phaser/3.0.0/merge/states/MainLoop.js
2016-11-22 03:11:33 +00:00

249 lines
7.3 KiB
JavaScript

/**
* @author Richard Davey <rich@photonstorm.com>
* @copyright 2016 Photon Storm Ltd.
* @license {@link https://github.com/photonstorm/phaser/blob/master/license.txt|MIT License}
*/
// My thanks to Isaac Sukin for creating MainLoop.js, on which lots of this is based.
Phaser.State.MainLoop = function (state, framerate)
{
/**
* @property {Phaser.State} state
*/
this.state = state;
/**
* @property {Phaser.Game} game - A reference to the currently running Game.
*/
this.game = state.game;
// The amount of time (in milliseconds) to simulate each time update() runs.
this.timestep = 1000 / framerate;
this.physicsStep = 1 / framerate;
// The cumulative amount of in-app time that hasn't been simulated yet.
// See the comments inside animate() for details.
this.frameDelta = 0;
// The timestamp in milliseconds of the last time the main loop was run.
// Used to compute the time elapsed between frames.
this.lastFrameTimeMs = 0;
// An exponential moving average of the frames per second.
this.fps = 60;
// The timestamp (in milliseconds) of the last time the `fps` moving
// average was updated.
this.lastFpsUpdate = 0;
// The number of frames delivered in the current second.
this.framesThisSecond = 0;
// The number of times update() is called in a given frame. This is only
// relevant inside of animate(), but a reference is held externally so that
// this variable is not marked for garbage collection every time the main
// loop runs.
this.numUpdateSteps = 0;
// The minimum amount of time in milliseconds that must pass since the last
// frame was executed before another frame can be executed. The
// multiplicative inverse caps the FPS (the default of zero means there is
// no cap).
this.minFrameDelay = 0;
// Whether the main loop is running.
this.running = false;
// `true` if `MainLoop.start()` has been called and the most recent time it
// was called has not been followed by a call to `MainLoop.stop()`. This is
// different than `running` because there is a delay of a few milliseconds
// after `MainLoop.start()` is called before the application is considered
// "running." This delay is due to waiting for the next frame.
this.started = false;
// Whether the simulation has fallen too far behind real time.
// Specifically, `panic` will be set to `true` if too many updates occur in
// one frame. This is only relevant inside of animate(), but a reference is
// held externally so that this variable is not marked for garbage
// collection every time the main loop runs.
this.panic = false;
};
Phaser.State.MainLoop.prototype.constructor = Phaser.State.MainLoop;
Phaser.State.MainLoop.prototype = {
setMaxFPS: function (fps)
{
if (fps === 0)
{
this.stop();
}
else
{
this.minFrameDelay = 1000 / fps;
}
},
getMaxFPS: function ()
{
return 1000 / this.minFrameDelay;
},
resetFrameDelta: function ()
{
var oldFrameDelta = this.frameDelta;
this.frameDelta = 0;
return oldFrameDelta;
},
start: function ()
{
if (this.started)
{
return this;
}
this.started = true;
this.running = true;
this.lastFrameTimeMs = window.performance.now();
this.lastFpsUpdate = window.performance.now();
this.framesThisSecond = 0;
},
// timestamp = DOMHighResTimeStamp
step: function (timestamp)
{
// Throttle the frame rate (if minFrameDelay is set to a non-zero value by
// `MainLoop.setMaxAllowedFPS()`).
if (timestamp < this.lastFrameTimeMs + this.minFrameDelay)
{
return;
}
// frameDelta is the cumulative amount of in-app time that hasn't been
// simulated yet. Add the time since the last frame. We need to track total
// not-yet-simulated time (as opposed to just the time elapsed since the
// last frame) because not all actually elapsed time is guaranteed to be
// simulated each frame. See the comments below for details.
this.frameDelta += timestamp - this.lastFrameTimeMs;
this.lastFrameTimeMs = timestamp;
// Run any updates that are not dependent on time in the simulation.
// Here we'll need to run things like tween.update, input.update, etc.
this.state.sys.begin(timestamp, this.frameDelta);
// Update the estimate of the frame rate, `fps`. Every second, the number
// of frames that occurred in that second are included in an exponential
// moving average of all frames per second, with an alpha of 0.25. This
// means that more recent seconds affect the estimated frame rate more than
// older seconds.
if (timestamp > this.lastFpsUpdate + 1000)
{
// Compute the new exponential moving average with an alpha of 0.25.
// Using constants inline is okay here.
this.fps = 0.25 * this.framesThisSecond + 0.75 * this.fps;
this.lastFpsUpdate = timestamp;
this.framesThisSecond = 0;
}
this.framesThisSecond++;
this.numUpdateSteps = 0;
var step = this.timestep;
while (this.frameDelta >= step)
{
// this.update(this.timestep);
this.state.sys.update(step, this.physicsStep);
for (var c = 0; c < this.state.sys.children.list.length; c++)
{
var child = this.state.sys.children.list[c];
if (child.exists)
{
child.update(step);
}
}
// Dev level callback
this.state.update(step);
this.frameDelta -= this.timestep;
if (++this.numUpdateSteps >= 240)
{
this.panic = true;
break;
}
}
this.state.sys.preRender();
this.state.sys.updates.start();
if (this.state.settings.visible && this.state.sys.color.alpha !== 0 && this.state.sys.children.list.length > 0)
{
this.game.renderer.render(this.state, this.frameDelta / this.timestep);
}
this.state.sys.updates.stop();
// Run any updates that are not dependent on time in the simulation.
this.state.sys.end(this.fps, this.panic);
this.panic = false;
},
/*
update: function (timestep)
{
this.state.sys.update(timestep);
var c;
var child;
for (var c = 0; c < this.state.sys.children.list.length; c++)
{
var child = this.state.sys.children.list[c];
if (child.exists)
{
child.update(timestep);
}
}
// Dev level callback
this.state.update(timestep);
for (c = 0; c < this.state.sys.children.list.length; c++)
{
var child = this.state.sys.children.list[c];
if (child.exists)
{
child.update(timestep);
}
}
},
*/
stop: function ()
{
this.running = false;
this.started = false;
return this;
}
};