|
return this;
|
|
},
|
|
|
|
clear: function ()
|
|
{
|
|
this.data = createNode([]);
|
|
return this;
|
|
},
|
|
|
|
remove: function (item, equalsFn)
|
|
{
|
|
if (!item) return this;
|
|
|
|
var node = this.data,
|
|
bbox = this.toBBox(item),
|
|
path = [],
|
|
indexes = [],
|
|
i, parent, index, goingUp;
|
|
|
|
// depth-first iterative tree traversal
|
|
while (node || path.length) {
|
|
|
|
if (!node) { // go up
|
|
node = path.pop();
|
|
parent = path[path.length - 1];
|
|
i = indexes.pop();
|
|
goingUp = true;
|
|
}
|
|
|
|
if (node.leaf) { // check current node
|
|
index = findItem(item, node.children, equalsFn);
|
|
|
|
if (index !== -1) {
|
|
// item found, remove the item and condense tree upwards
|
|
node.children.splice(index, 1);
|
|
path.push(node);
|
|
this._condense(path);
|
|
return this;
|
|
}
|
|
}
|
|
|
|
if (!goingUp && !node.leaf && contains(node, bbox)) { // go down
|
|
path.push(node);
|
|
indexes.push(i);
|
|
i = 0;
|
|
parent = node;
|
|
node = node.children[0];
|
|
|
|
} else if (parent) { // go right
|
|
i++;
|
|
node = parent.children[i];
|
|
goingUp = false;
|
|
|
|
} else node = null; // nothing found
|
|
}
|
|
|
|
return this;
|
|
},
|
|
|
|
toBBox: function (item) { return item; },
|
|
|
|
compareMinX: compareNodeMinX,
|
|
compareMinY: compareNodeMinY,
|
|
|
|
toJSON: function () { return this.data; },
|
|
|
|
fromJSON: function (data)
|
|
{
|
|
this.data = data;
|
|
return this;
|
|
},
|
|
|
|
_all: function (node, result)
|
|
{
|
|
var nodesToSearch = [];
|
|
while (node) {
|
|
if (node.leaf) result.push.apply(result, node.children);
|
|
else nodesToSearch.push.apply(nodesToSearch, node.children);
|
|
|
|
node = nodesToSearch.pop();
|
|
}
|
|
return result;
|
|
},
|
|
|
|
_build: function (items, left, right, height)
|
|
{
|
|
var N = right - left + 1,
|
|
M = this._maxEntries,
|
|
node;
|
|
|
|
if (N <= M) {
|
|
// reached leaf level; return leaf
|
|
node = createNode(items.slice(left, right + 1));
|
|
calcBBox(node, this.toBBox);
|
|
return node;
|
|
}
|
|
|
|
if (!height) {
|
|
// target height of the bulk-loaded tree
|
|
height = Math.ceil(Math.log(N) / Math.log(M));
|
|
|
|
// target number of root entries to maximize storage utilization
|
|
M = Math.ceil(N / Math.pow(M, height - 1));
|
|
}
|
|
|
|
node = createNode([]);
|
|
node.leaf = false;
|
|
node.height = height;
|
|
|
|
// split the items into M mostly square tiles
|
|
|
|
var N2 = Math.ceil(N / M),
|
|
N1 = N2 * Math.ceil(Math.sqrt(M)),
|
|
i, j, right2, right3;
|
|
|
|
multiSelect(items, left, right, N1, this.compareMinX);
|
|
|
|
for (i = left; i <= right; i += N1) {
|
|
|
|
right2 = Math.min(i + N1 - 1, right);
|
|
|
|
multiSelect(items, i, right2, N2, this.compareMinY);
|
|
|
|
for (j = i; j <= right2; j += N2) {
|
|
|
|
right3 = Math.min(j + N2 - 1, right2);
|
|
|
|
// pack each entry recursively
|
|
node.children.push(this._build(items, j, right3, height - 1));
|
|
}
|
|
}
|
|
|
|
calcBBox(node, this.toBBox);
|
|
|
|
return node;
|
|
},
|
|
|
|
_chooseSubtree: function (bbox, node, level, path)
|
|
{
|
|
var i, len, child, targetNode, area, enlargement, minArea, minEnlargement;
|
|
|
|
while (true) {
|
|
path.push(node);
|
|
|
|
if (node.leaf || path.length - 1 === level) break;
|
|
|
|
minArea = minEnlargement = Infinity;
|
|
|
|
for (i = 0, len = node.children.length; i < len; i++) {
|
|
child = node.children[i];
|
|
area = bboxArea(child);
|
|
enlargement = enlargedArea(bbox, child) - area;
|
|
|
|
// choose entry with the least area enlargement
|
|
if (enlargement < minEnlargement) {
|
|
minEnlargement = enlargement;
|
|
minArea = area < minArea ? area : minArea;
|
|
targetNode = child;
|
|
|
|
} else if (enlargement === minEnlargement) {
|
|
// otherwise choose one with the smallest area
|
|
if (area < minArea) {
|
|
minArea = area;
|
|
targetNode = child;
|
|
}
|
|
}
|
|
}
|
|
|
|
node = targetNode || node.children[0];
|
|
}
|
|
|
|
return node;
|
|
},
|
|
|
|
_insert: function (item, level, isNode)
|
|
{
|
|
var toBBox = this.toBBox,
|
|
bbox = isNode ? item : toBBox(item),
|
|
insertPath = [];
|
|
|
|
// find the best node for accommodating the item, saving all nodes along the path too
|
|
var node = this._chooseSubtree(bbox, this.data, level, insertPath);
|
|
|
|
// put the item into the node
|
|
node.children.push(item);
|
|
extend(node, bbox);
|
|
|
|
// split on node overflow; propagate upwards if necessary
|
|
while (level >= 0) {
|
|
if (insertPath[level].children.length > this._maxEntries) {
|
|
this._split(insertPath, level);
|
|
level--;
|
|
} else break;
|
|
}
|
|
|
|
// adjust bboxes along the insertion path
|
|
this._adjustParentBBoxes(bbox, insertPath, level);
|
|
},
|
|
|
|
// split overflowed node into two
|
|
_split: function (insertPath, level)
|
|
{
|
|
var node = insertPath[level],
|
|
M = node.children.length,
|
|
m = this._minEntries;
|
|
|
|
this._chooseSplitAxis(node, m, M);
|
|
|
|
var splitIndex = this._chooseSplitIndex(node, m, M);
|
|
|
|
var newNode = createNode(node.children.splice(splitIndex, node.children.length - splitIndex));
|
|
newNode.height = node.height;
|
|
newNode.leaf = node.leaf;
|
|
|
|
calcBBox(node, this.toBBox);
|
|
calcBBox(newNode, this.toBBox);
|
|
|
|
if (level) insertPath[level - 1].children.push(newNode);
|
|
else this._splitRoot(node, newNode);
|
|
},
|
|
|
|
_splitRoot: function (node, newNode)
|
|
{
|
|
// split root node
|
|
this.data = createNode([node, newNode]);
|
|
this.data.height = node.height + 1;
|
|
this.data.leaf = false;
|
|
calcBBox(this.data, this.toBBox);
|
|
},
|
|
|
|
_chooseSplitIndex: function (node, m, M)
|
|
{
|
|
var i, bbox1, bbox2, overlap, area, minOverlap, minArea, index;
|
|
|
|
minOverlap = minArea = Infinity;
|
|
|
|
for (i = m; i <= M - m; i++) {
|
|
bbox1 = distBBox(node, 0, i, this.toBBox);
|
|
bbox2 = distBBox(node, i, M, this.toBBox);
|
|
|
|
overlap = intersectionArea(bbox1, bbox2);
|
|
area = bboxArea(bbox1) + bboxArea(bbox2);
|
|
|
|
// choose distribution with minimum overlap
|
|
if (overlap < minOverlap) {
|
|
minOverlap = overlap;
|
|
index = i;
|
|
|
|
minArea = area < minArea ? area : minArea;
|
|
|
|
} else if (overlap === minOverlap) {
|
|
// otherwise choose distribution with minimum area
|
|
if (area < minArea) {
|
|
minArea = area;
|
|
index = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
return index;
|
|
},
|
|
|
|
// sorts node children by the best axis for split
|
|
_chooseSplitAxis: function (node, m, M)
|
|
{
|
|
var compareMinX = node.leaf ? this.compareMinX : compareNodeMinX,
|
|
compareMinY = node.leaf ? this.compareMinY : compareNodeMinY,
|
|
xMargin = this._allDistMargin(node, m, M, compareMinX),
|
|
yMargin = this._allDistMargin(node, m, M, compareMinY);
|
|
|
|
// if total distributions margin value is minimal for x, sort by minX,
|
|
// otherwise it's already sorted by minY
|
|
if (xMargin < yMargin) node.children.sort(compareMinX);
|
|
},
|
|
|
|
// total margin of all possible split distributions where each node is at least m full
|
|
_allDistMargin: function (node, m, M, compare)
|
|
{
|
|
node.children.sort(compare);
|
|
|
|
var toBBox = this.toBBox,
|
|
leftBBox = distBBox(node, 0, m, toBBox),
|
|
rightBBox = distBBox(node, M - m, M, toBBox),
|
|
margin = bboxMargin(leftBBox) + bboxMargin(rightBBox),
|
|
i, child;
|
|
|
|
for (i = m; i < M - m; i++) {
|
|
child = node.children[i];
|
|
extend(leftBBox, node.leaf ? toBBox(child) : child);
|
|
margin += bboxMargin(leftBBox);
|
|
}
|
|
|
|
for (i = M - m - 1; i >= m; i--) {
|
|
child = node.children[i];
|
|
extend(rightBBox, node.leaf ? toBBox(child) : child);
|
|
margin += bboxMargin(rightBBox);
|
|
}
|
|
|
|
return margin;
|
|
},
|
|
|
|
_adjustParentBBoxes: function (bbox, path, level)
|
|
{
|
|
// adjust bboxes along the given tree path
|
|
for (var i = level; i >= 0; i--) {
|
|
extend(path[i], bbox);
|
|
}
|
|
},
|
|
|
|
_condense: function (path)
|
|
{
|
|
// go through the path, removing empty nodes and updating bboxes
|
|
for (var i = path.length - 1, siblings; i >= 0; i--) {
|
|
if (path[i].children.length === 0) {
|
|
if (i > 0) {
|
|
siblings = path[i - 1].children;
|
|
siblings.splice(siblings.indexOf(path[i]), 1);
|
|
|
|
} else this.clear();
|
|
|
|
} else calcBBox(path[i], this.toBBox);
|
|
}
|
|
},
|
|
|
|
compareMinX: function (a, b)
|
|
{
|
|
return a.left - b.left;
|
|
},
|
|
|
|
compareMinY: function (a, b)
|
|
{
|
|
return a.top - b.top;
|
|
},
|
|
|
|
toBBox: function (a)
|
|
{
|
|
return {
|
|
minX: a.left,
|
|
minY: a.top,
|
|
maxX: a.right,
|
|
maxY: a.bottom
|
|
};
|
|
}
|
|
};
|
|
|
|
function findItem (item, items, equalsFn)
|
|
{
|
|
if (!equalsFn) return items.indexOf(item);
|
|
|
|
for (var i = 0; i < items.length; i++) {
|
|
if (equalsFn(item, items[i])) return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
// calculate node's bbox from bboxes of its children
|
|
function calcBBox (node, toBBox)
|
|
{
|
|
distBBox(node, 0, node.children.length, toBBox, node);
|
|
}
|
|
|
|
// min bounding rectangle of node children from k to p-1
|
|
function distBBox (node, k, p, toBBox, destNode)
|
|
{
|
|
if (!destNode) destNode = createNode(null);
|
|
destNode.minX = Infinity;
|
|
destNode.minY = Infinity;
|
|
destNode.maxX = -Infinity;
|
|
destNode.maxY = -Infinity;
|
|
|
|
for (var i = k, child; i < p; i++) {
|
|
child = node.children[i];
|
|
extend(destNode, node.leaf ? toBBox(child) : child);
|
|
}
|
|
|
|
return destNode;
|
|
}
|
|
|
|
function extend (a, b)
|
|
{
|
|
a.minX = Math.min(a.minX, b.minX);
|
|
a.minY = Math.min(a.minY, b.minY);
|
|
a.maxX = Math.max(a.maxX, b.maxX);
|
|
a.maxY = Math.max(a.maxY, b.maxY);
|
|
return a;
|
|
}
|
|
|
|
function compareNodeMinX (a, b) { return a.minX - b.minX; }
|
|
function compareNodeMinY (a, b) { return a.minY - b.minY; }
|
|
|
|
function bboxArea (a) { return (a.maxX - a.minX) * (a.maxY - a.minY); }
|
|
function bboxMargin (a) { return (a.maxX - a.minX) + (a.maxY - a.minY); }
|
|
|
|
function enlargedArea (a, b)
|
|
{
|
|
return (Math.max(b.maxX, a.maxX) - Math.min(b.minX, a.minX)) *
|
|
(Math.max(b.maxY, a.maxY) - Math.min(b.minY, a.minY));
|
|
}
|
|
|
|
function intersectionArea (a, b)
|
|
{
|
|
var minX = Math.max(a.minX, b.minX),
|
|
minY = Math.max(a.minY, b.minY),
|
|
maxX = Math.min(a.maxX, b.maxX),
|
|
maxY = Math.min(a.maxY, b.maxY);
|
|
|
|
return Math.max(0, maxX - minX) *
|
|
Math.max(0, maxY - minY);
|
|
}
|
|
|
|
function contains (a, b)
|
|
{
|
|
return a.minX <= b.minX &&
|
|
a.minY <= b.minY &&
|
|
b.maxX <= a.maxX &&
|
|
b.maxY <= a.maxY;
|
|
}
|
|
|
|
function intersects (a, b)
|
|
{
|
|
return b.minX <= a.maxX &&
|
|
b.minY <= a.maxY &&
|
|
b.maxX >= a.minX &&
|
|
b.maxY >= a.minY;
|
|
}
|
|
|
|
function createNode (children)
|
|
{
|
|
return {
|
|
children: children,
|
|
height: 1,
|
|
leaf: true,
|
|
minX: Infinity,
|
|
minY: Infinity,
|
|
maxX: -Infinity,
|
|
maxY: -Infinity
|
|
};
|
|
}
|
|
|
|
// sort an array so that items come in groups of n unsorted items, with groups sorted between each other;
|
|
// combines selection algorithm with binary divide & conquer approach
|
|
|
|
function multiSelect (arr, left, right, n, compare)
|
|
{
|
|
var stack = [left, right],
|
|
mid;
|
|
|
|
while (stack.length)
|
|
{
|
|
right = stack.pop();
|
|
left = stack.pop();
|
|
|
|
if (right - left <= n) continue;
|
|
|
|
mid = left + Math.ceil((right - left) / n / 2) * n;
|
|
quickselect(arr, mid, left, right, compare);
|
|
|
|
stack.push(left, mid, mid, right);
|
|
}
|
|
}
|
|
|
|
module.exports = rbush;
|