mirror of
https://github.com/photonstorm/phaser
synced 2025-01-11 20:58:56 +00:00
379 lines
8.2 KiB
JavaScript
379 lines
8.2 KiB
JavaScript
// Adapted from [gl-matrix](https://github.com/toji/gl-matrix) by toji
|
|
// and [vecmath](https://github.com/mattdesl/vecmath) by mattdesl
|
|
|
|
var Class = require('../utils/Class');
|
|
|
|
var Vector3 = new Class({
|
|
|
|
initialize:
|
|
|
|
function Vector3 (x, y, z)
|
|
{
|
|
if (typeof x === 'object')
|
|
{
|
|
this.x = x.x || 0;
|
|
this.y = x.y || 0;
|
|
this.z = x.z || 0;
|
|
}
|
|
else
|
|
{
|
|
this.x = x || 0;
|
|
this.y = y || 0;
|
|
this.z = z || 0;
|
|
}
|
|
},
|
|
|
|
clone: function ()
|
|
{
|
|
return new Vector3(this.x, this.y, this.z);
|
|
},
|
|
|
|
crossVectors: function (a, b)
|
|
{
|
|
var ax = a.x;
|
|
var ay = a.y;
|
|
var az = a.z;
|
|
var bx = b.x;
|
|
var by = b.y;
|
|
var bz = b.z;
|
|
|
|
this.x = ay * bz - az * by;
|
|
this.y = az * bx - ax * bz;
|
|
this.z = ax * by - ay * bx;
|
|
|
|
return this;
|
|
},
|
|
|
|
equals: function (v)
|
|
{
|
|
return ((this.x === v.x) && (this.y === v.y) && (this.z === v.z));
|
|
},
|
|
|
|
copy: function (src)
|
|
{
|
|
this.x = src.x;
|
|
this.y = src.y;
|
|
this.z = src.z || 0;
|
|
|
|
return this;
|
|
},
|
|
|
|
set: function (x, y, z)
|
|
{
|
|
if (typeof x === 'object')
|
|
{
|
|
this.x = x.x || 0;
|
|
this.y = x.y || 0;
|
|
this.z = x.z || 0;
|
|
}
|
|
else
|
|
{
|
|
this.x = x || 0;
|
|
this.y = y || 0;
|
|
this.z = z || 0;
|
|
}
|
|
|
|
return this;
|
|
},
|
|
|
|
add: function (v)
|
|
{
|
|
this.x += v.x;
|
|
this.y += v.y;
|
|
this.z += v.z || 0;
|
|
|
|
return this;
|
|
},
|
|
|
|
subtract: function (v)
|
|
{
|
|
this.x -= v.x;
|
|
this.y -= v.y;
|
|
this.z -= v.z || 0;
|
|
|
|
return this;
|
|
},
|
|
|
|
multiply: function (v)
|
|
{
|
|
this.x *= v.x;
|
|
this.y *= v.y;
|
|
this.z *= v.z || 1;
|
|
|
|
return this;
|
|
},
|
|
|
|
scale: function (scale)
|
|
{
|
|
if (isFinite(scale))
|
|
{
|
|
this.x *= scale;
|
|
this.y *= scale;
|
|
this.z *= scale;
|
|
}
|
|
else
|
|
{
|
|
this.x = 0;
|
|
this.y = 0;
|
|
this.z = 0;
|
|
}
|
|
|
|
return this;
|
|
},
|
|
|
|
divide: function (v)
|
|
{
|
|
this.x /= v.x;
|
|
this.y /= v.y;
|
|
this.z /= v.z || 1;
|
|
|
|
return this;
|
|
},
|
|
|
|
negate: function ()
|
|
{
|
|
this.x = -this.x;
|
|
this.y = -this.y;
|
|
this.z = -this.z;
|
|
|
|
return this;
|
|
},
|
|
|
|
distance: function (v)
|
|
{
|
|
var dx = v.x - this.x;
|
|
var dy = v.y - this.y;
|
|
var dz = v.z - this.z || 0;
|
|
|
|
return Math.sqrt(dx * dx + dy * dy + dz * dz);
|
|
},
|
|
|
|
distanceSq: function (v)
|
|
{
|
|
var dx = v.x - this.x;
|
|
var dy = v.y - this.y;
|
|
var dz = v.z - this.z || 0;
|
|
|
|
return dx * dx + dy * dy + dz * dz;
|
|
},
|
|
|
|
length: function ()
|
|
{
|
|
var x = this.x;
|
|
var y = this.y;
|
|
var z = this.z;
|
|
|
|
return Math.sqrt(x * x + y * y + z * z);
|
|
},
|
|
|
|
lengthSq: function ()
|
|
{
|
|
var x = this.x;
|
|
var y = this.y;
|
|
var z = this.z;
|
|
|
|
return x * x + y * y + z * z;
|
|
},
|
|
|
|
normalize: function ()
|
|
{
|
|
var x = this.x;
|
|
var y = this.y;
|
|
var z = this.z;
|
|
var len = x * x + y * y + z * z;
|
|
|
|
if (len > 0)
|
|
{
|
|
len = 1 / Math.sqrt(len);
|
|
|
|
this.x = x * len;
|
|
this.y = y * len;
|
|
this.z = z * len;
|
|
}
|
|
|
|
return this;
|
|
},
|
|
|
|
dot: function (v)
|
|
{
|
|
return this.x * v.x + this.y * v.y + this.z * v.z;
|
|
},
|
|
|
|
cross: function (v)
|
|
{
|
|
var ax = this.x;
|
|
var ay = this.y;
|
|
var az = this.z;
|
|
var bx = v.x;
|
|
var by = v.y;
|
|
var bz = v.z;
|
|
|
|
this.x = ay * bz - az * by;
|
|
this.y = az * bx - ax * bz;
|
|
this.z = ax * by - ay * bx;
|
|
|
|
return this;
|
|
},
|
|
|
|
lerp: function (v, t)
|
|
{
|
|
if (t === undefined) { t = 0; }
|
|
|
|
var ax = this.x;
|
|
var ay = this.y;
|
|
var az = this.z;
|
|
|
|
this.x = ax + t * (v.x - ax);
|
|
this.y = ay + t * (v.y - ay);
|
|
this.z = az + t * (v.z - az);
|
|
|
|
return this;
|
|
},
|
|
|
|
transformMat3: function (mat)
|
|
{
|
|
var x = this.x;
|
|
var y = this.y;
|
|
var z = this.z;
|
|
var m = mat.val;
|
|
|
|
this.x = x * m[0] + y * m[3] + z * m[6];
|
|
this.y = x * m[1] + y * m[4] + z * m[7];
|
|
this.z = x * m[2] + y * m[5] + z * m[8];
|
|
|
|
return this;
|
|
},
|
|
|
|
transformMat4: function (mat)
|
|
{
|
|
var x = this.x;
|
|
var y = this.y;
|
|
var z = this.z;
|
|
var m = mat.val;
|
|
|
|
this.x = m[0] * x + m[4] * y + m[8] * z + m[12];
|
|
this.y = m[1] * x + m[5] * y + m[9] * z + m[13];
|
|
this.z = m[2] * x + m[6] * y + m[10] * z + m[14];
|
|
|
|
return this;
|
|
},
|
|
|
|
transformQuat: function (q)
|
|
{
|
|
// benchmarks: http://jsperf.com/quaternion-transform-vec3-implementations
|
|
var x = this.x;
|
|
var y = this.y;
|
|
var z = this.z;
|
|
var qx = q.x;
|
|
var qy = q.y;
|
|
var qz = q.z;
|
|
var qw = q.w;
|
|
|
|
// calculate quat * vec
|
|
var ix = qw * x + qy * z - qz * y;
|
|
var iy = qw * y + qz * x - qx * z;
|
|
var iz = qw * z + qx * y - qy * x;
|
|
var iw = -qx * x - qy * y - qz * z;
|
|
|
|
// calculate result * inverse quat
|
|
this.x = ix * qw + iw * -qx + iy * -qz - iz * -qy;
|
|
this.y = iy * qw + iw * -qy + iz * -qx - ix * -qz;
|
|
this.z = iz * qw + iw * -qz + ix * -qy - iy * -qx;
|
|
|
|
return this;
|
|
},
|
|
|
|
/**
|
|
* Multiplies this Vector3 by the specified matrix,
|
|
* applying a W divide. This is useful for projection,
|
|
* e.g. unprojecting a 2D point into 3D space.
|
|
*
|
|
* @method project
|
|
* @param {Matrix4} the 4x4 matrix to multiply with
|
|
* @return {Vector3} this object for chaining
|
|
*/
|
|
project: function (mat)
|
|
{
|
|
var x = this.x;
|
|
var y = this.y;
|
|
var z = this.z;
|
|
var m = mat.val;
|
|
|
|
var a00 = m[0];
|
|
var a01 = m[1];
|
|
var a02 = m[2];
|
|
var a03 = m[3];
|
|
var a10 = m[4];
|
|
var a11 = m[5];
|
|
var a12 = m[6];
|
|
var a13 = m[7];
|
|
var a20 = m[8];
|
|
var a21 = m[9];
|
|
var a22 = m[10];
|
|
var a23 = m[11];
|
|
var a30 = m[12];
|
|
var a31 = m[13];
|
|
var a32 = m[14];
|
|
var a33 = m[15];
|
|
|
|
var lw = 1 / (x * a03 + y * a13 + z * a23 + a33);
|
|
|
|
this.x = (x * a00 + y * a10 + z * a20 + a30) * lw;
|
|
this.y = (x * a01 + y * a11 + z * a21 + a31) * lw;
|
|
this.z = (x * a02 + y * a12 + z * a22 + a32) * lw;
|
|
|
|
return this;
|
|
},
|
|
|
|
/**
|
|
* Unproject this point from 2D space to 3D space.
|
|
* The point should have its x and y properties set to
|
|
* 2D screen space, and the z either at 0 (near plane)
|
|
* or 1 (far plane). The provided matrix is assumed to already
|
|
* be combined, i.e. projection * view * model.
|
|
*
|
|
* After this operation, this vector's (x, y, z) components will
|
|
* represent the unprojected 3D coordinate.
|
|
*
|
|
* @param {Vector4} viewport screen x, y, width and height in pixels
|
|
* @param {Matrix4} invProjectionView combined projection and view matrix
|
|
* @return {Vector3} this object, for chaining
|
|
*/
|
|
unproject: function (viewport, invProjectionView)
|
|
{
|
|
var viewX = viewport.x;
|
|
var viewY = viewport.y;
|
|
var viewWidth = viewport.z;
|
|
var viewHeight = viewport.w;
|
|
|
|
var x = this.x - viewX;
|
|
var y = (viewHeight - this.y - 1) - viewY;
|
|
var z = this.z;
|
|
|
|
this.x = (2 * x) / viewWidth - 1;
|
|
this.y = (2 * y) / viewHeight - 1;
|
|
this.z = 2 * z - 1;
|
|
|
|
return this.project(invProjectionView);
|
|
},
|
|
|
|
reset: function ()
|
|
{
|
|
this.x = 0;
|
|
this.y = 0;
|
|
this.z = 0;
|
|
|
|
return this;
|
|
}
|
|
|
|
});
|
|
|
|
Vector3.prototype.sub = Vector3.prototype.subtract;
|
|
Vector3.prototype.mul = Vector3.prototype.multiply;
|
|
Vector3.prototype.div = Vector3.prototype.divide;
|
|
Vector3.prototype.dist = Vector3.prototype.distance;
|
|
Vector3.prototype.distSq = Vector3.prototype.distanceSq;
|
|
Vector3.prototype.len = Vector3.prototype.length;
|
|
Vector3.prototype.lenSq = Vector3.prototype.lengthSq;
|
|
|
|
module.exports = Vector3;
|