mirror of
https://github.com/photonstorm/phaser
synced 2024-12-11 05:42:55 +00:00
1071 lines
No EOL
33 KiB
TypeScript
1071 lines
No EOL
33 KiB
TypeScript
/// <reference path="../Game.ts" />
|
|
|
|
/**
|
|
* Phaser - GameMath
|
|
*
|
|
* Adds a set of extra Math functions used through-out Phaser.
|
|
* Includes methods written by Dylan Engelman and Adam Saltsman.
|
|
*/
|
|
|
|
module Phaser {
|
|
|
|
export class GameMath {
|
|
|
|
constructor(game: Game) {
|
|
|
|
this.game = game;
|
|
|
|
GameMath.sinA = [];
|
|
GameMath.cosA = [];
|
|
|
|
for (var i = 0; i < 360; i++)
|
|
{
|
|
GameMath.sinA.push(Math.sin(this.degreesToRadians(i)));
|
|
GameMath.cosA.push(Math.cos(this.degreesToRadians(i)));
|
|
}
|
|
}
|
|
|
|
public game: Game;
|
|
|
|
// Pre-calculated tables containing Math.sin(angle) and Math.cos(angle) from -180 to 180
|
|
// So sinA[sprite.rotation] would be the same as Math.sin(sprite.rotation) without a call to Math.sin
|
|
static sinA: number[];
|
|
static cosA: number[];
|
|
|
|
static PI: number = 3.141592653589793; //number pi
|
|
static PI_2: number = 1.5707963267948965; //PI / 2 OR 90 deg
|
|
static PI_4: number = 0.7853981633974483; //PI / 4 OR 45 deg
|
|
static PI_8: number = 0.39269908169872413; //PI / 8 OR 22.5 deg
|
|
static PI_16: number = 0.19634954084936206; //PI / 16 OR 11.25 deg
|
|
static TWO_PI: number = 6.283185307179586; //2 * PI OR 180 deg
|
|
static THREE_PI_2: number = 4.7123889803846895; //3 * PI_2 OR 270 deg
|
|
static E: number = 2.71828182845905; //number e
|
|
static LN10: number = 2.302585092994046; //ln(10)
|
|
static LN2: number = 0.6931471805599453; //ln(2)
|
|
static LOG10E: number = 0.4342944819032518; //logB10(e)
|
|
static LOG2E: number = 1.442695040888963387; //logB2(e)
|
|
static SQRT1_2: number = 0.7071067811865476; //sqrt( 1 / 2 )
|
|
static SQRT2: number = 1.4142135623730951; //sqrt( 2 )
|
|
static DEG_TO_RAD: number = 0.017453292519943294444444444444444; //PI / 180;
|
|
static RAD_TO_DEG: number = 57.295779513082325225835265587527; // 180.0 / PI;
|
|
|
|
static B_16: number = 65536;//2^16
|
|
static B_31: number = 2147483648;//2^31
|
|
static B_32: number = 4294967296;//2^32
|
|
static B_48: number = 281474976710656;//2^48
|
|
static B_53: number = 9007199254740992;//2^53 !!NOTE!! largest accurate double floating point whole value
|
|
static B_64: number = 18446744073709551616;//2^64 !!NOTE!! Not accurate see B_53
|
|
|
|
static ONE_THIRD: number = 0.333333333333333333333333333333333; // 1.0/3.0;
|
|
static TWO_THIRDS: number = 0.666666666666666666666666666666666; // 2.0/3.0;
|
|
static ONE_SIXTH: number = 0.166666666666666666666666666666666; // 1.0/6.0;
|
|
|
|
static COS_PI_3: number = 0.86602540378443864676372317075294;//COS( PI / 3 )
|
|
static SIN_2PI_3: number = 0.03654595;// SIN( 2*PI/3 )
|
|
|
|
static CIRCLE_ALPHA: number = 0.5522847498307933984022516322796; //4*(Math.sqrt(2)-1)/3.0;
|
|
|
|
static ON: bool = true;
|
|
static OFF: bool = false;
|
|
|
|
static SHORT_EPSILON: number = 0.1;//round integer epsilon
|
|
static PERC_EPSILON: number = 0.001;//percentage epsilon
|
|
static EPSILON: number = 0.0001;//single float average epsilon
|
|
static LONG_EPSILON: number = 0.00000001;//arbitrary 8 digit epsilon
|
|
|
|
public cosTable = [];
|
|
public sinTable = [];
|
|
|
|
public fuzzyEqual(a: number, b: number, epsilon: number = 0.0001): bool {
|
|
return Math.abs(a - b) < epsilon;
|
|
}
|
|
|
|
public fuzzyLessThan(a: number, b: number, epsilon: number = 0.0001): bool {
|
|
return a < b + epsilon;
|
|
}
|
|
|
|
public fuzzyGreaterThan(a: number, b: number, epsilon: number = 0.0001): bool {
|
|
return a > b - epsilon;
|
|
}
|
|
|
|
public fuzzyCeil(val: number, epsilon: number = 0.0001): number {
|
|
return Math.ceil(val - epsilon);
|
|
}
|
|
|
|
public fuzzyFloor(val: number, epsilon: number = 0.0001): number {
|
|
return Math.floor(val + epsilon);
|
|
}
|
|
|
|
public average(...args: any[]): number {
|
|
var avg: number = 0;
|
|
|
|
for (var i = 0; i < args.length; i++)
|
|
{
|
|
avg += args[i];
|
|
}
|
|
|
|
return avg / args.length;
|
|
}
|
|
|
|
public slam(value: number, target: number, epsilon: number = 0.0001): number {
|
|
return (Math.abs(value - target) < epsilon) ? target : value;
|
|
}
|
|
|
|
/**
|
|
* ratio of value to a range
|
|
*/
|
|
public percentageMinMax(val: number, max: number, min: number = 0): number {
|
|
val -= min;
|
|
max -= min;
|
|
|
|
if (!max) return 0;
|
|
else return val / max;
|
|
}
|
|
|
|
/**
|
|
* a value representing the sign of the value.
|
|
* -1 for negative, +1 for positive, 0 if value is 0
|
|
*/
|
|
public sign(n: number): number {
|
|
if (n) return n / Math.abs(n);
|
|
else return 0;
|
|
}
|
|
|
|
public truncate(n: number): number {
|
|
return (n > 0) ? Math.floor(n) : Math.ceil(n);
|
|
}
|
|
|
|
public shear(n: number): number {
|
|
return n % 1;
|
|
}
|
|
|
|
/**
|
|
* wrap a value around a range, similar to modulus with a floating minimum
|
|
*/
|
|
public wrap(val: number, max: number, min: number = 0): number {
|
|
val -= min;
|
|
max -= min;
|
|
if (max == 0) return min;
|
|
val %= max;
|
|
val += min;
|
|
while (val < min)
|
|
val += max;
|
|
|
|
return val;
|
|
}
|
|
|
|
/**
|
|
* arithmetic version of wrap... need to decide which is more efficient
|
|
*/
|
|
public arithWrap(value: number, max: number, min: number = 0): number {
|
|
max -= min;
|
|
if (max == 0) return min;
|
|
return value - max * Math.floor((value - min) / max);
|
|
}
|
|
|
|
/**
|
|
* force a value within the boundaries of two values
|
|
*
|
|
* if max < min, min is returned
|
|
*/
|
|
public clamp(input: number, max: number, min: number = 0): number {
|
|
return Math.max(min, Math.min(max, input));
|
|
}
|
|
|
|
/**
|
|
* Snap a value to nearest grid slice, using rounding.
|
|
*
|
|
* example if you have an interval gap of 5 and a position of 12... you will snap to 10. Where as 14 will snap to 15
|
|
*
|
|
* @param input - the value to snap
|
|
* @param gap - the interval gap of the grid
|
|
* @param [start] - optional starting offset for gap
|
|
*/
|
|
public snapTo(input: number, gap: number, start: number = 0): number {
|
|
if (gap == 0) return input;
|
|
|
|
input -= start;
|
|
input = gap * Math.round(input / gap);
|
|
return start + input;
|
|
}
|
|
|
|
/**
|
|
* Snap a value to nearest grid slice, using floor.
|
|
*
|
|
* example if you have an interval gap of 5 and a position of 12... you will snap to 10. As will 14 snap to 10... but 16 will snap to 15
|
|
*
|
|
* @param input - the value to snap
|
|
* @param gap - the interval gap of the grid
|
|
* @param [start] - optional starting offset for gap
|
|
*/
|
|
public snapToFloor(input: number, gap: number, start: number = 0): number {
|
|
if (gap == 0) return input;
|
|
|
|
input -= start;
|
|
input = gap * Math.floor(input / gap);
|
|
return start + input;
|
|
}
|
|
|
|
/**
|
|
* Snap a value to nearest grid slice, using ceil.
|
|
*
|
|
* example if you have an interval gap of 5 and a position of 12... you will snap to 15. As will 14 will snap to 15... but 16 will snap to 20
|
|
*
|
|
* @param input - the value to snap
|
|
* @param gap - the interval gap of the grid
|
|
* @param [start] - optional starting offset for gap
|
|
*/
|
|
public snapToCeil(input: number, gap: number, start: number = 0): number {
|
|
if (gap == 0) return input;
|
|
|
|
input -= start;
|
|
input = gap * Math.ceil(input / gap);
|
|
return start + input;
|
|
}
|
|
|
|
/**
|
|
* Snaps a value to the nearest value in an array.
|
|
*/
|
|
public snapToInArray(input: number, arr: number[], sort?: bool = true): number {
|
|
|
|
if (sort) arr.sort();
|
|
if (input < arr[0]) return arr[0];
|
|
|
|
var i: number = 1;
|
|
|
|
while (arr[i] < input)
|
|
i++;
|
|
|
|
var low: number = arr[i - 1];
|
|
var high: number = (i < arr.length) ? arr[i] : Number.POSITIVE_INFINITY;
|
|
|
|
return ((high - input) <= (input - low)) ? high : low;
|
|
}
|
|
|
|
/**
|
|
* roundTo some place comparative to a 'base', default is 10 for decimal place
|
|
*
|
|
* 'place' is represented by the power applied to 'base' to get that place
|
|
*
|
|
* @param value - the value to round
|
|
* @param place - the place to round to
|
|
* @param base - the base to round in... default is 10 for decimal
|
|
*
|
|
* e.g.
|
|
*
|
|
* 2000/7 ~= 285.714285714285714285714 ~= (bin)100011101.1011011011011011
|
|
*
|
|
* roundTo(2000/7,3) == 0
|
|
* roundTo(2000/7,2) == 300
|
|
* roundTo(2000/7,1) == 290
|
|
* roundTo(2000/7,0) == 286
|
|
* roundTo(2000/7,-1) == 285.7
|
|
* roundTo(2000/7,-2) == 285.71
|
|
* roundTo(2000/7,-3) == 285.714
|
|
* roundTo(2000/7,-4) == 285.7143
|
|
* roundTo(2000/7,-5) == 285.71429
|
|
*
|
|
* roundTo(2000/7,3,2) == 288 -- 100100000
|
|
* roundTo(2000/7,2,2) == 284 -- 100011100
|
|
* roundTo(2000/7,1,2) == 286 -- 100011110
|
|
* roundTo(2000/7,0,2) == 286 -- 100011110
|
|
* roundTo(2000/7,-1,2) == 285.5 -- 100011101.1
|
|
* roundTo(2000/7,-2,2) == 285.75 -- 100011101.11
|
|
* roundTo(2000/7,-3,2) == 285.75 -- 100011101.11
|
|
* roundTo(2000/7,-4,2) == 285.6875 -- 100011101.1011
|
|
* roundTo(2000/7,-5,2) == 285.71875 -- 100011101.10111
|
|
*
|
|
* note what occurs when we round to the 3rd space (8ths place), 100100000, this is to be assumed
|
|
* because we are rounding 100011.1011011011011011 which rounds up.
|
|
*/
|
|
public roundTo(value: number, place: number = 0, base: number = 10): number {
|
|
var p: number = Math.pow(base, -place);
|
|
return Math.round(value * p) / p;
|
|
}
|
|
|
|
public floorTo(value: number, place: number = 0, base: number = 10): number {
|
|
var p: number = Math.pow(base, -place);
|
|
return Math.floor(value * p) / p;
|
|
}
|
|
|
|
public ceilTo(value: number, place: number = 0, base: number = 10): number {
|
|
var p: number = Math.pow(base, -place);
|
|
return Math.ceil(value * p) / p;
|
|
}
|
|
|
|
/**
|
|
* a one dimensional linear interpolation of a value.
|
|
*/
|
|
public interpolateFloat(a: number, b: number, weight: number): number {
|
|
return (b - a) * weight + a;
|
|
}
|
|
|
|
/**
|
|
* convert radians to degrees
|
|
*/
|
|
public radiansToDegrees(angle: number): number {
|
|
return angle * GameMath.RAD_TO_DEG;
|
|
}
|
|
|
|
/**
|
|
* convert degrees to radians
|
|
*/
|
|
public degreesToRadians(angle: number): number {
|
|
return angle * GameMath.DEG_TO_RAD;
|
|
}
|
|
|
|
/**
|
|
* Find the angle of a segment from (x1, y1) -> (x2, y2 )
|
|
*/
|
|
public angleBetween(x1: number, y1: number, x2: number, y2: number): number {
|
|
return Math.atan2(y2 - y1, x2 - x1);
|
|
}
|
|
|
|
|
|
/**
|
|
* set an angle within the bounds of -PI to PI
|
|
*/
|
|
public normalizeAngle(angle: number, radians: bool = true): number {
|
|
var rd: number = (radians) ? GameMath.PI : 180;
|
|
return this.wrap(angle, rd, -rd);
|
|
}
|
|
|
|
/**
|
|
* closest angle between two angles from a1 to a2
|
|
* absolute value the return for exact angle
|
|
*/
|
|
public nearestAngleBetween(a1: number, a2: number, radians: bool = true): number {
|
|
|
|
var rd: number = (radians) ? GameMath.PI : 180;
|
|
|
|
a1 = this.normalizeAngle(a1, radians);
|
|
a2 = this.normalizeAngle(a2, radians);
|
|
|
|
if (a1 < -rd / 2 && a2 > rd / 2) a1 += rd * 2;
|
|
if (a2 < -rd / 2 && a1 > rd / 2) a2 += rd * 2;
|
|
|
|
return a2 - a1;
|
|
}
|
|
|
|
/**
|
|
* normalizes independent and then sets dep to the nearest value respective to independent
|
|
*
|
|
* for instance if dep=-170 and ind=170 then 190 will be returned as an alternative to -170
|
|
*/
|
|
public normalizeAngleToAnother(dep: number, ind: number, radians: bool = true): number {
|
|
return ind + this.nearestAngleBetween(ind, dep, radians);
|
|
}
|
|
|
|
/**
|
|
* normalize independent and dependent and then set dependent to an angle relative to 'after/clockwise' independent
|
|
*
|
|
* for instance dep=-170 and ind=170, then 190 will be reutrned as alternative to -170
|
|
*/
|
|
public normalizeAngleAfterAnother(dep: number, ind: number, radians: bool = true): number {
|
|
|
|
dep = this.normalizeAngle(dep - ind, radians);
|
|
return ind + dep;
|
|
}
|
|
|
|
/**
|
|
* normalizes indendent and dependent and then sets dependent to an angle relative to 'before/counterclockwise' independent
|
|
*
|
|
* for instance dep = 190 and ind = 170, then -170 will be returned as an alternative to 190
|
|
*/
|
|
public normalizeAngleBeforeAnother(dep: number, ind: number, radians: bool = true): number {
|
|
|
|
dep = this.normalizeAngle(ind - dep, radians);
|
|
return ind - dep;
|
|
}
|
|
|
|
/**
|
|
* interpolate across the shortest arc between two angles
|
|
*/
|
|
public interpolateAngles(a1: number, a2: number, weight: number, radians: bool = true, ease = null): number {
|
|
|
|
a1 = this.normalizeAngle(a1, radians);
|
|
a2 = this.normalizeAngleToAnother(a2, a1, radians);
|
|
|
|
return (typeof ease === 'function') ? ease(weight, a1, a2 - a1, 1) : this.interpolateFloat(a1, a2, weight);
|
|
}
|
|
|
|
/**
|
|
* Compute the logarithm of any value of any base
|
|
*
|
|
* a logarithm is the exponent that some constant (base) would have to be raised to
|
|
* to be equal to value.
|
|
*
|
|
* i.e.
|
|
* 4 ^ x = 16
|
|
* can be rewritten as to solve for x
|
|
* logB4(16) = x
|
|
* which with this function would be
|
|
* LoDMath.logBaseOf(16,4)
|
|
*
|
|
* which would return 2, because 4^2 = 16
|
|
*/
|
|
public logBaseOf(value: number, base: number): number {
|
|
return Math.log(value) / Math.log(base);
|
|
}
|
|
|
|
/**
|
|
* Greatest Common Denominator using Euclid's algorithm
|
|
*/
|
|
public GCD(m: number, n: number): number {
|
|
var r: number;
|
|
|
|
//make sure positive, GCD is always positive
|
|
m = Math.abs(m);
|
|
n = Math.abs(n);
|
|
|
|
//m must be >= n
|
|
if (m < n)
|
|
{
|
|
r = m;
|
|
m = n;
|
|
n = r;
|
|
}
|
|
|
|
//now start loop
|
|
while (true)
|
|
{
|
|
r = m % n;
|
|
if (!r) return n;
|
|
m = n;
|
|
n = r;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Lowest Common Multiple
|
|
*/
|
|
public LCM(m: number, n: number): number {
|
|
return (m * n) / this.GCD(m, n);
|
|
}
|
|
|
|
/**
|
|
* Factorial - N!
|
|
*
|
|
* simple product series
|
|
*
|
|
* by definition:
|
|
* 0! == 1
|
|
*/
|
|
public factorial(value: number): number {
|
|
if (value == 0) return 1;
|
|
|
|
var res: number = value;
|
|
|
|
while (--value)
|
|
{
|
|
res *= value;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* gamma function
|
|
*
|
|
* defined: gamma(N) == (N - 1)!
|
|
*/
|
|
public gammaFunction(value: number): number {
|
|
return this.factorial(value - 1);
|
|
}
|
|
|
|
/**
|
|
* falling factorial
|
|
*
|
|
* defined: (N)! / (N - x)!
|
|
*
|
|
* written subscript: (N)x OR (base)exp
|
|
*/
|
|
public fallingFactorial(base: number, exp: number): number {
|
|
return this.factorial(base) / this.factorial(base - exp);
|
|
}
|
|
|
|
/**
|
|
* rising factorial
|
|
*
|
|
* defined: (N + x - 1)! / (N - 1)!
|
|
*
|
|
* written superscript N^(x) OR base^(exp)
|
|
*/
|
|
public risingFactorial(base: number, exp: number): number {
|
|
//expanded from gammaFunction for speed
|
|
return this.factorial(base + exp - 1) / this.factorial(base - 1);
|
|
}
|
|
|
|
/**
|
|
* binomial coefficient
|
|
*
|
|
* defined: N! / (k!(N-k)!)
|
|
* reduced: N! / (N-k)! == (N)k (fallingfactorial)
|
|
* reduced: (N)k / k!
|
|
*/
|
|
public binCoef(n: number, k: number): number {
|
|
return this.fallingFactorial(n, k) / this.factorial(k);
|
|
}
|
|
|
|
/**
|
|
* rising binomial coefficient
|
|
*
|
|
* as one can notice in the analysis of binCoef(...) that
|
|
* binCoef is the (N)k divided by k!. Similarly rising binCoef
|
|
* is merely N^(k) / k!
|
|
*/
|
|
public risingBinCoef(n: number, k: number): number {
|
|
return this.risingFactorial(n, k) / this.factorial(k);
|
|
}
|
|
|
|
/**
|
|
* Generate a random boolean result based on the chance value
|
|
* <p>
|
|
* Returns true or false based on the chance value (default 50%). For example if you wanted a player to have a 30% chance
|
|
* of getting a bonus, call chanceRoll(30) - true means the chance passed, false means it failed.
|
|
* </p>
|
|
* @param chance The chance of receiving the value. A number between 0 and 100 (effectively 0% to 100%)
|
|
* @return true if the roll passed, or false
|
|
*/
|
|
public chanceRoll(chance: number = 50): bool {
|
|
|
|
if (chance <= 0)
|
|
{
|
|
return false;
|
|
}
|
|
else if (chance >= 100)
|
|
{
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
if (Math.random() * 100 >= chance)
|
|
{
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
return true;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Adds the given amount to the value, but never lets the value go over the specified maximum
|
|
*
|
|
* @param value The value to add the amount to
|
|
* @param amount The amount to add to the value
|
|
* @param max The maximum the value is allowed to be
|
|
* @return The new value
|
|
*/
|
|
public maxAdd(value: number, amount: number, max: number): number {
|
|
|
|
value += amount;
|
|
|
|
if (value > max)
|
|
{
|
|
value = max;
|
|
}
|
|
|
|
return value;
|
|
|
|
}
|
|
|
|
/**
|
|
* Subtracts the given amount from the value, but never lets the value go below the specified minimum
|
|
*
|
|
* @param value The base value
|
|
* @param amount The amount to subtract from the base value
|
|
* @param min The minimum the value is allowed to be
|
|
* @return The new value
|
|
*/
|
|
public minSub(value: number, amount: number, min: number): number {
|
|
|
|
value -= amount;
|
|
|
|
if (value < min)
|
|
{
|
|
value = min;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/**
|
|
* Adds value to amount and ensures that the result always stays between 0 and max, by wrapping the value around.
|
|
* <p>Values must be positive integers, and are passed through Math.abs</p>
|
|
*
|
|
* @param value The value to add the amount to
|
|
* @param amount The amount to add to the value
|
|
* @param max The maximum the value is allowed to be
|
|
* @return The wrapped value
|
|
*/
|
|
public wrapValue(value: number, amount: number, max: number): number {
|
|
|
|
var diff: number;
|
|
|
|
value = Math.abs(value);
|
|
amount = Math.abs(amount);
|
|
max = Math.abs(max);
|
|
|
|
diff = (value + amount) % max;
|
|
|
|
return diff;
|
|
|
|
}
|
|
|
|
/**
|
|
* Randomly returns either a 1 or -1
|
|
*
|
|
* @return 1 or -1
|
|
*/
|
|
public randomSign(): number {
|
|
return (Math.random() > 0.5) ? 1 : -1;
|
|
}
|
|
|
|
/**
|
|
* Returns true if the number given is odd.
|
|
*
|
|
* @param n The number to check
|
|
*
|
|
* @return True if the given number is odd. False if the given number is even.
|
|
*/
|
|
public isOdd(n: number): bool {
|
|
|
|
if (n & 1)
|
|
{
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Returns true if the number given is even.
|
|
*
|
|
* @param n The number to check
|
|
*
|
|
* @return True if the given number is even. False if the given number is odd.
|
|
*/
|
|
public isEven(n: number): bool {
|
|
|
|
if (n & 1)
|
|
{
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
return true;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Keeps an angle value between -180 and +180<br>
|
|
* Should be called whenever the angle is updated on the Sprite to stop it from going insane.
|
|
*
|
|
* @param angle The angle value to check
|
|
*
|
|
* @return The new angle value, returns the same as the input angle if it was within bounds
|
|
*/
|
|
public wrapAngle(angle: number): number {
|
|
|
|
var result: number = angle;
|
|
|
|
// Nothing needs to change
|
|
if (angle >= -180 && angle <= 180)
|
|
{
|
|
return angle;
|
|
}
|
|
|
|
// Else normalise it to -180, 180
|
|
result = (angle + 180) % 360;
|
|
|
|
if (result < 0)
|
|
{
|
|
result += 360;
|
|
}
|
|
|
|
return result - 180;
|
|
|
|
}
|
|
|
|
/**
|
|
* Keeps an angle value between the given min and max values
|
|
*
|
|
* @param angle The angle value to check. Must be between -180 and +180
|
|
* @param min The minimum angle that is allowed (must be -180 or greater)
|
|
* @param max The maximum angle that is allowed (must be 180 or less)
|
|
*
|
|
* @return The new angle value, returns the same as the input angle if it was within bounds
|
|
*/
|
|
public angleLimit(angle: number, min: number, max: number): number {
|
|
|
|
var result: number = angle;
|
|
|
|
if (angle > max)
|
|
{
|
|
result = max;
|
|
}
|
|
else if (angle < min)
|
|
{
|
|
result = min;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* @method linear
|
|
* @param {Any} v
|
|
* @param {Any} k
|
|
* @public
|
|
*/
|
|
public linearInterpolation(v, k) {
|
|
|
|
var m = v.length - 1;
|
|
var f = m * k;
|
|
var i = Math.floor(f);
|
|
|
|
if (k < 0) return this.linear(v[0], v[1], f);
|
|
if (k > 1) return this.linear(v[m], v[m - 1], m - f);
|
|
|
|
return this.linear(v[i], v[i + 1 > m ? m : i + 1], f - i);
|
|
|
|
}
|
|
|
|
/**
|
|
* @method Bezier
|
|
* @param {Any} v
|
|
* @param {Any} k
|
|
* @public
|
|
*/
|
|
public bezierInterpolation(v, k) {
|
|
|
|
var b = 0;
|
|
var n = v.length - 1;
|
|
|
|
for (var i = 0; i <= n; i++)
|
|
{
|
|
b += Math.pow(1 - k, n - i) * Math.pow(k, i) * v[i] * this.bernstein(n, i);
|
|
}
|
|
|
|
return b;
|
|
|
|
}
|
|
|
|
/**
|
|
* @method CatmullRom
|
|
* @param {Any} v
|
|
* @param {Any} k
|
|
* @public
|
|
*/
|
|
public catmullRomInterpolation(v, k) {
|
|
|
|
var m = v.length - 1;
|
|
var f = m * k;
|
|
var i = Math.floor(f);
|
|
|
|
if (v[0] === v[m])
|
|
{
|
|
if (k < 0) i = Math.floor(f = m * (1 + k));
|
|
|
|
return this.catmullRom(v[(i - 1 + m) % m], v[i], v[(i + 1) % m], v[(i + 2) % m], f - i);
|
|
|
|
}
|
|
else
|
|
{
|
|
if (k < 0) return v[0] - (this.catmullRom(v[0], v[0], v[1], v[1], -f) - v[0]);
|
|
|
|
if (k > 1) return v[m] - (this.catmullRom(v[m], v[m], v[m - 1], v[m - 1], f - m) - v[m]);
|
|
|
|
return this.catmullRom(v[i ? i - 1 : 0], v[i], v[m < i + 1 ? m : i + 1], v[m < i + 2 ? m : i + 2], f - i);
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* @method Linear
|
|
* @param {Any} p0
|
|
* @param {Any} p1
|
|
* @param {Any} t
|
|
* @public
|
|
*/
|
|
public linear(p0, p1, t) {
|
|
|
|
return (p1 - p0) * t + p0;
|
|
|
|
}
|
|
|
|
/**
|
|
* @method Bernstein
|
|
* @param {Any} n
|
|
* @param {Any} i
|
|
* @public
|
|
*/
|
|
public bernstein(n, i) {
|
|
|
|
return this.factorial(n) / this.factorial(i) / this.factorial(n - i);
|
|
|
|
}
|
|
|
|
/**
|
|
* @method CatmullRom
|
|
* @param {Any} p0
|
|
* @param {Any} p1
|
|
* @param {Any} p2
|
|
* @param {Any} p3
|
|
* @param {Any} t
|
|
* @public
|
|
*/
|
|
public catmullRom(p0, p1, p2, p3, t) {
|
|
|
|
var v0 = (p2 - p0) * 0.5, v1 = (p3 - p1) * 0.5, t2 = t * t, t3 = t * t2;
|
|
return (2 * p1 - 2 * p2 + v0 + v1) * t3 + (-3 * p1 + 3 * p2 - 2 * v0 - v1) * t2 + v0 * t + p1;
|
|
|
|
}
|
|
|
|
public difference(a: number, b: number): number {
|
|
|
|
return Math.abs(a - b);
|
|
|
|
}
|
|
|
|
/**
|
|
* The global random number generator seed (for deterministic behavior in recordings and saves).
|
|
*/
|
|
public globalSeed: number = Math.random();
|
|
|
|
/**
|
|
* Generates a random number. Deterministic, meaning safe
|
|
* to use if you want to record replays in random environments.
|
|
*
|
|
* @return A <code>Number</code> between 0 and 1.
|
|
*/
|
|
public random(): number {
|
|
return this.globalSeed = this.srand(this.globalSeed);
|
|
}
|
|
|
|
/**
|
|
* Generates a random number based on the seed provided.
|
|
*
|
|
* @param Seed A number between 0 and 1, used to generate a predictable random number (very optional).
|
|
*
|
|
* @return A <code>Number</code> between 0 and 1.
|
|
*/
|
|
public srand(Seed: number): number {
|
|
|
|
return ((69621 * (Seed * 0x7FFFFFFF)) % 0x7FFFFFFF) / 0x7FFFFFFF;
|
|
|
|
}
|
|
|
|
/**
|
|
* Fetch a random entry from the given array.
|
|
* Will return null if random selection is missing, or array has no entries.
|
|
*
|
|
* @param objects An array of objects.
|
|
* @param startIndex Optional offset off the front of the array. Default value is 0, or the beginning of the array.
|
|
* @param length Optional restriction on the number of values you want to randomly select from.
|
|
*
|
|
* @return The random object that was selected.
|
|
*/
|
|
public getRandom(objects, startIndex: number = 0, length: number = 0) {
|
|
|
|
if (objects != null)
|
|
{
|
|
var l: number = length;
|
|
|
|
if ((l == 0) || (l > objects.length - startIndex))
|
|
{
|
|
l = objects.length - startIndex;
|
|
}
|
|
|
|
if (l > 0)
|
|
{
|
|
return objects[startIndex + Math.floor(Math.random() * l)];
|
|
}
|
|
}
|
|
|
|
return null;
|
|
|
|
}
|
|
|
|
/**
|
|
* Round down to the next whole number. E.g. floor(1.7) == 1, and floor(-2.7) == -2.
|
|
*
|
|
* @param Value Any number.
|
|
*
|
|
* @return The rounded value of that number.
|
|
*/
|
|
public floor(Value: number): number {
|
|
var n: number = Value | 0;
|
|
return (Value > 0) ? (n) : ((n != Value) ? (n - 1) : (n));
|
|
}
|
|
|
|
/**
|
|
* Round up to the next whole number. E.g. ceil(1.3) == 2, and ceil(-2.3) == -3.
|
|
*
|
|
* @param Value Any number.
|
|
*
|
|
* @return The rounded value of that number.
|
|
*/
|
|
public ceil(Value: number): number {
|
|
var n: number = Value | 0;
|
|
return (Value > 0) ? ((n != Value) ? (n + 1) : (n)) : (n);
|
|
}
|
|
|
|
/**
|
|
* Generate a sine and cosine table simultaneously and extremely quickly. Based on research by Franky of scene.at
|
|
* <p>
|
|
* The parameters allow you to specify the length, amplitude and frequency of the wave. Once you have called this function
|
|
* you should get the results via getSinTable() and getCosTable(). This generator is fast enough to be used in real-time.
|
|
* </p>
|
|
* @param length The length of the wave
|
|
* @param sinAmplitude The amplitude to apply to the sine table (default 1.0) if you need values between say -+ 125 then give 125 as the value
|
|
* @param cosAmplitude The amplitude to apply to the cosine table (default 1.0) if you need values between say -+ 125 then give 125 as the value
|
|
* @param frequency The frequency of the sine and cosine table data
|
|
* @return Returns the sine table
|
|
* @see getSinTable
|
|
* @see getCosTable
|
|
*/
|
|
public sinCosGenerator(length: number, sinAmplitude?: number = 1.0, cosAmplitude?: number = 1.0, frequency?: number = 1.0) {
|
|
|
|
var sin: number = sinAmplitude;
|
|
var cos: number = cosAmplitude;
|
|
var frq: number = frequency * Math.PI / length;
|
|
|
|
this.cosTable = [];
|
|
this.sinTable = [];
|
|
|
|
for (var c: number = 0; c < length; c++)
|
|
{
|
|
cos -= sin * frq;
|
|
sin += cos * frq;
|
|
|
|
this.cosTable[c] = cos;
|
|
this.sinTable[c] = sin;
|
|
}
|
|
|
|
return this.sinTable;
|
|
|
|
}
|
|
|
|
/**
|
|
* Shifts through the sin table data by one value and returns it.
|
|
* This effectively moves the position of the data from the start to the end of the table.
|
|
* @return The sin value.
|
|
*/
|
|
public shiftSinTable(): number {
|
|
|
|
if (this.sinTable)
|
|
{
|
|
var s = this.sinTable.shift();
|
|
this.sinTable.push(s);
|
|
return s;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Shifts through the cos table data by one value and returns it.
|
|
* This effectively moves the position of the data from the start to the end of the table.
|
|
* @return The cos value.
|
|
*/
|
|
public shiftCosTable(): number {
|
|
|
|
if (this.cosTable)
|
|
{
|
|
var s = this.cosTable.shift();
|
|
this.cosTable.push(s);
|
|
return s;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Shuffles the data in the given array into a new order
|
|
* @param array The array to shuffle
|
|
* @return The array
|
|
*/
|
|
public shuffleArray(array) {
|
|
|
|
for (var i = array.length - 1; i > 0; i--)
|
|
{
|
|
var j = Math.floor(Math.random() * (i + 1));
|
|
var temp = array[i];
|
|
array[i] = array[j];
|
|
array[j] = temp;
|
|
}
|
|
|
|
return array;
|
|
|
|
}
|
|
|
|
/**
|
|
* Returns the distance from this Point object to the given Point object.
|
|
* @method distanceFrom
|
|
* @param {Point} target - The destination Point object.
|
|
* @param {Boolean} round - Round the distance to the nearest integer (default false)
|
|
* @return {Number} The distance between this Point object and the destination Point object.
|
|
**/
|
|
public distanceBetween(x1: number, y1: number, x2: number, y2: number): number {
|
|
|
|
var dx = x1 - x2;
|
|
var dy = y1 - y2;
|
|
|
|
return Math.sqrt(dx * dx + dy * dy);
|
|
|
|
}
|
|
|
|
/**
|
|
* Finds the length of the given vector
|
|
*
|
|
* @param dx
|
|
* @param dy
|
|
*
|
|
* @return
|
|
*/
|
|
public vectorLength(dx:number, dy:number):number
|
|
{
|
|
return Math.sqrt(dx * dx + dy * dy);
|
|
}
|
|
|
|
/**
|
|
* Rotates the point around the x/y coordinates given to the desired rotation and distance
|
|
* @param point {Object} Any object with exposed x and y properties
|
|
* @param x {number} The x coordinate of the anchor point
|
|
* @param y {number} The y coordinate of the anchor point
|
|
* @param {Number} rotation The rotation in radians (unless asDegrees is true) to return the point from.
|
|
* @param {Boolean} asDegrees Is the given rotation in radians (false) or degrees (true)?
|
|
* @param {Number} distance An optional distance constraint between the point and the anchor
|
|
* @return The modified point object
|
|
*/
|
|
public rotatePoint(point, x1: number, y1: number, rotation: number, asDegrees: bool = false, distance?:number = null) {
|
|
|
|
if (asDegrees)
|
|
{
|
|
rotation = rotation * GameMath.DEG_TO_RAD;
|
|
}
|
|
|
|
// Get distance from origin to the point
|
|
if (distance === null)
|
|
{
|
|
distance = Math.sqrt(((x1 - point.x) * (x1 - point.x)) + ((y1 - point.y) * (y1 - point.y)));
|
|
}
|
|
|
|
point.x = x1 + distance * Math.cos(rotation);
|
|
point.y = y1 + distance * Math.sin(rotation);
|
|
|
|
return point;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} |