mirror of
https://github.com/photonstorm/phaser
synced 2024-12-18 09:03:29 +00:00
7207 lines
185 KiB
JavaScript
7207 lines
185 KiB
JavaScript
/**
|
||
* @fileoverview gl-matrix - High performance matrix and vector operations
|
||
* @author Brandon Jones
|
||
* @author Colin MacKenzie IV
|
||
* @version 2.2.2
|
||
*/
|
||
|
||
/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
|
||
|
||
Redistribution and use in source and binary forms, with or without modification,
|
||
are permitted provided that the following conditions are met:
|
||
|
||
* Redistributions of source code must retain the above copyright notice, this
|
||
list of conditions and the following disclaimer.
|
||
* Redistributions in binary form must reproduce the above copyright notice,
|
||
this list of conditions and the following disclaimer in the documentation
|
||
and/or other materials provided with the distribution.
|
||
|
||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
||
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
||
|
||
|
||
(function(_global) {
|
||
"use strict";
|
||
|
||
var shim = {};
|
||
if (typeof(exports) === 'undefined') {
|
||
if(typeof define == 'function' && typeof define.amd == 'object' && define.amd) {
|
||
shim.exports = {};
|
||
define(function() {
|
||
return shim.exports;
|
||
});
|
||
} else {
|
||
// gl-matrix lives in a browser, define its namespaces in global
|
||
shim.exports = typeof(window) !== 'undefined' ? window : _global;
|
||
}
|
||
}
|
||
else {
|
||
// gl-matrix lives in commonjs, define its namespaces in exports
|
||
shim.exports = exports;
|
||
}
|
||
|
||
(function(exports) {
|
||
/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
|
||
|
||
Redistribution and use in source and binary forms, with or without modification,
|
||
are permitted provided that the following conditions are met:
|
||
|
||
* Redistributions of source code must retain the above copyright notice, this
|
||
list of conditions and the following disclaimer.
|
||
* Redistributions in binary form must reproduce the above copyright notice,
|
||
this list of conditions and the following disclaimer in the documentation
|
||
and/or other materials provided with the distribution.
|
||
|
||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
||
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
||
|
||
|
||
if(!GLMAT_EPSILON) {
|
||
var GLMAT_EPSILON = 0.000001;
|
||
}
|
||
|
||
if(!GLMAT_ARRAY_TYPE) {
|
||
var GLMAT_ARRAY_TYPE = (typeof Float32Array !== 'undefined') ? Float32Array : Array;
|
||
}
|
||
|
||
if(!GLMAT_RANDOM) {
|
||
var GLMAT_RANDOM = Math.random;
|
||
}
|
||
|
||
/**
|
||
* @class Common utilities
|
||
* @name glMatrix
|
||
*/
|
||
var glMatrix = {};
|
||
|
||
/**
|
||
* Sets the type of array used when creating new vectors and matrices
|
||
*
|
||
* @param {Type} type Array type, such as Float32Array or Array
|
||
*/
|
||
glMatrix.setMatrixArrayType = function(type) {
|
||
GLMAT_ARRAY_TYPE = type;
|
||
}
|
||
|
||
if(typeof(exports) !== 'undefined') {
|
||
exports.glMatrix = glMatrix;
|
||
}
|
||
|
||
var degree = Math.PI / 180;
|
||
|
||
/**
|
||
* Convert Degree To Radian
|
||
*
|
||
* @param {Number} Angle in Degrees
|
||
*/
|
||
glMatrix.toRadian = function(a){
|
||
return a * degree;
|
||
}
|
||
;
|
||
/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
|
||
|
||
Redistribution and use in source and binary forms, with or without modification,
|
||
are permitted provided that the following conditions are met:
|
||
|
||
* Redistributions of source code must retain the above copyright notice, this
|
||
list of conditions and the following disclaimer.
|
||
* Redistributions in binary form must reproduce the above copyright notice,
|
||
this list of conditions and the following disclaimer in the documentation
|
||
and/or other materials provided with the distribution.
|
||
|
||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
||
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
||
|
||
/**
|
||
* @class 2 Dimensional Vector
|
||
* @name vec2
|
||
*/
|
||
|
||
var vec2 = {};
|
||
|
||
/**
|
||
* Creates a new, empty vec2
|
||
*
|
||
* @returns {vec2} a new 2D vector
|
||
*/
|
||
vec2.create = function() {
|
||
var out = new GLMAT_ARRAY_TYPE(2);
|
||
out[0] = 0;
|
||
out[1] = 0;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Creates a new vec2 initialized with values from an existing vector
|
||
*
|
||
* @param {vec2} a vector to clone
|
||
* @returns {vec2} a new 2D vector
|
||
*/
|
||
vec2.clone = function(a) {
|
||
var out = new GLMAT_ARRAY_TYPE(2);
|
||
out[0] = a[0];
|
||
out[1] = a[1];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Creates a new vec2 initialized with the given values
|
||
*
|
||
* @param {Number} x X component
|
||
* @param {Number} y Y component
|
||
* @returns {vec2} a new 2D vector
|
||
*/
|
||
vec2.fromValues = function(x, y) {
|
||
var out = new GLMAT_ARRAY_TYPE(2);
|
||
out[0] = x;
|
||
out[1] = y;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Copy the values from one vec2 to another
|
||
*
|
||
* @param {vec2} out the receiving vector
|
||
* @param {vec2} a the source vector
|
||
* @returns {vec2} out
|
||
*/
|
||
vec2.copy = function(out, a) {
|
||
out[0] = a[0];
|
||
out[1] = a[1];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Set the components of a vec2 to the given values
|
||
*
|
||
* @param {vec2} out the receiving vector
|
||
* @param {Number} x X component
|
||
* @param {Number} y Y component
|
||
* @returns {vec2} out
|
||
*/
|
||
vec2.set = function(out, x, y) {
|
||
out[0] = x;
|
||
out[1] = y;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Adds two vec2's
|
||
*
|
||
* @param {vec2} out the receiving vector
|
||
* @param {vec2} a the first operand
|
||
* @param {vec2} b the second operand
|
||
* @returns {vec2} out
|
||
*/
|
||
vec2.add = function(out, a, b) {
|
||
out[0] = a[0] + b[0];
|
||
out[1] = a[1] + b[1];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Subtracts vector b from vector a
|
||
*
|
||
* @param {vec2} out the receiving vector
|
||
* @param {vec2} a the first operand
|
||
* @param {vec2} b the second operand
|
||
* @returns {vec2} out
|
||
*/
|
||
vec2.subtract = function(out, a, b) {
|
||
out[0] = a[0] - b[0];
|
||
out[1] = a[1] - b[1];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link vec2.subtract}
|
||
* @function
|
||
*/
|
||
vec2.sub = vec2.subtract;
|
||
|
||
/**
|
||
* Multiplies two vec2's
|
||
*
|
||
* @param {vec2} out the receiving vector
|
||
* @param {vec2} a the first operand
|
||
* @param {vec2} b the second operand
|
||
* @returns {vec2} out
|
||
*/
|
||
vec2.multiply = function(out, a, b) {
|
||
out[0] = a[0] * b[0];
|
||
out[1] = a[1] * b[1];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link vec2.multiply}
|
||
* @function
|
||
*/
|
||
vec2.mul = vec2.multiply;
|
||
|
||
/**
|
||
* Divides two vec2's
|
||
*
|
||
* @param {vec2} out the receiving vector
|
||
* @param {vec2} a the first operand
|
||
* @param {vec2} b the second operand
|
||
* @returns {vec2} out
|
||
*/
|
||
vec2.divide = function(out, a, b) {
|
||
out[0] = a[0] / b[0];
|
||
out[1] = a[1] / b[1];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link vec2.divide}
|
||
* @function
|
||
*/
|
||
vec2.div = vec2.divide;
|
||
|
||
/**
|
||
* Returns the minimum of two vec2's
|
||
*
|
||
* @param {vec2} out the receiving vector
|
||
* @param {vec2} a the first operand
|
||
* @param {vec2} b the second operand
|
||
* @returns {vec2} out
|
||
*/
|
||
vec2.min = function(out, a, b) {
|
||
out[0] = Math.min(a[0], b[0]);
|
||
out[1] = Math.min(a[1], b[1]);
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Returns the maximum of two vec2's
|
||
*
|
||
* @param {vec2} out the receiving vector
|
||
* @param {vec2} a the first operand
|
||
* @param {vec2} b the second operand
|
||
* @returns {vec2} out
|
||
*/
|
||
vec2.max = function(out, a, b) {
|
||
out[0] = Math.max(a[0], b[0]);
|
||
out[1] = Math.max(a[1], b[1]);
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Scales a vec2 by a scalar number
|
||
*
|
||
* @param {vec2} out the receiving vector
|
||
* @param {vec2} a the vector to scale
|
||
* @param {Number} b amount to scale the vector by
|
||
* @returns {vec2} out
|
||
*/
|
||
vec2.scale = function(out, a, b) {
|
||
out[0] = a[0] * b;
|
||
out[1] = a[1] * b;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Adds two vec2's after scaling the second operand by a scalar value
|
||
*
|
||
* @param {vec2} out the receiving vector
|
||
* @param {vec2} a the first operand
|
||
* @param {vec2} b the second operand
|
||
* @param {Number} scale the amount to scale b by before adding
|
||
* @returns {vec2} out
|
||
*/
|
||
vec2.scaleAndAdd = function(out, a, b, scale) {
|
||
out[0] = a[0] + (b[0] * scale);
|
||
out[1] = a[1] + (b[1] * scale);
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Calculates the euclidian distance between two vec2's
|
||
*
|
||
* @param {vec2} a the first operand
|
||
* @param {vec2} b the second operand
|
||
* @returns {Number} distance between a and b
|
||
*/
|
||
vec2.distance = function(a, b) {
|
||
var x = b[0] - a[0],
|
||
y = b[1] - a[1];
|
||
return Math.sqrt(x*x + y*y);
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link vec2.distance}
|
||
* @function
|
||
*/
|
||
vec2.dist = vec2.distance;
|
||
|
||
/**
|
||
* Calculates the squared euclidian distance between two vec2's
|
||
*
|
||
* @param {vec2} a the first operand
|
||
* @param {vec2} b the second operand
|
||
* @returns {Number} squared distance between a and b
|
||
*/
|
||
vec2.squaredDistance = function(a, b) {
|
||
var x = b[0] - a[0],
|
||
y = b[1] - a[1];
|
||
return x*x + y*y;
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link vec2.squaredDistance}
|
||
* @function
|
||
*/
|
||
vec2.sqrDist = vec2.squaredDistance;
|
||
|
||
/**
|
||
* Calculates the length of a vec2
|
||
*
|
||
* @param {vec2} a vector to calculate length of
|
||
* @returns {Number} length of a
|
||
*/
|
||
vec2.length = function (a) {
|
||
var x = a[0],
|
||
y = a[1];
|
||
return Math.sqrt(x*x + y*y);
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link vec2.length}
|
||
* @function
|
||
*/
|
||
vec2.len = vec2.length;
|
||
|
||
/**
|
||
* Calculates the squared length of a vec2
|
||
*
|
||
* @param {vec2} a vector to calculate squared length of
|
||
* @returns {Number} squared length of a
|
||
*/
|
||
vec2.squaredLength = function (a) {
|
||
var x = a[0],
|
||
y = a[1];
|
||
return x*x + y*y;
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link vec2.squaredLength}
|
||
* @function
|
||
*/
|
||
vec2.sqrLen = vec2.squaredLength;
|
||
|
||
/**
|
||
* Negates the components of a vec2
|
||
*
|
||
* @param {vec2} out the receiving vector
|
||
* @param {vec2} a vector to negate
|
||
* @returns {vec2} out
|
||
*/
|
||
vec2.negate = function(out, a) {
|
||
out[0] = -a[0];
|
||
out[1] = -a[1];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Returns the inverse of the components of a vec2
|
||
*
|
||
* @param {vec2} out the receiving vector
|
||
* @param {vec2} a vector to invert
|
||
* @returns {vec2} out
|
||
*/
|
||
vec2.inverse = function(out, a) {
|
||
out[0] = 1.0 / a[0];
|
||
out[1] = 1.0 / a[1];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Normalize a vec2
|
||
*
|
||
* @param {vec2} out the receiving vector
|
||
* @param {vec2} a vector to normalize
|
||
* @returns {vec2} out
|
||
*/
|
||
vec2.normalize = function(out, a) {
|
||
var x = a[0],
|
||
y = a[1];
|
||
var len = x*x + y*y;
|
||
if (len > 0) {
|
||
//TODO: evaluate use of glm_invsqrt here?
|
||
len = 1 / Math.sqrt(len);
|
||
out[0] = a[0] * len;
|
||
out[1] = a[1] * len;
|
||
}
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Calculates the dot product of two vec2's
|
||
*
|
||
* @param {vec2} a the first operand
|
||
* @param {vec2} b the second operand
|
||
* @returns {Number} dot product of a and b
|
||
*/
|
||
vec2.dot = function (a, b) {
|
||
return a[0] * b[0] + a[1] * b[1];
|
||
};
|
||
|
||
/**
|
||
* Computes the cross product of two vec2's
|
||
* Note that the cross product must by definition produce a 3D vector
|
||
*
|
||
* @param {vec3} out the receiving vector
|
||
* @param {vec2} a the first operand
|
||
* @param {vec2} b the second operand
|
||
* @returns {vec3} out
|
||
*/
|
||
vec2.cross = function(out, a, b) {
|
||
var z = a[0] * b[1] - a[1] * b[0];
|
||
out[0] = out[1] = 0;
|
||
out[2] = z;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Performs a linear interpolation between two vec2's
|
||
*
|
||
* @param {vec2} out the receiving vector
|
||
* @param {vec2} a the first operand
|
||
* @param {vec2} b the second operand
|
||
* @param {Number} t interpolation amount between the two inputs
|
||
* @returns {vec2} out
|
||
*/
|
||
vec2.lerp = function (out, a, b, t) {
|
||
var ax = a[0],
|
||
ay = a[1];
|
||
out[0] = ax + t * (b[0] - ax);
|
||
out[1] = ay + t * (b[1] - ay);
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Generates a random vector with the given scale
|
||
*
|
||
* @param {vec2} out the receiving vector
|
||
* @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned
|
||
* @returns {vec2} out
|
||
*/
|
||
vec2.random = function (out, scale) {
|
||
scale = scale || 1.0;
|
||
var r = GLMAT_RANDOM() * 2.0 * Math.PI;
|
||
out[0] = Math.cos(r) * scale;
|
||
out[1] = Math.sin(r) * scale;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Transforms the vec2 with a mat2
|
||
*
|
||
* @param {vec2} out the receiving vector
|
||
* @param {vec2} a the vector to transform
|
||
* @param {mat2} m matrix to transform with
|
||
* @returns {vec2} out
|
||
*/
|
||
vec2.transformMat2 = function(out, a, m) {
|
||
var x = a[0],
|
||
y = a[1];
|
||
out[0] = m[0] * x + m[2] * y;
|
||
out[1] = m[1] * x + m[3] * y;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Transforms the vec2 with a mat2d
|
||
*
|
||
* @param {vec2} out the receiving vector
|
||
* @param {vec2} a the vector to transform
|
||
* @param {mat2d} m matrix to transform with
|
||
* @returns {vec2} out
|
||
*/
|
||
vec2.transformMat2d = function(out, a, m) {
|
||
var x = a[0],
|
||
y = a[1];
|
||
out[0] = m[0] * x + m[2] * y + m[4];
|
||
out[1] = m[1] * x + m[3] * y + m[5];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Transforms the vec2 with a mat3
|
||
* 3rd vector component is implicitly '1'
|
||
*
|
||
* @param {vec2} out the receiving vector
|
||
* @param {vec2} a the vector to transform
|
||
* @param {mat3} m matrix to transform with
|
||
* @returns {vec2} out
|
||
*/
|
||
vec2.transformMat3 = function(out, a, m) {
|
||
var x = a[0],
|
||
y = a[1];
|
||
out[0] = m[0] * x + m[3] * y + m[6];
|
||
out[1] = m[1] * x + m[4] * y + m[7];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Transforms the vec2 with a mat4
|
||
* 3rd vector component is implicitly '0'
|
||
* 4th vector component is implicitly '1'
|
||
*
|
||
* @param {vec2} out the receiving vector
|
||
* @param {vec2} a the vector to transform
|
||
* @param {mat4} m matrix to transform with
|
||
* @returns {vec2} out
|
||
*/
|
||
vec2.transformMat4 = function(out, a, m) {
|
||
var x = a[0],
|
||
y = a[1];
|
||
out[0] = m[0] * x + m[4] * y + m[12];
|
||
out[1] = m[1] * x + m[5] * y + m[13];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Perform some operation over an array of vec2s.
|
||
*
|
||
* @param {Array} a the array of vectors to iterate over
|
||
* @param {Number} stride Number of elements between the start of each vec2. If 0 assumes tightly packed
|
||
* @param {Number} offset Number of elements to skip at the beginning of the array
|
||
* @param {Number} count Number of vec2s to iterate over. If 0 iterates over entire array
|
||
* @param {Function} fn Function to call for each vector in the array
|
||
* @param {Object} [arg] additional argument to pass to fn
|
||
* @returns {Array} a
|
||
* @function
|
||
*/
|
||
vec2.forEach = (function() {
|
||
var vec = vec2.create();
|
||
|
||
return function(a, stride, offset, count, fn, arg) {
|
||
var i, l;
|
||
if(!stride) {
|
||
stride = 2;
|
||
}
|
||
|
||
if(!offset) {
|
||
offset = 0;
|
||
}
|
||
|
||
if(count) {
|
||
l = Math.min((count * stride) + offset, a.length);
|
||
} else {
|
||
l = a.length;
|
||
}
|
||
|
||
for(i = offset; i < l; i += stride) {
|
||
vec[0] = a[i]; vec[1] = a[i+1];
|
||
fn(vec, vec, arg);
|
||
a[i] = vec[0]; a[i+1] = vec[1];
|
||
}
|
||
|
||
return a;
|
||
};
|
||
})();
|
||
|
||
/**
|
||
* Returns a string representation of a vector
|
||
*
|
||
* @param {vec2} vec vector to represent as a string
|
||
* @returns {String} string representation of the vector
|
||
*/
|
||
vec2.str = function (a) {
|
||
return 'vec2(' + a[0] + ', ' + a[1] + ')';
|
||
};
|
||
|
||
if(typeof(exports) !== 'undefined') {
|
||
exports.vec2 = vec2;
|
||
}
|
||
;
|
||
/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
|
||
|
||
Redistribution and use in source and binary forms, with or without modification,
|
||
are permitted provided that the following conditions are met:
|
||
|
||
* Redistributions of source code must retain the above copyright notice, this
|
||
list of conditions and the following disclaimer.
|
||
* Redistributions in binary form must reproduce the above copyright notice,
|
||
this list of conditions and the following disclaimer in the documentation
|
||
and/or other materials provided with the distribution.
|
||
|
||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
||
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
||
|
||
/**
|
||
* @class 3 Dimensional Vector
|
||
* @name vec3
|
||
*/
|
||
|
||
var vec3 = {};
|
||
|
||
/**
|
||
* Creates a new, empty vec3
|
||
*
|
||
* @returns {vec3} a new 3D vector
|
||
*/
|
||
vec3.create = function() {
|
||
var out = new GLMAT_ARRAY_TYPE(3);
|
||
out[0] = 0;
|
||
out[1] = 0;
|
||
out[2] = 0;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Creates a new vec3 initialized with values from an existing vector
|
||
*
|
||
* @param {vec3} a vector to clone
|
||
* @returns {vec3} a new 3D vector
|
||
*/
|
||
vec3.clone = function(a) {
|
||
var out = new GLMAT_ARRAY_TYPE(3);
|
||
out[0] = a[0];
|
||
out[1] = a[1];
|
||
out[2] = a[2];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Creates a new vec3 initialized with the given values
|
||
*
|
||
* @param {Number} x X component
|
||
* @param {Number} y Y component
|
||
* @param {Number} z Z component
|
||
* @returns {vec3} a new 3D vector
|
||
*/
|
||
vec3.fromValues = function(x, y, z) {
|
||
var out = new GLMAT_ARRAY_TYPE(3);
|
||
out[0] = x;
|
||
out[1] = y;
|
||
out[2] = z;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Copy the values from one vec3 to another
|
||
*
|
||
* @param {vec3} out the receiving vector
|
||
* @param {vec3} a the source vector
|
||
* @returns {vec3} out
|
||
*/
|
||
vec3.copy = function(out, a) {
|
||
out[0] = a[0];
|
||
out[1] = a[1];
|
||
out[2] = a[2];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Set the components of a vec3 to the given values
|
||
*
|
||
* @param {vec3} out the receiving vector
|
||
* @param {Number} x X component
|
||
* @param {Number} y Y component
|
||
* @param {Number} z Z component
|
||
* @returns {vec3} out
|
||
*/
|
||
vec3.set = function(out, x, y, z) {
|
||
out[0] = x;
|
||
out[1] = y;
|
||
out[2] = z;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Adds two vec3's
|
||
*
|
||
* @param {vec3} out the receiving vector
|
||
* @param {vec3} a the first operand
|
||
* @param {vec3} b the second operand
|
||
* @returns {vec3} out
|
||
*/
|
||
vec3.add = function(out, a, b) {
|
||
out[0] = a[0] + b[0];
|
||
out[1] = a[1] + b[1];
|
||
out[2] = a[2] + b[2];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Subtracts vector b from vector a
|
||
*
|
||
* @param {vec3} out the receiving vector
|
||
* @param {vec3} a the first operand
|
||
* @param {vec3} b the second operand
|
||
* @returns {vec3} out
|
||
*/
|
||
vec3.subtract = function(out, a, b) {
|
||
out[0] = a[0] - b[0];
|
||
out[1] = a[1] - b[1];
|
||
out[2] = a[2] - b[2];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link vec3.subtract}
|
||
* @function
|
||
*/
|
||
vec3.sub = vec3.subtract;
|
||
|
||
/**
|
||
* Multiplies two vec3's
|
||
*
|
||
* @param {vec3} out the receiving vector
|
||
* @param {vec3} a the first operand
|
||
* @param {vec3} b the second operand
|
||
* @returns {vec3} out
|
||
*/
|
||
vec3.multiply = function(out, a, b) {
|
||
out[0] = a[0] * b[0];
|
||
out[1] = a[1] * b[1];
|
||
out[2] = a[2] * b[2];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link vec3.multiply}
|
||
* @function
|
||
*/
|
||
vec3.mul = vec3.multiply;
|
||
|
||
/**
|
||
* Divides two vec3's
|
||
*
|
||
* @param {vec3} out the receiving vector
|
||
* @param {vec3} a the first operand
|
||
* @param {vec3} b the second operand
|
||
* @returns {vec3} out
|
||
*/
|
||
vec3.divide = function(out, a, b) {
|
||
out[0] = a[0] / b[0];
|
||
out[1] = a[1] / b[1];
|
||
out[2] = a[2] / b[2];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link vec3.divide}
|
||
* @function
|
||
*/
|
||
vec3.div = vec3.divide;
|
||
|
||
/**
|
||
* Returns the minimum of two vec3's
|
||
*
|
||
* @param {vec3} out the receiving vector
|
||
* @param {vec3} a the first operand
|
||
* @param {vec3} b the second operand
|
||
* @returns {vec3} out
|
||
*/
|
||
vec3.min = function(out, a, b) {
|
||
out[0] = Math.min(a[0], b[0]);
|
||
out[1] = Math.min(a[1], b[1]);
|
||
out[2] = Math.min(a[2], b[2]);
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Returns the maximum of two vec3's
|
||
*
|
||
* @param {vec3} out the receiving vector
|
||
* @param {vec3} a the first operand
|
||
* @param {vec3} b the second operand
|
||
* @returns {vec3} out
|
||
*/
|
||
vec3.max = function(out, a, b) {
|
||
out[0] = Math.max(a[0], b[0]);
|
||
out[1] = Math.max(a[1], b[1]);
|
||
out[2] = Math.max(a[2], b[2]);
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Scales a vec3 by a scalar number
|
||
*
|
||
* @param {vec3} out the receiving vector
|
||
* @param {vec3} a the vector to scale
|
||
* @param {Number} b amount to scale the vector by
|
||
* @returns {vec3} out
|
||
*/
|
||
vec3.scale = function(out, a, b) {
|
||
out[0] = a[0] * b;
|
||
out[1] = a[1] * b;
|
||
out[2] = a[2] * b;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Adds two vec3's after scaling the second operand by a scalar value
|
||
*
|
||
* @param {vec3} out the receiving vector
|
||
* @param {vec3} a the first operand
|
||
* @param {vec3} b the second operand
|
||
* @param {Number} scale the amount to scale b by before adding
|
||
* @returns {vec3} out
|
||
*/
|
||
vec3.scaleAndAdd = function(out, a, b, scale) {
|
||
out[0] = a[0] + (b[0] * scale);
|
||
out[1] = a[1] + (b[1] * scale);
|
||
out[2] = a[2] + (b[2] * scale);
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Calculates the euclidian distance between two vec3's
|
||
*
|
||
* @param {vec3} a the first operand
|
||
* @param {vec3} b the second operand
|
||
* @returns {Number} distance between a and b
|
||
*/
|
||
vec3.distance = function(a, b) {
|
||
var x = b[0] - a[0],
|
||
y = b[1] - a[1],
|
||
z = b[2] - a[2];
|
||
return Math.sqrt(x*x + y*y + z*z);
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link vec3.distance}
|
||
* @function
|
||
*/
|
||
vec3.dist = vec3.distance;
|
||
|
||
/**
|
||
* Calculates the squared euclidian distance between two vec3's
|
||
*
|
||
* @param {vec3} a the first operand
|
||
* @param {vec3} b the second operand
|
||
* @returns {Number} squared distance between a and b
|
||
*/
|
||
vec3.squaredDistance = function(a, b) {
|
||
var x = b[0] - a[0],
|
||
y = b[1] - a[1],
|
||
z = b[2] - a[2];
|
||
return x*x + y*y + z*z;
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link vec3.squaredDistance}
|
||
* @function
|
||
*/
|
||
vec3.sqrDist = vec3.squaredDistance;
|
||
|
||
/**
|
||
* Calculates the length of a vec3
|
||
*
|
||
* @param {vec3} a vector to calculate length of
|
||
* @returns {Number} length of a
|
||
*/
|
||
vec3.length = function (a) {
|
||
var x = a[0],
|
||
y = a[1],
|
||
z = a[2];
|
||
return Math.sqrt(x*x + y*y + z*z);
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link vec3.length}
|
||
* @function
|
||
*/
|
||
vec3.len = vec3.length;
|
||
|
||
/**
|
||
* Calculates the squared length of a vec3
|
||
*
|
||
* @param {vec3} a vector to calculate squared length of
|
||
* @returns {Number} squared length of a
|
||
*/
|
||
vec3.squaredLength = function (a) {
|
||
var x = a[0],
|
||
y = a[1],
|
||
z = a[2];
|
||
return x*x + y*y + z*z;
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link vec3.squaredLength}
|
||
* @function
|
||
*/
|
||
vec3.sqrLen = vec3.squaredLength;
|
||
|
||
/**
|
||
* Negates the components of a vec3
|
||
*
|
||
* @param {vec3} out the receiving vector
|
||
* @param {vec3} a vector to negate
|
||
* @returns {vec3} out
|
||
*/
|
||
vec3.negate = function(out, a) {
|
||
out[0] = -a[0];
|
||
out[1] = -a[1];
|
||
out[2] = -a[2];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Returns the inverse of the components of a vec3
|
||
*
|
||
* @param {vec3} out the receiving vector
|
||
* @param {vec3} a vector to invert
|
||
* @returns {vec3} out
|
||
*/
|
||
vec3.inverse = function(out, a) {
|
||
out[0] = 1.0 / a[0];
|
||
out[1] = 1.0 / a[1];
|
||
out[2] = 1.0 / a[2];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Normalize a vec3
|
||
*
|
||
* @param {vec3} out the receiving vector
|
||
* @param {vec3} a vector to normalize
|
||
* @returns {vec3} out
|
||
*/
|
||
vec3.normalize = function(out, a) {
|
||
var x = a[0],
|
||
y = a[1],
|
||
z = a[2];
|
||
var len = x*x + y*y + z*z;
|
||
if (len > 0) {
|
||
//TODO: evaluate use of glm_invsqrt here?
|
||
len = 1 / Math.sqrt(len);
|
||
out[0] = a[0] * len;
|
||
out[1] = a[1] * len;
|
||
out[2] = a[2] * len;
|
||
}
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Calculates the dot product of two vec3's
|
||
*
|
||
* @param {vec3} a the first operand
|
||
* @param {vec3} b the second operand
|
||
* @returns {Number} dot product of a and b
|
||
*/
|
||
vec3.dot = function (a, b) {
|
||
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
|
||
};
|
||
|
||
/**
|
||
* Computes the cross product of two vec3's
|
||
*
|
||
* @param {vec3} out the receiving vector
|
||
* @param {vec3} a the first operand
|
||
* @param {vec3} b the second operand
|
||
* @returns {vec3} out
|
||
*/
|
||
vec3.cross = function(out, a, b) {
|
||
var ax = a[0], ay = a[1], az = a[2],
|
||
bx = b[0], by = b[1], bz = b[2];
|
||
|
||
out[0] = ay * bz - az * by;
|
||
out[1] = az * bx - ax * bz;
|
||
out[2] = ax * by - ay * bx;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Performs a linear interpolation between two vec3's
|
||
*
|
||
* @param {vec3} out the receiving vector
|
||
* @param {vec3} a the first operand
|
||
* @param {vec3} b the second operand
|
||
* @param {Number} t interpolation amount between the two inputs
|
||
* @returns {vec3} out
|
||
*/
|
||
vec3.lerp = function (out, a, b, t) {
|
||
var ax = a[0],
|
||
ay = a[1],
|
||
az = a[2];
|
||
out[0] = ax + t * (b[0] - ax);
|
||
out[1] = ay + t * (b[1] - ay);
|
||
out[2] = az + t * (b[2] - az);
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Generates a random vector with the given scale
|
||
*
|
||
* @param {vec3} out the receiving vector
|
||
* @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned
|
||
* @returns {vec3} out
|
||
*/
|
||
vec3.random = function (out, scale) {
|
||
scale = scale || 1.0;
|
||
|
||
var r = GLMAT_RANDOM() * 2.0 * Math.PI;
|
||
var z = (GLMAT_RANDOM() * 2.0) - 1.0;
|
||
var zScale = Math.sqrt(1.0-z*z) * scale;
|
||
|
||
out[0] = Math.cos(r) * zScale;
|
||
out[1] = Math.sin(r) * zScale;
|
||
out[2] = z * scale;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Transforms the vec3 with a mat4.
|
||
* 4th vector component is implicitly '1'
|
||
*
|
||
* @param {vec3} out the receiving vector
|
||
* @param {vec3} a the vector to transform
|
||
* @param {mat4} m matrix to transform with
|
||
* @returns {vec3} out
|
||
*/
|
||
vec3.transformMat4 = function(out, a, m) {
|
||
var x = a[0], y = a[1], z = a[2],
|
||
w = m[3] * x + m[7] * y + m[11] * z + m[15];
|
||
w = w || 1.0;
|
||
out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) / w;
|
||
out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) / w;
|
||
out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) / w;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Transforms the vec3 with a mat3.
|
||
*
|
||
* @param {vec3} out the receiving vector
|
||
* @param {vec3} a the vector to transform
|
||
* @param {mat4} m the 3x3 matrix to transform with
|
||
* @returns {vec3} out
|
||
*/
|
||
vec3.transformMat3 = function(out, a, m) {
|
||
var x = a[0], y = a[1], z = a[2];
|
||
out[0] = x * m[0] + y * m[3] + z * m[6];
|
||
out[1] = x * m[1] + y * m[4] + z * m[7];
|
||
out[2] = x * m[2] + y * m[5] + z * m[8];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Transforms the vec3 with a quat
|
||
*
|
||
* @param {vec3} out the receiving vector
|
||
* @param {vec3} a the vector to transform
|
||
* @param {quat} q quaternion to transform with
|
||
* @returns {vec3} out
|
||
*/
|
||
vec3.transformQuat = function(out, a, q) {
|
||
// benchmarks: http://jsperf.com/quaternion-transform-vec3-implementations
|
||
|
||
var x = a[0], y = a[1], z = a[2],
|
||
qx = q[0], qy = q[1], qz = q[2], qw = q[3],
|
||
|
||
// calculate quat * vec
|
||
ix = qw * x + qy * z - qz * y,
|
||
iy = qw * y + qz * x - qx * z,
|
||
iz = qw * z + qx * y - qy * x,
|
||
iw = -qx * x - qy * y - qz * z;
|
||
|
||
// calculate result * inverse quat
|
||
out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;
|
||
out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;
|
||
out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Rotate a 3D vector around the x-axis
|
||
* @param {vec3} out The receiving vec3
|
||
* @param {vec3} a The vec3 point to rotate
|
||
* @param {vec3} b The origin of the rotation
|
||
* @param {Number} c The angle of rotation
|
||
* @returns {vec3} out
|
||
*/
|
||
vec3.rotateX = function(out, a, b, c){
|
||
var p = [], r=[];
|
||
//Translate point to the origin
|
||
p[0] = a[0] - b[0];
|
||
p[1] = a[1] - b[1];
|
||
p[2] = a[2] - b[2];
|
||
|
||
//perform rotation
|
||
r[0] = p[0];
|
||
r[1] = p[1]*Math.cos(c) - p[2]*Math.sin(c);
|
||
r[2] = p[1]*Math.sin(c) + p[2]*Math.cos(c);
|
||
|
||
//translate to correct position
|
||
out[0] = r[0] + b[0];
|
||
out[1] = r[1] + b[1];
|
||
out[2] = r[2] + b[2];
|
||
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Rotate a 3D vector around the y-axis
|
||
* @param {vec3} out The receiving vec3
|
||
* @param {vec3} a The vec3 point to rotate
|
||
* @param {vec3} b The origin of the rotation
|
||
* @param {Number} c The angle of rotation
|
||
* @returns {vec3} out
|
||
*/
|
||
vec3.rotateY = function(out, a, b, c){
|
||
var p = [], r=[];
|
||
//Translate point to the origin
|
||
p[0] = a[0] - b[0];
|
||
p[1] = a[1] - b[1];
|
||
p[2] = a[2] - b[2];
|
||
|
||
//perform rotation
|
||
r[0] = p[2]*Math.sin(c) + p[0]*Math.cos(c);
|
||
r[1] = p[1];
|
||
r[2] = p[2]*Math.cos(c) - p[0]*Math.sin(c);
|
||
|
||
//translate to correct position
|
||
out[0] = r[0] + b[0];
|
||
out[1] = r[1] + b[1];
|
||
out[2] = r[2] + b[2];
|
||
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Rotate a 3D vector around the z-axis
|
||
* @param {vec3} out The receiving vec3
|
||
* @param {vec3} a The vec3 point to rotate
|
||
* @param {vec3} b The origin of the rotation
|
||
* @param {Number} c The angle of rotation
|
||
* @returns {vec3} out
|
||
*/
|
||
vec3.rotateZ = function(out, a, b, c){
|
||
var p = [], r=[];
|
||
//Translate point to the origin
|
||
p[0] = a[0] - b[0];
|
||
p[1] = a[1] - b[1];
|
||
p[2] = a[2] - b[2];
|
||
|
||
//perform rotation
|
||
r[0] = p[0]*Math.cos(c) - p[1]*Math.sin(c);
|
||
r[1] = p[0]*Math.sin(c) + p[1]*Math.cos(c);
|
||
r[2] = p[2];
|
||
|
||
//translate to correct position
|
||
out[0] = r[0] + b[0];
|
||
out[1] = r[1] + b[1];
|
||
out[2] = r[2] + b[2];
|
||
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Perform some operation over an array of vec3s.
|
||
*
|
||
* @param {Array} a the array of vectors to iterate over
|
||
* @param {Number} stride Number of elements between the start of each vec3. If 0 assumes tightly packed
|
||
* @param {Number} offset Number of elements to skip at the beginning of the array
|
||
* @param {Number} count Number of vec3s to iterate over. If 0 iterates over entire array
|
||
* @param {Function} fn Function to call for each vector in the array
|
||
* @param {Object} [arg] additional argument to pass to fn
|
||
* @returns {Array} a
|
||
* @function
|
||
*/
|
||
vec3.forEach = (function() {
|
||
var vec = vec3.create();
|
||
|
||
return function(a, stride, offset, count, fn, arg) {
|
||
var i, l;
|
||
if(!stride) {
|
||
stride = 3;
|
||
}
|
||
|
||
if(!offset) {
|
||
offset = 0;
|
||
}
|
||
|
||
if(count) {
|
||
l = Math.min((count * stride) + offset, a.length);
|
||
} else {
|
||
l = a.length;
|
||
}
|
||
|
||
for(i = offset; i < l; i += stride) {
|
||
vec[0] = a[i]; vec[1] = a[i+1]; vec[2] = a[i+2];
|
||
fn(vec, vec, arg);
|
||
a[i] = vec[0]; a[i+1] = vec[1]; a[i+2] = vec[2];
|
||
}
|
||
|
||
return a;
|
||
};
|
||
})();
|
||
|
||
/**
|
||
* Returns a string representation of a vector
|
||
*
|
||
* @param {vec3} vec vector to represent as a string
|
||
* @returns {String} string representation of the vector
|
||
*/
|
||
vec3.str = function (a) {
|
||
return 'vec3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ')';
|
||
};
|
||
|
||
if(typeof(exports) !== 'undefined') {
|
||
exports.vec3 = vec3;
|
||
}
|
||
;
|
||
/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
|
||
|
||
Redistribution and use in source and binary forms, with or without modification,
|
||
are permitted provided that the following conditions are met:
|
||
|
||
* Redistributions of source code must retain the above copyright notice, this
|
||
list of conditions and the following disclaimer.
|
||
* Redistributions in binary form must reproduce the above copyright notice,
|
||
this list of conditions and the following disclaimer in the documentation
|
||
and/or other materials provided with the distribution.
|
||
|
||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
||
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
||
|
||
/**
|
||
* @class 4 Dimensional Vector
|
||
* @name vec4
|
||
*/
|
||
|
||
var vec4 = {};
|
||
|
||
/**
|
||
* Creates a new, empty vec4
|
||
*
|
||
* @returns {vec4} a new 4D vector
|
||
*/
|
||
vec4.create = function() {
|
||
var out = new GLMAT_ARRAY_TYPE(4);
|
||
out[0] = 0;
|
||
out[1] = 0;
|
||
out[2] = 0;
|
||
out[3] = 0;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Creates a new vec4 initialized with values from an existing vector
|
||
*
|
||
* @param {vec4} a vector to clone
|
||
* @returns {vec4} a new 4D vector
|
||
*/
|
||
vec4.clone = function(a) {
|
||
var out = new GLMAT_ARRAY_TYPE(4);
|
||
out[0] = a[0];
|
||
out[1] = a[1];
|
||
out[2] = a[2];
|
||
out[3] = a[3];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Creates a new vec4 initialized with the given values
|
||
*
|
||
* @param {Number} x X component
|
||
* @param {Number} y Y component
|
||
* @param {Number} z Z component
|
||
* @param {Number} w W component
|
||
* @returns {vec4} a new 4D vector
|
||
*/
|
||
vec4.fromValues = function(x, y, z, w) {
|
||
var out = new GLMAT_ARRAY_TYPE(4);
|
||
out[0] = x;
|
||
out[1] = y;
|
||
out[2] = z;
|
||
out[3] = w;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Copy the values from one vec4 to another
|
||
*
|
||
* @param {vec4} out the receiving vector
|
||
* @param {vec4} a the source vector
|
||
* @returns {vec4} out
|
||
*/
|
||
vec4.copy = function(out, a) {
|
||
out[0] = a[0];
|
||
out[1] = a[1];
|
||
out[2] = a[2];
|
||
out[3] = a[3];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Set the components of a vec4 to the given values
|
||
*
|
||
* @param {vec4} out the receiving vector
|
||
* @param {Number} x X component
|
||
* @param {Number} y Y component
|
||
* @param {Number} z Z component
|
||
* @param {Number} w W component
|
||
* @returns {vec4} out
|
||
*/
|
||
vec4.set = function(out, x, y, z, w) {
|
||
out[0] = x;
|
||
out[1] = y;
|
||
out[2] = z;
|
||
out[3] = w;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Adds two vec4's
|
||
*
|
||
* @param {vec4} out the receiving vector
|
||
* @param {vec4} a the first operand
|
||
* @param {vec4} b the second operand
|
||
* @returns {vec4} out
|
||
*/
|
||
vec4.add = function(out, a, b) {
|
||
out[0] = a[0] + b[0];
|
||
out[1] = a[1] + b[1];
|
||
out[2] = a[2] + b[2];
|
||
out[3] = a[3] + b[3];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Subtracts vector b from vector a
|
||
*
|
||
* @param {vec4} out the receiving vector
|
||
* @param {vec4} a the first operand
|
||
* @param {vec4} b the second operand
|
||
* @returns {vec4} out
|
||
*/
|
||
vec4.subtract = function(out, a, b) {
|
||
out[0] = a[0] - b[0];
|
||
out[1] = a[1] - b[1];
|
||
out[2] = a[2] - b[2];
|
||
out[3] = a[3] - b[3];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link vec4.subtract}
|
||
* @function
|
||
*/
|
||
vec4.sub = vec4.subtract;
|
||
|
||
/**
|
||
* Multiplies two vec4's
|
||
*
|
||
* @param {vec4} out the receiving vector
|
||
* @param {vec4} a the first operand
|
||
* @param {vec4} b the second operand
|
||
* @returns {vec4} out
|
||
*/
|
||
vec4.multiply = function(out, a, b) {
|
||
out[0] = a[0] * b[0];
|
||
out[1] = a[1] * b[1];
|
||
out[2] = a[2] * b[2];
|
||
out[3] = a[3] * b[3];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link vec4.multiply}
|
||
* @function
|
||
*/
|
||
vec4.mul = vec4.multiply;
|
||
|
||
/**
|
||
* Divides two vec4's
|
||
*
|
||
* @param {vec4} out the receiving vector
|
||
* @param {vec4} a the first operand
|
||
* @param {vec4} b the second operand
|
||
* @returns {vec4} out
|
||
*/
|
||
vec4.divide = function(out, a, b) {
|
||
out[0] = a[0] / b[0];
|
||
out[1] = a[1] / b[1];
|
||
out[2] = a[2] / b[2];
|
||
out[3] = a[3] / b[3];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link vec4.divide}
|
||
* @function
|
||
*/
|
||
vec4.div = vec4.divide;
|
||
|
||
/**
|
||
* Returns the minimum of two vec4's
|
||
*
|
||
* @param {vec4} out the receiving vector
|
||
* @param {vec4} a the first operand
|
||
* @param {vec4} b the second operand
|
||
* @returns {vec4} out
|
||
*/
|
||
vec4.min = function(out, a, b) {
|
||
out[0] = Math.min(a[0], b[0]);
|
||
out[1] = Math.min(a[1], b[1]);
|
||
out[2] = Math.min(a[2], b[2]);
|
||
out[3] = Math.min(a[3], b[3]);
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Returns the maximum of two vec4's
|
||
*
|
||
* @param {vec4} out the receiving vector
|
||
* @param {vec4} a the first operand
|
||
* @param {vec4} b the second operand
|
||
* @returns {vec4} out
|
||
*/
|
||
vec4.max = function(out, a, b) {
|
||
out[0] = Math.max(a[0], b[0]);
|
||
out[1] = Math.max(a[1], b[1]);
|
||
out[2] = Math.max(a[2], b[2]);
|
||
out[3] = Math.max(a[3], b[3]);
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Scales a vec4 by a scalar number
|
||
*
|
||
* @param {vec4} out the receiving vector
|
||
* @param {vec4} a the vector to scale
|
||
* @param {Number} b amount to scale the vector by
|
||
* @returns {vec4} out
|
||
*/
|
||
vec4.scale = function(out, a, b) {
|
||
out[0] = a[0] * b;
|
||
out[1] = a[1] * b;
|
||
out[2] = a[2] * b;
|
||
out[3] = a[3] * b;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Adds two vec4's after scaling the second operand by a scalar value
|
||
*
|
||
* @param {vec4} out the receiving vector
|
||
* @param {vec4} a the first operand
|
||
* @param {vec4} b the second operand
|
||
* @param {Number} scale the amount to scale b by before adding
|
||
* @returns {vec4} out
|
||
*/
|
||
vec4.scaleAndAdd = function(out, a, b, scale) {
|
||
out[0] = a[0] + (b[0] * scale);
|
||
out[1] = a[1] + (b[1] * scale);
|
||
out[2] = a[2] + (b[2] * scale);
|
||
out[3] = a[3] + (b[3] * scale);
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Calculates the euclidian distance between two vec4's
|
||
*
|
||
* @param {vec4} a the first operand
|
||
* @param {vec4} b the second operand
|
||
* @returns {Number} distance between a and b
|
||
*/
|
||
vec4.distance = function(a, b) {
|
||
var x = b[0] - a[0],
|
||
y = b[1] - a[1],
|
||
z = b[2] - a[2],
|
||
w = b[3] - a[3];
|
||
return Math.sqrt(x*x + y*y + z*z + w*w);
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link vec4.distance}
|
||
* @function
|
||
*/
|
||
vec4.dist = vec4.distance;
|
||
|
||
/**
|
||
* Calculates the squared euclidian distance between two vec4's
|
||
*
|
||
* @param {vec4} a the first operand
|
||
* @param {vec4} b the second operand
|
||
* @returns {Number} squared distance between a and b
|
||
*/
|
||
vec4.squaredDistance = function(a, b) {
|
||
var x = b[0] - a[0],
|
||
y = b[1] - a[1],
|
||
z = b[2] - a[2],
|
||
w = b[3] - a[3];
|
||
return x*x + y*y + z*z + w*w;
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link vec4.squaredDistance}
|
||
* @function
|
||
*/
|
||
vec4.sqrDist = vec4.squaredDistance;
|
||
|
||
/**
|
||
* Calculates the length of a vec4
|
||
*
|
||
* @param {vec4} a vector to calculate length of
|
||
* @returns {Number} length of a
|
||
*/
|
||
vec4.length = function (a) {
|
||
var x = a[0],
|
||
y = a[1],
|
||
z = a[2],
|
||
w = a[3];
|
||
return Math.sqrt(x*x + y*y + z*z + w*w);
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link vec4.length}
|
||
* @function
|
||
*/
|
||
vec4.len = vec4.length;
|
||
|
||
/**
|
||
* Calculates the squared length of a vec4
|
||
*
|
||
* @param {vec4} a vector to calculate squared length of
|
||
* @returns {Number} squared length of a
|
||
*/
|
||
vec4.squaredLength = function (a) {
|
||
var x = a[0],
|
||
y = a[1],
|
||
z = a[2],
|
||
w = a[3];
|
||
return x*x + y*y + z*z + w*w;
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link vec4.squaredLength}
|
||
* @function
|
||
*/
|
||
vec4.sqrLen = vec4.squaredLength;
|
||
|
||
/**
|
||
* Negates the components of a vec4
|
||
*
|
||
* @param {vec4} out the receiving vector
|
||
* @param {vec4} a vector to negate
|
||
* @returns {vec4} out
|
||
*/
|
||
vec4.negate = function(out, a) {
|
||
out[0] = -a[0];
|
||
out[1] = -a[1];
|
||
out[2] = -a[2];
|
||
out[3] = -a[3];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Returns the inverse of the components of a vec4
|
||
*
|
||
* @param {vec4} out the receiving vector
|
||
* @param {vec4} a vector to invert
|
||
* @returns {vec4} out
|
||
*/
|
||
vec4.inverse = function(out, a) {
|
||
out[0] = 1.0 / a[0];
|
||
out[1] = 1.0 / a[1];
|
||
out[2] = 1.0 / a[2];
|
||
out[3] = 1.0 / a[3];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Normalize a vec4
|
||
*
|
||
* @param {vec4} out the receiving vector
|
||
* @param {vec4} a vector to normalize
|
||
* @returns {vec4} out
|
||
*/
|
||
vec4.normalize = function(out, a) {
|
||
var x = a[0],
|
||
y = a[1],
|
||
z = a[2],
|
||
w = a[3];
|
||
var len = x*x + y*y + z*z + w*w;
|
||
if (len > 0) {
|
||
len = 1 / Math.sqrt(len);
|
||
out[0] = a[0] * len;
|
||
out[1] = a[1] * len;
|
||
out[2] = a[2] * len;
|
||
out[3] = a[3] * len;
|
||
}
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Calculates the dot product of two vec4's
|
||
*
|
||
* @param {vec4} a the first operand
|
||
* @param {vec4} b the second operand
|
||
* @returns {Number} dot product of a and b
|
||
*/
|
||
vec4.dot = function (a, b) {
|
||
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
|
||
};
|
||
|
||
/**
|
||
* Performs a linear interpolation between two vec4's
|
||
*
|
||
* @param {vec4} out the receiving vector
|
||
* @param {vec4} a the first operand
|
||
* @param {vec4} b the second operand
|
||
* @param {Number} t interpolation amount between the two inputs
|
||
* @returns {vec4} out
|
||
*/
|
||
vec4.lerp = function (out, a, b, t) {
|
||
var ax = a[0],
|
||
ay = a[1],
|
||
az = a[2],
|
||
aw = a[3];
|
||
out[0] = ax + t * (b[0] - ax);
|
||
out[1] = ay + t * (b[1] - ay);
|
||
out[2] = az + t * (b[2] - az);
|
||
out[3] = aw + t * (b[3] - aw);
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Generates a random vector with the given scale
|
||
*
|
||
* @param {vec4} out the receiving vector
|
||
* @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned
|
||
* @returns {vec4} out
|
||
*/
|
||
vec4.random = function (out, scale) {
|
||
scale = scale || 1.0;
|
||
|
||
//TODO: This is a pretty awful way of doing this. Find something better.
|
||
out[0] = GLMAT_RANDOM();
|
||
out[1] = GLMAT_RANDOM();
|
||
out[2] = GLMAT_RANDOM();
|
||
out[3] = GLMAT_RANDOM();
|
||
vec4.normalize(out, out);
|
||
vec4.scale(out, out, scale);
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Transforms the vec4 with a mat4.
|
||
*
|
||
* @param {vec4} out the receiving vector
|
||
* @param {vec4} a the vector to transform
|
||
* @param {mat4} m matrix to transform with
|
||
* @returns {vec4} out
|
||
*/
|
||
vec4.transformMat4 = function(out, a, m) {
|
||
var x = a[0], y = a[1], z = a[2], w = a[3];
|
||
out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w;
|
||
out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w;
|
||
out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w;
|
||
out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Transforms the vec4 with a quat
|
||
*
|
||
* @param {vec4} out the receiving vector
|
||
* @param {vec4} a the vector to transform
|
||
* @param {quat} q quaternion to transform with
|
||
* @returns {vec4} out
|
||
*/
|
||
vec4.transformQuat = function(out, a, q) {
|
||
var x = a[0], y = a[1], z = a[2],
|
||
qx = q[0], qy = q[1], qz = q[2], qw = q[3],
|
||
|
||
// calculate quat * vec
|
||
ix = qw * x + qy * z - qz * y,
|
||
iy = qw * y + qz * x - qx * z,
|
||
iz = qw * z + qx * y - qy * x,
|
||
iw = -qx * x - qy * y - qz * z;
|
||
|
||
// calculate result * inverse quat
|
||
out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;
|
||
out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;
|
||
out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Perform some operation over an array of vec4s.
|
||
*
|
||
* @param {Array} a the array of vectors to iterate over
|
||
* @param {Number} stride Number of elements between the start of each vec4. If 0 assumes tightly packed
|
||
* @param {Number} offset Number of elements to skip at the beginning of the array
|
||
* @param {Number} count Number of vec4s to iterate over. If 0 iterates over entire array
|
||
* @param {Function} fn Function to call for each vector in the array
|
||
* @param {Object} [arg] additional argument to pass to fn
|
||
* @returns {Array} a
|
||
* @function
|
||
*/
|
||
vec4.forEach = (function() {
|
||
var vec = vec4.create();
|
||
|
||
return function(a, stride, offset, count, fn, arg) {
|
||
var i, l;
|
||
if(!stride) {
|
||
stride = 4;
|
||
}
|
||
|
||
if(!offset) {
|
||
offset = 0;
|
||
}
|
||
|
||
if(count) {
|
||
l = Math.min((count * stride) + offset, a.length);
|
||
} else {
|
||
l = a.length;
|
||
}
|
||
|
||
for(i = offset; i < l; i += stride) {
|
||
vec[0] = a[i]; vec[1] = a[i+1]; vec[2] = a[i+2]; vec[3] = a[i+3];
|
||
fn(vec, vec, arg);
|
||
a[i] = vec[0]; a[i+1] = vec[1]; a[i+2] = vec[2]; a[i+3] = vec[3];
|
||
}
|
||
|
||
return a;
|
||
};
|
||
})();
|
||
|
||
/**
|
||
* Returns a string representation of a vector
|
||
*
|
||
* @param {vec4} vec vector to represent as a string
|
||
* @returns {String} string representation of the vector
|
||
*/
|
||
vec4.str = function (a) {
|
||
return 'vec4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
|
||
};
|
||
|
||
if(typeof(exports) !== 'undefined') {
|
||
exports.vec4 = vec4;
|
||
}
|
||
;
|
||
/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
|
||
|
||
Redistribution and use in source and binary forms, with or without modification,
|
||
are permitted provided that the following conditions are met:
|
||
|
||
* Redistributions of source code must retain the above copyright notice, this
|
||
list of conditions and the following disclaimer.
|
||
* Redistributions in binary form must reproduce the above copyright notice,
|
||
this list of conditions and the following disclaimer in the documentation
|
||
and/or other materials provided with the distribution.
|
||
|
||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
||
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
||
|
||
/**
|
||
* @class 2x2 Matrix
|
||
* @name mat2
|
||
*/
|
||
|
||
var mat2 = {};
|
||
|
||
/**
|
||
* Creates a new identity mat2
|
||
*
|
||
* @returns {mat2} a new 2x2 matrix
|
||
*/
|
||
mat2.create = function() {
|
||
var out = new GLMAT_ARRAY_TYPE(4);
|
||
out[0] = 1;
|
||
out[1] = 0;
|
||
out[2] = 0;
|
||
out[3] = 1;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Creates a new mat2 initialized with values from an existing matrix
|
||
*
|
||
* @param {mat2} a matrix to clone
|
||
* @returns {mat2} a new 2x2 matrix
|
||
*/
|
||
mat2.clone = function(a) {
|
||
var out = new GLMAT_ARRAY_TYPE(4);
|
||
out[0] = a[0];
|
||
out[1] = a[1];
|
||
out[2] = a[2];
|
||
out[3] = a[3];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Copy the values from one mat2 to another
|
||
*
|
||
* @param {mat2} out the receiving matrix
|
||
* @param {mat2} a the source matrix
|
||
* @returns {mat2} out
|
||
*/
|
||
mat2.copy = function(out, a) {
|
||
out[0] = a[0];
|
||
out[1] = a[1];
|
||
out[2] = a[2];
|
||
out[3] = a[3];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Set a mat2 to the identity matrix
|
||
*
|
||
* @param {mat2} out the receiving matrix
|
||
* @returns {mat2} out
|
||
*/
|
||
mat2.identity = function(out) {
|
||
out[0] = 1;
|
||
out[1] = 0;
|
||
out[2] = 0;
|
||
out[3] = 1;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Transpose the values of a mat2
|
||
*
|
||
* @param {mat2} out the receiving matrix
|
||
* @param {mat2} a the source matrix
|
||
* @returns {mat2} out
|
||
*/
|
||
mat2.transpose = function(out, a) {
|
||
// If we are transposing ourselves we can skip a few steps but have to cache some values
|
||
if (out === a) {
|
||
var a1 = a[1];
|
||
out[1] = a[2];
|
||
out[2] = a1;
|
||
} else {
|
||
out[0] = a[0];
|
||
out[1] = a[2];
|
||
out[2] = a[1];
|
||
out[3] = a[3];
|
||
}
|
||
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Inverts a mat2
|
||
*
|
||
* @param {mat2} out the receiving matrix
|
||
* @param {mat2} a the source matrix
|
||
* @returns {mat2} out
|
||
*/
|
||
mat2.invert = function(out, a) {
|
||
var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
|
||
|
||
// Calculate the determinant
|
||
det = a0 * a3 - a2 * a1;
|
||
|
||
if (!det) {
|
||
return null;
|
||
}
|
||
det = 1.0 / det;
|
||
|
||
out[0] = a3 * det;
|
||
out[1] = -a1 * det;
|
||
out[2] = -a2 * det;
|
||
out[3] = a0 * det;
|
||
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Calculates the adjugate of a mat2
|
||
*
|
||
* @param {mat2} out the receiving matrix
|
||
* @param {mat2} a the source matrix
|
||
* @returns {mat2} out
|
||
*/
|
||
mat2.adjoint = function(out, a) {
|
||
// Caching this value is nessecary if out == a
|
||
var a0 = a[0];
|
||
out[0] = a[3];
|
||
out[1] = -a[1];
|
||
out[2] = -a[2];
|
||
out[3] = a0;
|
||
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Calculates the determinant of a mat2
|
||
*
|
||
* @param {mat2} a the source matrix
|
||
* @returns {Number} determinant of a
|
||
*/
|
||
mat2.determinant = function (a) {
|
||
return a[0] * a[3] - a[2] * a[1];
|
||
};
|
||
|
||
/**
|
||
* Multiplies two mat2's
|
||
*
|
||
* @param {mat2} out the receiving matrix
|
||
* @param {mat2} a the first operand
|
||
* @param {mat2} b the second operand
|
||
* @returns {mat2} out
|
||
*/
|
||
mat2.multiply = function (out, a, b) {
|
||
var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3];
|
||
var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3];
|
||
out[0] = a0 * b0 + a2 * b1;
|
||
out[1] = a1 * b0 + a3 * b1;
|
||
out[2] = a0 * b2 + a2 * b3;
|
||
out[3] = a1 * b2 + a3 * b3;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link mat2.multiply}
|
||
* @function
|
||
*/
|
||
mat2.mul = mat2.multiply;
|
||
|
||
/**
|
||
* Rotates a mat2 by the given angle
|
||
*
|
||
* @param {mat2} out the receiving matrix
|
||
* @param {mat2} a the matrix to rotate
|
||
* @param {Number} rad the angle to rotate the matrix by
|
||
* @returns {mat2} out
|
||
*/
|
||
mat2.rotate = function (out, a, rad) {
|
||
var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
|
||
s = Math.sin(rad),
|
||
c = Math.cos(rad);
|
||
out[0] = a0 * c + a2 * s;
|
||
out[1] = a1 * c + a3 * s;
|
||
out[2] = a0 * -s + a2 * c;
|
||
out[3] = a1 * -s + a3 * c;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Scales the mat2 by the dimensions in the given vec2
|
||
*
|
||
* @param {mat2} out the receiving matrix
|
||
* @param {mat2} a the matrix to rotate
|
||
* @param {vec2} v the vec2 to scale the matrix by
|
||
* @returns {mat2} out
|
||
**/
|
||
mat2.scale = function(out, a, v) {
|
||
var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
|
||
v0 = v[0], v1 = v[1];
|
||
out[0] = a0 * v0;
|
||
out[1] = a1 * v0;
|
||
out[2] = a2 * v1;
|
||
out[3] = a3 * v1;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Returns a string representation of a mat2
|
||
*
|
||
* @param {mat2} mat matrix to represent as a string
|
||
* @returns {String} string representation of the matrix
|
||
*/
|
||
mat2.str = function (a) {
|
||
return 'mat2(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
|
||
};
|
||
|
||
/**
|
||
* Returns Frobenius norm of a mat2
|
||
*
|
||
* @param {mat2} a the matrix to calculate Frobenius norm of
|
||
* @returns {Number} Frobenius norm
|
||
*/
|
||
mat2.frob = function (a) {
|
||
return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2)))
|
||
};
|
||
|
||
/**
|
||
* Returns L, D and U matrices (Lower triangular, Diagonal and Upper triangular) by factorizing the input matrix
|
||
* @param {mat2} L the lower triangular matrix
|
||
* @param {mat2} D the diagonal matrix
|
||
* @param {mat2} U the upper triangular matrix
|
||
* @param {mat2} a the input matrix to factorize
|
||
*/
|
||
|
||
mat2.LDU = function (L, D, U, a) {
|
||
L[2] = a[2]/a[0];
|
||
U[0] = a[0];
|
||
U[1] = a[1];
|
||
U[3] = a[3] - L[2] * U[1];
|
||
return [L, D, U];
|
||
};
|
||
|
||
if(typeof(exports) !== 'undefined') {
|
||
exports.mat2 = mat2;
|
||
}
|
||
;
|
||
/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
|
||
|
||
Redistribution and use in source and binary forms, with or without modification,
|
||
are permitted provided that the following conditions are met:
|
||
|
||
* Redistributions of source code must retain the above copyright notice, this
|
||
list of conditions and the following disclaimer.
|
||
* Redistributions in binary form must reproduce the above copyright notice,
|
||
this list of conditions and the following disclaimer in the documentation
|
||
and/or other materials provided with the distribution.
|
||
|
||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
||
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
||
|
||
/**
|
||
* @class 2x3 Matrix
|
||
* @name mat2d
|
||
*
|
||
* @description
|
||
* A mat2d contains six elements defined as:
|
||
* <pre>
|
||
* [a, c, tx,
|
||
* b, d, ty]
|
||
* </pre>
|
||
* This is a short form for the 3x3 matrix:
|
||
* <pre>
|
||
* [a, c, tx,
|
||
* b, d, ty,
|
||
* 0, 0, 1]
|
||
* </pre>
|
||
* The last row is ignored so the array is shorter and operations are faster.
|
||
*/
|
||
|
||
var mat2d = {};
|
||
|
||
/**
|
||
* Creates a new identity mat2d
|
||
*
|
||
* @returns {mat2d} a new 2x3 matrix
|
||
*/
|
||
mat2d.create = function() {
|
||
var out = new GLMAT_ARRAY_TYPE(6);
|
||
out[0] = 1;
|
||
out[1] = 0;
|
||
out[2] = 0;
|
||
out[3] = 1;
|
||
out[4] = 0;
|
||
out[5] = 0;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Creates a new mat2d initialized with values from an existing matrix
|
||
*
|
||
* @param {mat2d} a matrix to clone
|
||
* @returns {mat2d} a new 2x3 matrix
|
||
*/
|
||
mat2d.clone = function(a) {
|
||
var out = new GLMAT_ARRAY_TYPE(6);
|
||
out[0] = a[0];
|
||
out[1] = a[1];
|
||
out[2] = a[2];
|
||
out[3] = a[3];
|
||
out[4] = a[4];
|
||
out[5] = a[5];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Copy the values from one mat2d to another
|
||
*
|
||
* @param {mat2d} out the receiving matrix
|
||
* @param {mat2d} a the source matrix
|
||
* @returns {mat2d} out
|
||
*/
|
||
mat2d.copy = function(out, a) {
|
||
out[0] = a[0];
|
||
out[1] = a[1];
|
||
out[2] = a[2];
|
||
out[3] = a[3];
|
||
out[4] = a[4];
|
||
out[5] = a[5];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Set a mat2d to the identity matrix
|
||
*
|
||
* @param {mat2d} out the receiving matrix
|
||
* @returns {mat2d} out
|
||
*/
|
||
mat2d.identity = function(out) {
|
||
out[0] = 1;
|
||
out[1] = 0;
|
||
out[2] = 0;
|
||
out[3] = 1;
|
||
out[4] = 0;
|
||
out[5] = 0;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Inverts a mat2d
|
||
*
|
||
* @param {mat2d} out the receiving matrix
|
||
* @param {mat2d} a the source matrix
|
||
* @returns {mat2d} out
|
||
*/
|
||
mat2d.invert = function(out, a) {
|
||
var aa = a[0], ab = a[1], ac = a[2], ad = a[3],
|
||
atx = a[4], aty = a[5];
|
||
|
||
var det = aa * ad - ab * ac;
|
||
if(!det){
|
||
return null;
|
||
}
|
||
det = 1.0 / det;
|
||
|
||
out[0] = ad * det;
|
||
out[1] = -ab * det;
|
||
out[2] = -ac * det;
|
||
out[3] = aa * det;
|
||
out[4] = (ac * aty - ad * atx) * det;
|
||
out[5] = (ab * atx - aa * aty) * det;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Calculates the determinant of a mat2d
|
||
*
|
||
* @param {mat2d} a the source matrix
|
||
* @returns {Number} determinant of a
|
||
*/
|
||
mat2d.determinant = function (a) {
|
||
return a[0] * a[3] - a[1] * a[2];
|
||
};
|
||
|
||
/**
|
||
* Multiplies two mat2d's
|
||
*
|
||
* @param {mat2d} out the receiving matrix
|
||
* @param {mat2d} a the first operand
|
||
* @param {mat2d} b the second operand
|
||
* @returns {mat2d} out
|
||
*/
|
||
mat2d.multiply = function (out, a, b) {
|
||
var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5],
|
||
b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3], b4 = b[4], b5 = b[5];
|
||
out[0] = a0 * b0 + a2 * b1;
|
||
out[1] = a1 * b0 + a3 * b1;
|
||
out[2] = a0 * b2 + a2 * b3;
|
||
out[3] = a1 * b2 + a3 * b3;
|
||
out[4] = a0 * b4 + a2 * b5 + a4;
|
||
out[5] = a1 * b4 + a3 * b5 + a5;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link mat2d.multiply}
|
||
* @function
|
||
*/
|
||
mat2d.mul = mat2d.multiply;
|
||
|
||
|
||
/**
|
||
* Rotates a mat2d by the given angle
|
||
*
|
||
* @param {mat2d} out the receiving matrix
|
||
* @param {mat2d} a the matrix to rotate
|
||
* @param {Number} rad the angle to rotate the matrix by
|
||
* @returns {mat2d} out
|
||
*/
|
||
mat2d.rotate = function (out, a, rad) {
|
||
var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5],
|
||
s = Math.sin(rad),
|
||
c = Math.cos(rad);
|
||
out[0] = a0 * c + a2 * s;
|
||
out[1] = a1 * c + a3 * s;
|
||
out[2] = a0 * -s + a2 * c;
|
||
out[3] = a1 * -s + a3 * c;
|
||
out[4] = a4;
|
||
out[5] = a5;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Scales the mat2d by the dimensions in the given vec2
|
||
*
|
||
* @param {mat2d} out the receiving matrix
|
||
* @param {mat2d} a the matrix to translate
|
||
* @param {vec2} v the vec2 to scale the matrix by
|
||
* @returns {mat2d} out
|
||
**/
|
||
mat2d.scale = function(out, a, v) {
|
||
var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5],
|
||
v0 = v[0], v1 = v[1];
|
||
out[0] = a0 * v0;
|
||
out[1] = a1 * v0;
|
||
out[2] = a2 * v1;
|
||
out[3] = a3 * v1;
|
||
out[4] = a4;
|
||
out[5] = a5;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Translates the mat2d by the dimensions in the given vec2
|
||
*
|
||
* @param {mat2d} out the receiving matrix
|
||
* @param {mat2d} a the matrix to translate
|
||
* @param {vec2} v the vec2 to translate the matrix by
|
||
* @returns {mat2d} out
|
||
**/
|
||
mat2d.translate = function(out, a, v) {
|
||
var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5],
|
||
v0 = v[0], v1 = v[1];
|
||
out[0] = a0;
|
||
out[1] = a1;
|
||
out[2] = a2;
|
||
out[3] = a3;
|
||
out[4] = a0 * v0 + a2 * v1 + a4;
|
||
out[5] = a1 * v0 + a3 * v1 + a5;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Returns a string representation of a mat2d
|
||
*
|
||
* @param {mat2d} a matrix to represent as a string
|
||
* @returns {String} string representation of the matrix
|
||
*/
|
||
mat2d.str = function (a) {
|
||
return 'mat2d(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' +
|
||
a[3] + ', ' + a[4] + ', ' + a[5] + ')';
|
||
};
|
||
|
||
/**
|
||
* Returns Frobenius norm of a mat2d
|
||
*
|
||
* @param {mat2d} a the matrix to calculate Frobenius norm of
|
||
* @returns {Number} Frobenius norm
|
||
*/
|
||
mat2d.frob = function (a) {
|
||
return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + 1))
|
||
};
|
||
|
||
if(typeof(exports) !== 'undefined') {
|
||
exports.mat2d = mat2d;
|
||
}
|
||
;
|
||
/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
|
||
|
||
Redistribution and use in source and binary forms, with or without modification,
|
||
are permitted provided that the following conditions are met:
|
||
|
||
* Redistributions of source code must retain the above copyright notice, this
|
||
list of conditions and the following disclaimer.
|
||
* Redistributions in binary form must reproduce the above copyright notice,
|
||
this list of conditions and the following disclaimer in the documentation
|
||
and/or other materials provided with the distribution.
|
||
|
||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
||
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
||
|
||
/**
|
||
* @class 3x3 Matrix
|
||
* @name mat3
|
||
*/
|
||
|
||
var mat3 = {};
|
||
|
||
/**
|
||
* Creates a new identity mat3
|
||
*
|
||
* @returns {mat3} a new 3x3 matrix
|
||
*/
|
||
mat3.create = function() {
|
||
var out = new GLMAT_ARRAY_TYPE(9);
|
||
out[0] = 1;
|
||
out[1] = 0;
|
||
out[2] = 0;
|
||
out[3] = 0;
|
||
out[4] = 1;
|
||
out[5] = 0;
|
||
out[6] = 0;
|
||
out[7] = 0;
|
||
out[8] = 1;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Copies the upper-left 3x3 values into the given mat3.
|
||
*
|
||
* @param {mat3} out the receiving 3x3 matrix
|
||
* @param {mat4} a the source 4x4 matrix
|
||
* @returns {mat3} out
|
||
*/
|
||
mat3.fromMat4 = function(out, a) {
|
||
out[0] = a[0];
|
||
out[1] = a[1];
|
||
out[2] = a[2];
|
||
out[3] = a[4];
|
||
out[4] = a[5];
|
||
out[5] = a[6];
|
||
out[6] = a[8];
|
||
out[7] = a[9];
|
||
out[8] = a[10];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Creates a new mat3 initialized with values from an existing matrix
|
||
*
|
||
* @param {mat3} a matrix to clone
|
||
* @returns {mat3} a new 3x3 matrix
|
||
*/
|
||
mat3.clone = function(a) {
|
||
var out = new GLMAT_ARRAY_TYPE(9);
|
||
out[0] = a[0];
|
||
out[1] = a[1];
|
||
out[2] = a[2];
|
||
out[3] = a[3];
|
||
out[4] = a[4];
|
||
out[5] = a[5];
|
||
out[6] = a[6];
|
||
out[7] = a[7];
|
||
out[8] = a[8];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Copy the values from one mat3 to another
|
||
*
|
||
* @param {mat3} out the receiving matrix
|
||
* @param {mat3} a the source matrix
|
||
* @returns {mat3} out
|
||
*/
|
||
mat3.copy = function(out, a) {
|
||
out[0] = a[0];
|
||
out[1] = a[1];
|
||
out[2] = a[2];
|
||
out[3] = a[3];
|
||
out[4] = a[4];
|
||
out[5] = a[5];
|
||
out[6] = a[6];
|
||
out[7] = a[7];
|
||
out[8] = a[8];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Set a mat3 to the identity matrix
|
||
*
|
||
* @param {mat3} out the receiving matrix
|
||
* @returns {mat3} out
|
||
*/
|
||
mat3.identity = function(out) {
|
||
out[0] = 1;
|
||
out[1] = 0;
|
||
out[2] = 0;
|
||
out[3] = 0;
|
||
out[4] = 1;
|
||
out[5] = 0;
|
||
out[6] = 0;
|
||
out[7] = 0;
|
||
out[8] = 1;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Transpose the values of a mat3
|
||
*
|
||
* @param {mat3} out the receiving matrix
|
||
* @param {mat3} a the source matrix
|
||
* @returns {mat3} out
|
||
*/
|
||
mat3.transpose = function(out, a) {
|
||
// If we are transposing ourselves we can skip a few steps but have to cache some values
|
||
if (out === a) {
|
||
var a01 = a[1], a02 = a[2], a12 = a[5];
|
||
out[1] = a[3];
|
||
out[2] = a[6];
|
||
out[3] = a01;
|
||
out[5] = a[7];
|
||
out[6] = a02;
|
||
out[7] = a12;
|
||
} else {
|
||
out[0] = a[0];
|
||
out[1] = a[3];
|
||
out[2] = a[6];
|
||
out[3] = a[1];
|
||
out[4] = a[4];
|
||
out[5] = a[7];
|
||
out[6] = a[2];
|
||
out[7] = a[5];
|
||
out[8] = a[8];
|
||
}
|
||
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Inverts a mat3
|
||
*
|
||
* @param {mat3} out the receiving matrix
|
||
* @param {mat3} a the source matrix
|
||
* @returns {mat3} out
|
||
*/
|
||
mat3.invert = function(out, a) {
|
||
var a00 = a[0], a01 = a[1], a02 = a[2],
|
||
a10 = a[3], a11 = a[4], a12 = a[5],
|
||
a20 = a[6], a21 = a[7], a22 = a[8],
|
||
|
||
b01 = a22 * a11 - a12 * a21,
|
||
b11 = -a22 * a10 + a12 * a20,
|
||
b21 = a21 * a10 - a11 * a20,
|
||
|
||
// Calculate the determinant
|
||
det = a00 * b01 + a01 * b11 + a02 * b21;
|
||
|
||
if (!det) {
|
||
return null;
|
||
}
|
||
det = 1.0 / det;
|
||
|
||
out[0] = b01 * det;
|
||
out[1] = (-a22 * a01 + a02 * a21) * det;
|
||
out[2] = (a12 * a01 - a02 * a11) * det;
|
||
out[3] = b11 * det;
|
||
out[4] = (a22 * a00 - a02 * a20) * det;
|
||
out[5] = (-a12 * a00 + a02 * a10) * det;
|
||
out[6] = b21 * det;
|
||
out[7] = (-a21 * a00 + a01 * a20) * det;
|
||
out[8] = (a11 * a00 - a01 * a10) * det;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Calculates the adjugate of a mat3
|
||
*
|
||
* @param {mat3} out the receiving matrix
|
||
* @param {mat3} a the source matrix
|
||
* @returns {mat3} out
|
||
*/
|
||
mat3.adjoint = function(out, a) {
|
||
var a00 = a[0], a01 = a[1], a02 = a[2],
|
||
a10 = a[3], a11 = a[4], a12 = a[5],
|
||
a20 = a[6], a21 = a[7], a22 = a[8];
|
||
|
||
out[0] = (a11 * a22 - a12 * a21);
|
||
out[1] = (a02 * a21 - a01 * a22);
|
||
out[2] = (a01 * a12 - a02 * a11);
|
||
out[3] = (a12 * a20 - a10 * a22);
|
||
out[4] = (a00 * a22 - a02 * a20);
|
||
out[5] = (a02 * a10 - a00 * a12);
|
||
out[6] = (a10 * a21 - a11 * a20);
|
||
out[7] = (a01 * a20 - a00 * a21);
|
||
out[8] = (a00 * a11 - a01 * a10);
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Calculates the determinant of a mat3
|
||
*
|
||
* @param {mat3} a the source matrix
|
||
* @returns {Number} determinant of a
|
||
*/
|
||
mat3.determinant = function (a) {
|
||
var a00 = a[0], a01 = a[1], a02 = a[2],
|
||
a10 = a[3], a11 = a[4], a12 = a[5],
|
||
a20 = a[6], a21 = a[7], a22 = a[8];
|
||
|
||
return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20);
|
||
};
|
||
|
||
/**
|
||
* Multiplies two mat3's
|
||
*
|
||
* @param {mat3} out the receiving matrix
|
||
* @param {mat3} a the first operand
|
||
* @param {mat3} b the second operand
|
||
* @returns {mat3} out
|
||
*/
|
||
mat3.multiply = function (out, a, b) {
|
||
var a00 = a[0], a01 = a[1], a02 = a[2],
|
||
a10 = a[3], a11 = a[4], a12 = a[5],
|
||
a20 = a[6], a21 = a[7], a22 = a[8],
|
||
|
||
b00 = b[0], b01 = b[1], b02 = b[2],
|
||
b10 = b[3], b11 = b[4], b12 = b[5],
|
||
b20 = b[6], b21 = b[7], b22 = b[8];
|
||
|
||
out[0] = b00 * a00 + b01 * a10 + b02 * a20;
|
||
out[1] = b00 * a01 + b01 * a11 + b02 * a21;
|
||
out[2] = b00 * a02 + b01 * a12 + b02 * a22;
|
||
|
||
out[3] = b10 * a00 + b11 * a10 + b12 * a20;
|
||
out[4] = b10 * a01 + b11 * a11 + b12 * a21;
|
||
out[5] = b10 * a02 + b11 * a12 + b12 * a22;
|
||
|
||
out[6] = b20 * a00 + b21 * a10 + b22 * a20;
|
||
out[7] = b20 * a01 + b21 * a11 + b22 * a21;
|
||
out[8] = b20 * a02 + b21 * a12 + b22 * a22;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link mat3.multiply}
|
||
* @function
|
||
*/
|
||
mat3.mul = mat3.multiply;
|
||
|
||
/**
|
||
* Translate a mat3 by the given vector
|
||
*
|
||
* @param {mat3} out the receiving matrix
|
||
* @param {mat3} a the matrix to translate
|
||
* @param {vec2} v vector to translate by
|
||
* @returns {mat3} out
|
||
*/
|
||
mat3.translate = function(out, a, v) {
|
||
var a00 = a[0], a01 = a[1], a02 = a[2],
|
||
a10 = a[3], a11 = a[4], a12 = a[5],
|
||
a20 = a[6], a21 = a[7], a22 = a[8],
|
||
x = v[0], y = v[1];
|
||
|
||
out[0] = a00;
|
||
out[1] = a01;
|
||
out[2] = a02;
|
||
|
||
out[3] = a10;
|
||
out[4] = a11;
|
||
out[5] = a12;
|
||
|
||
out[6] = x * a00 + y * a10 + a20;
|
||
out[7] = x * a01 + y * a11 + a21;
|
||
out[8] = x * a02 + y * a12 + a22;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Rotates a mat3 by the given angle
|
||
*
|
||
* @param {mat3} out the receiving matrix
|
||
* @param {mat3} a the matrix to rotate
|
||
* @param {Number} rad the angle to rotate the matrix by
|
||
* @returns {mat3} out
|
||
*/
|
||
mat3.rotate = function (out, a, rad) {
|
||
var a00 = a[0], a01 = a[1], a02 = a[2],
|
||
a10 = a[3], a11 = a[4], a12 = a[5],
|
||
a20 = a[6], a21 = a[7], a22 = a[8],
|
||
|
||
s = Math.sin(rad),
|
||
c = Math.cos(rad);
|
||
|
||
out[0] = c * a00 + s * a10;
|
||
out[1] = c * a01 + s * a11;
|
||
out[2] = c * a02 + s * a12;
|
||
|
||
out[3] = c * a10 - s * a00;
|
||
out[4] = c * a11 - s * a01;
|
||
out[5] = c * a12 - s * a02;
|
||
|
||
out[6] = a20;
|
||
out[7] = a21;
|
||
out[8] = a22;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Scales the mat3 by the dimensions in the given vec2
|
||
*
|
||
* @param {mat3} out the receiving matrix
|
||
* @param {mat3} a the matrix to rotate
|
||
* @param {vec2} v the vec2 to scale the matrix by
|
||
* @returns {mat3} out
|
||
**/
|
||
mat3.scale = function(out, a, v) {
|
||
var x = v[0], y = v[1];
|
||
|
||
out[0] = x * a[0];
|
||
out[1] = x * a[1];
|
||
out[2] = x * a[2];
|
||
|
||
out[3] = y * a[3];
|
||
out[4] = y * a[4];
|
||
out[5] = y * a[5];
|
||
|
||
out[6] = a[6];
|
||
out[7] = a[7];
|
||
out[8] = a[8];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Copies the values from a mat2d into a mat3
|
||
*
|
||
* @param {mat3} out the receiving matrix
|
||
* @param {mat2d} a the matrix to copy
|
||
* @returns {mat3} out
|
||
**/
|
||
mat3.fromMat2d = function(out, a) {
|
||
out[0] = a[0];
|
||
out[1] = a[1];
|
||
out[2] = 0;
|
||
|
||
out[3] = a[2];
|
||
out[4] = a[3];
|
||
out[5] = 0;
|
||
|
||
out[6] = a[4];
|
||
out[7] = a[5];
|
||
out[8] = 1;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Calculates a 3x3 matrix from the given quaternion
|
||
*
|
||
* @param {mat3} out mat3 receiving operation result
|
||
* @param {quat} q Quaternion to create matrix from
|
||
*
|
||
* @returns {mat3} out
|
||
*/
|
||
mat3.fromQuat = function (out, q) {
|
||
var x = q[0], y = q[1], z = q[2], w = q[3],
|
||
x2 = x + x,
|
||
y2 = y + y,
|
||
z2 = z + z,
|
||
|
||
xx = x * x2,
|
||
yx = y * x2,
|
||
yy = y * y2,
|
||
zx = z * x2,
|
||
zy = z * y2,
|
||
zz = z * z2,
|
||
wx = w * x2,
|
||
wy = w * y2,
|
||
wz = w * z2;
|
||
|
||
out[0] = 1 - yy - zz;
|
||
out[3] = yx - wz;
|
||
out[6] = zx + wy;
|
||
|
||
out[1] = yx + wz;
|
||
out[4] = 1 - xx - zz;
|
||
out[7] = zy - wx;
|
||
|
||
out[2] = zx - wy;
|
||
out[5] = zy + wx;
|
||
out[8] = 1 - xx - yy;
|
||
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix
|
||
*
|
||
* @param {mat3} out mat3 receiving operation result
|
||
* @param {mat4} a Mat4 to derive the normal matrix from
|
||
*
|
||
* @returns {mat3} out
|
||
*/
|
||
mat3.normalFromMat4 = function (out, a) {
|
||
var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
|
||
a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
|
||
a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
|
||
a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15],
|
||
|
||
b00 = a00 * a11 - a01 * a10,
|
||
b01 = a00 * a12 - a02 * a10,
|
||
b02 = a00 * a13 - a03 * a10,
|
||
b03 = a01 * a12 - a02 * a11,
|
||
b04 = a01 * a13 - a03 * a11,
|
||
b05 = a02 * a13 - a03 * a12,
|
||
b06 = a20 * a31 - a21 * a30,
|
||
b07 = a20 * a32 - a22 * a30,
|
||
b08 = a20 * a33 - a23 * a30,
|
||
b09 = a21 * a32 - a22 * a31,
|
||
b10 = a21 * a33 - a23 * a31,
|
||
b11 = a22 * a33 - a23 * a32,
|
||
|
||
// Calculate the determinant
|
||
det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
|
||
|
||
if (!det) {
|
||
return null;
|
||
}
|
||
det = 1.0 / det;
|
||
|
||
out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
|
||
out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
|
||
out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
|
||
|
||
out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
|
||
out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
|
||
out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
|
||
|
||
out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
|
||
out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
|
||
out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
|
||
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Returns a string representation of a mat3
|
||
*
|
||
* @param {mat3} mat matrix to represent as a string
|
||
* @returns {String} string representation of the matrix
|
||
*/
|
||
mat3.str = function (a) {
|
||
return 'mat3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' +
|
||
a[3] + ', ' + a[4] + ', ' + a[5] + ', ' +
|
||
a[6] + ', ' + a[7] + ', ' + a[8] + ')';
|
||
};
|
||
|
||
/**
|
||
* Returns Frobenius norm of a mat3
|
||
*
|
||
* @param {mat3} a the matrix to calculate Frobenius norm of
|
||
* @returns {Number} Frobenius norm
|
||
*/
|
||
mat3.frob = function (a) {
|
||
return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2)))
|
||
};
|
||
|
||
|
||
if(typeof(exports) !== 'undefined') {
|
||
exports.mat3 = mat3;
|
||
}
|
||
;
|
||
/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
|
||
|
||
Redistribution and use in source and binary forms, with or without modification,
|
||
are permitted provided that the following conditions are met:
|
||
|
||
* Redistributions of source code must retain the above copyright notice, this
|
||
list of conditions and the following disclaimer.
|
||
* Redistributions in binary form must reproduce the above copyright notice,
|
||
this list of conditions and the following disclaimer in the documentation
|
||
and/or other materials provided with the distribution.
|
||
|
||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
||
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
||
|
||
/**
|
||
* @class 4x4 Matrix
|
||
* @name mat4
|
||
*/
|
||
|
||
var mat4 = {};
|
||
|
||
/**
|
||
* Creates a new identity mat4
|
||
*
|
||
* @returns {mat4} a new 4x4 matrix
|
||
*/
|
||
mat4.create = function() {
|
||
var out = new GLMAT_ARRAY_TYPE(16);
|
||
out[0] = 1;
|
||
out[1] = 0;
|
||
out[2] = 0;
|
||
out[3] = 0;
|
||
out[4] = 0;
|
||
out[5] = 1;
|
||
out[6] = 0;
|
||
out[7] = 0;
|
||
out[8] = 0;
|
||
out[9] = 0;
|
||
out[10] = 1;
|
||
out[11] = 0;
|
||
out[12] = 0;
|
||
out[13] = 0;
|
||
out[14] = 0;
|
||
out[15] = 1;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Creates a new mat4 initialized with values from an existing matrix
|
||
*
|
||
* @param {mat4} a matrix to clone
|
||
* @returns {mat4} a new 4x4 matrix
|
||
*/
|
||
mat4.clone = function(a) {
|
||
var out = new GLMAT_ARRAY_TYPE(16);
|
||
out[0] = a[0];
|
||
out[1] = a[1];
|
||
out[2] = a[2];
|
||
out[3] = a[3];
|
||
out[4] = a[4];
|
||
out[5] = a[5];
|
||
out[6] = a[6];
|
||
out[7] = a[7];
|
||
out[8] = a[8];
|
||
out[9] = a[9];
|
||
out[10] = a[10];
|
||
out[11] = a[11];
|
||
out[12] = a[12];
|
||
out[13] = a[13];
|
||
out[14] = a[14];
|
||
out[15] = a[15];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Copy the values from one mat4 to another
|
||
*
|
||
* @param {mat4} out the receiving matrix
|
||
* @param {mat4} a the source matrix
|
||
* @returns {mat4} out
|
||
*/
|
||
mat4.copy = function(out, a) {
|
||
out[0] = a[0];
|
||
out[1] = a[1];
|
||
out[2] = a[2];
|
||
out[3] = a[3];
|
||
out[4] = a[4];
|
||
out[5] = a[5];
|
||
out[6] = a[6];
|
||
out[7] = a[7];
|
||
out[8] = a[8];
|
||
out[9] = a[9];
|
||
out[10] = a[10];
|
||
out[11] = a[11];
|
||
out[12] = a[12];
|
||
out[13] = a[13];
|
||
out[14] = a[14];
|
||
out[15] = a[15];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Set a mat4 to the identity matrix
|
||
*
|
||
* @param {mat4} out the receiving matrix
|
||
* @returns {mat4} out
|
||
*/
|
||
mat4.identity = function(out) {
|
||
out[0] = 1;
|
||
out[1] = 0;
|
||
out[2] = 0;
|
||
out[3] = 0;
|
||
out[4] = 0;
|
||
out[5] = 1;
|
||
out[6] = 0;
|
||
out[7] = 0;
|
||
out[8] = 0;
|
||
out[9] = 0;
|
||
out[10] = 1;
|
||
out[11] = 0;
|
||
out[12] = 0;
|
||
out[13] = 0;
|
||
out[14] = 0;
|
||
out[15] = 1;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Transpose the values of a mat4
|
||
*
|
||
* @param {mat4} out the receiving matrix
|
||
* @param {mat4} a the source matrix
|
||
* @returns {mat4} out
|
||
*/
|
||
mat4.transpose = function(out, a) {
|
||
// If we are transposing ourselves we can skip a few steps but have to cache some values
|
||
if (out === a) {
|
||
var a01 = a[1], a02 = a[2], a03 = a[3],
|
||
a12 = a[6], a13 = a[7],
|
||
a23 = a[11];
|
||
|
||
out[1] = a[4];
|
||
out[2] = a[8];
|
||
out[3] = a[12];
|
||
out[4] = a01;
|
||
out[6] = a[9];
|
||
out[7] = a[13];
|
||
out[8] = a02;
|
||
out[9] = a12;
|
||
out[11] = a[14];
|
||
out[12] = a03;
|
||
out[13] = a13;
|
||
out[14] = a23;
|
||
} else {
|
||
out[0] = a[0];
|
||
out[1] = a[4];
|
||
out[2] = a[8];
|
||
out[3] = a[12];
|
||
out[4] = a[1];
|
||
out[5] = a[5];
|
||
out[6] = a[9];
|
||
out[7] = a[13];
|
||
out[8] = a[2];
|
||
out[9] = a[6];
|
||
out[10] = a[10];
|
||
out[11] = a[14];
|
||
out[12] = a[3];
|
||
out[13] = a[7];
|
||
out[14] = a[11];
|
||
out[15] = a[15];
|
||
}
|
||
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Inverts a mat4
|
||
*
|
||
* @param {mat4} out the receiving matrix
|
||
* @param {mat4} a the source matrix
|
||
* @returns {mat4} out
|
||
*/
|
||
mat4.invert = function(out, a) {
|
||
var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
|
||
a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
|
||
a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
|
||
a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15],
|
||
|
||
b00 = a00 * a11 - a01 * a10,
|
||
b01 = a00 * a12 - a02 * a10,
|
||
b02 = a00 * a13 - a03 * a10,
|
||
b03 = a01 * a12 - a02 * a11,
|
||
b04 = a01 * a13 - a03 * a11,
|
||
b05 = a02 * a13 - a03 * a12,
|
||
b06 = a20 * a31 - a21 * a30,
|
||
b07 = a20 * a32 - a22 * a30,
|
||
b08 = a20 * a33 - a23 * a30,
|
||
b09 = a21 * a32 - a22 * a31,
|
||
b10 = a21 * a33 - a23 * a31,
|
||
b11 = a22 * a33 - a23 * a32,
|
||
|
||
// Calculate the determinant
|
||
det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
|
||
|
||
if (!det) {
|
||
return null;
|
||
}
|
||
det = 1.0 / det;
|
||
|
||
out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
|
||
out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
|
||
out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
|
||
out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det;
|
||
out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
|
||
out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
|
||
out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
|
||
out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det;
|
||
out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
|
||
out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
|
||
out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
|
||
out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det;
|
||
out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det;
|
||
out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det;
|
||
out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det;
|
||
out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det;
|
||
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Calculates the adjugate of a mat4
|
||
*
|
||
* @param {mat4} out the receiving matrix
|
||
* @param {mat4} a the source matrix
|
||
* @returns {mat4} out
|
||
*/
|
||
mat4.adjoint = function(out, a) {
|
||
var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
|
||
a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
|
||
a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
|
||
a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];
|
||
|
||
out[0] = (a11 * (a22 * a33 - a23 * a32) - a21 * (a12 * a33 - a13 * a32) + a31 * (a12 * a23 - a13 * a22));
|
||
out[1] = -(a01 * (a22 * a33 - a23 * a32) - a21 * (a02 * a33 - a03 * a32) + a31 * (a02 * a23 - a03 * a22));
|
||
out[2] = (a01 * (a12 * a33 - a13 * a32) - a11 * (a02 * a33 - a03 * a32) + a31 * (a02 * a13 - a03 * a12));
|
||
out[3] = -(a01 * (a12 * a23 - a13 * a22) - a11 * (a02 * a23 - a03 * a22) + a21 * (a02 * a13 - a03 * a12));
|
||
out[4] = -(a10 * (a22 * a33 - a23 * a32) - a20 * (a12 * a33 - a13 * a32) + a30 * (a12 * a23 - a13 * a22));
|
||
out[5] = (a00 * (a22 * a33 - a23 * a32) - a20 * (a02 * a33 - a03 * a32) + a30 * (a02 * a23 - a03 * a22));
|
||
out[6] = -(a00 * (a12 * a33 - a13 * a32) - a10 * (a02 * a33 - a03 * a32) + a30 * (a02 * a13 - a03 * a12));
|
||
out[7] = (a00 * (a12 * a23 - a13 * a22) - a10 * (a02 * a23 - a03 * a22) + a20 * (a02 * a13 - a03 * a12));
|
||
out[8] = (a10 * (a21 * a33 - a23 * a31) - a20 * (a11 * a33 - a13 * a31) + a30 * (a11 * a23 - a13 * a21));
|
||
out[9] = -(a00 * (a21 * a33 - a23 * a31) - a20 * (a01 * a33 - a03 * a31) + a30 * (a01 * a23 - a03 * a21));
|
||
out[10] = (a00 * (a11 * a33 - a13 * a31) - a10 * (a01 * a33 - a03 * a31) + a30 * (a01 * a13 - a03 * a11));
|
||
out[11] = -(a00 * (a11 * a23 - a13 * a21) - a10 * (a01 * a23 - a03 * a21) + a20 * (a01 * a13 - a03 * a11));
|
||
out[12] = -(a10 * (a21 * a32 - a22 * a31) - a20 * (a11 * a32 - a12 * a31) + a30 * (a11 * a22 - a12 * a21));
|
||
out[13] = (a00 * (a21 * a32 - a22 * a31) - a20 * (a01 * a32 - a02 * a31) + a30 * (a01 * a22 - a02 * a21));
|
||
out[14] = -(a00 * (a11 * a32 - a12 * a31) - a10 * (a01 * a32 - a02 * a31) + a30 * (a01 * a12 - a02 * a11));
|
||
out[15] = (a00 * (a11 * a22 - a12 * a21) - a10 * (a01 * a22 - a02 * a21) + a20 * (a01 * a12 - a02 * a11));
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Calculates the determinant of a mat4
|
||
*
|
||
* @param {mat4} a the source matrix
|
||
* @returns {Number} determinant of a
|
||
*/
|
||
mat4.determinant = function (a) {
|
||
var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
|
||
a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
|
||
a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
|
||
a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15],
|
||
|
||
b00 = a00 * a11 - a01 * a10,
|
||
b01 = a00 * a12 - a02 * a10,
|
||
b02 = a00 * a13 - a03 * a10,
|
||
b03 = a01 * a12 - a02 * a11,
|
||
b04 = a01 * a13 - a03 * a11,
|
||
b05 = a02 * a13 - a03 * a12,
|
||
b06 = a20 * a31 - a21 * a30,
|
||
b07 = a20 * a32 - a22 * a30,
|
||
b08 = a20 * a33 - a23 * a30,
|
||
b09 = a21 * a32 - a22 * a31,
|
||
b10 = a21 * a33 - a23 * a31,
|
||
b11 = a22 * a33 - a23 * a32;
|
||
|
||
// Calculate the determinant
|
||
return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
|
||
};
|
||
|
||
/**
|
||
* Multiplies two mat4's
|
||
*
|
||
* @param {mat4} out the receiving matrix
|
||
* @param {mat4} a the first operand
|
||
* @param {mat4} b the second operand
|
||
* @returns {mat4} out
|
||
*/
|
||
mat4.multiply = function (out, a, b) {
|
||
var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
|
||
a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
|
||
a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
|
||
a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];
|
||
|
||
// Cache only the current line of the second matrix
|
||
var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3];
|
||
out[0] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
|
||
out[1] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
|
||
out[2] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
|
||
out[3] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
|
||
|
||
b0 = b[4]; b1 = b[5]; b2 = b[6]; b3 = b[7];
|
||
out[4] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
|
||
out[5] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
|
||
out[6] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
|
||
out[7] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
|
||
|
||
b0 = b[8]; b1 = b[9]; b2 = b[10]; b3 = b[11];
|
||
out[8] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
|
||
out[9] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
|
||
out[10] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
|
||
out[11] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
|
||
|
||
b0 = b[12]; b1 = b[13]; b2 = b[14]; b3 = b[15];
|
||
out[12] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
|
||
out[13] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
|
||
out[14] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
|
||
out[15] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link mat4.multiply}
|
||
* @function
|
||
*/
|
||
mat4.mul = mat4.multiply;
|
||
|
||
/**
|
||
* Translate a mat4 by the given vector
|
||
*
|
||
* @param {mat4} out the receiving matrix
|
||
* @param {mat4} a the matrix to translate
|
||
* @param {vec3} v vector to translate by
|
||
* @returns {mat4} out
|
||
*/
|
||
mat4.translate = function (out, a, v) {
|
||
var x = v[0], y = v[1], z = v[2],
|
||
a00, a01, a02, a03,
|
||
a10, a11, a12, a13,
|
||
a20, a21, a22, a23;
|
||
|
||
if (a === out) {
|
||
out[12] = a[0] * x + a[4] * y + a[8] * z + a[12];
|
||
out[13] = a[1] * x + a[5] * y + a[9] * z + a[13];
|
||
out[14] = a[2] * x + a[6] * y + a[10] * z + a[14];
|
||
out[15] = a[3] * x + a[7] * y + a[11] * z + a[15];
|
||
} else {
|
||
a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3];
|
||
a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7];
|
||
a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11];
|
||
|
||
out[0] = a00; out[1] = a01; out[2] = a02; out[3] = a03;
|
||
out[4] = a10; out[5] = a11; out[6] = a12; out[7] = a13;
|
||
out[8] = a20; out[9] = a21; out[10] = a22; out[11] = a23;
|
||
|
||
out[12] = a00 * x + a10 * y + a20 * z + a[12];
|
||
out[13] = a01 * x + a11 * y + a21 * z + a[13];
|
||
out[14] = a02 * x + a12 * y + a22 * z + a[14];
|
||
out[15] = a03 * x + a13 * y + a23 * z + a[15];
|
||
}
|
||
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Scales the mat4 by the dimensions in the given vec3
|
||
*
|
||
* @param {mat4} out the receiving matrix
|
||
* @param {mat4} a the matrix to scale
|
||
* @param {vec3} v the vec3 to scale the matrix by
|
||
* @returns {mat4} out
|
||
**/
|
||
mat4.scale = function(out, a, v) {
|
||
var x = v[0], y = v[1], z = v[2];
|
||
|
||
out[0] = a[0] * x;
|
||
out[1] = a[1] * x;
|
||
out[2] = a[2] * x;
|
||
out[3] = a[3] * x;
|
||
out[4] = a[4] * y;
|
||
out[5] = a[5] * y;
|
||
out[6] = a[6] * y;
|
||
out[7] = a[7] * y;
|
||
out[8] = a[8] * z;
|
||
out[9] = a[9] * z;
|
||
out[10] = a[10] * z;
|
||
out[11] = a[11] * z;
|
||
out[12] = a[12];
|
||
out[13] = a[13];
|
||
out[14] = a[14];
|
||
out[15] = a[15];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Rotates a mat4 by the given angle
|
||
*
|
||
* @param {mat4} out the receiving matrix
|
||
* @param {mat4} a the matrix to rotate
|
||
* @param {Number} rad the angle to rotate the matrix by
|
||
* @param {vec3} axis the axis to rotate around
|
||
* @returns {mat4} out
|
||
*/
|
||
mat4.rotate = function (out, a, rad, axis) {
|
||
var x = axis[0], y = axis[1], z = axis[2],
|
||
len = Math.sqrt(x * x + y * y + z * z),
|
||
s, c, t,
|
||
a00, a01, a02, a03,
|
||
a10, a11, a12, a13,
|
||
a20, a21, a22, a23,
|
||
b00, b01, b02,
|
||
b10, b11, b12,
|
||
b20, b21, b22;
|
||
|
||
if (Math.abs(len) < GLMAT_EPSILON) { return null; }
|
||
|
||
len = 1 / len;
|
||
x *= len;
|
||
y *= len;
|
||
z *= len;
|
||
|
||
s = Math.sin(rad);
|
||
c = Math.cos(rad);
|
||
t = 1 - c;
|
||
|
||
a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3];
|
||
a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7];
|
||
a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11];
|
||
|
||
// Construct the elements of the rotation matrix
|
||
b00 = x * x * t + c; b01 = y * x * t + z * s; b02 = z * x * t - y * s;
|
||
b10 = x * y * t - z * s; b11 = y * y * t + c; b12 = z * y * t + x * s;
|
||
b20 = x * z * t + y * s; b21 = y * z * t - x * s; b22 = z * z * t + c;
|
||
|
||
// Perform rotation-specific matrix multiplication
|
||
out[0] = a00 * b00 + a10 * b01 + a20 * b02;
|
||
out[1] = a01 * b00 + a11 * b01 + a21 * b02;
|
||
out[2] = a02 * b00 + a12 * b01 + a22 * b02;
|
||
out[3] = a03 * b00 + a13 * b01 + a23 * b02;
|
||
out[4] = a00 * b10 + a10 * b11 + a20 * b12;
|
||
out[5] = a01 * b10 + a11 * b11 + a21 * b12;
|
||
out[6] = a02 * b10 + a12 * b11 + a22 * b12;
|
||
out[7] = a03 * b10 + a13 * b11 + a23 * b12;
|
||
out[8] = a00 * b20 + a10 * b21 + a20 * b22;
|
||
out[9] = a01 * b20 + a11 * b21 + a21 * b22;
|
||
out[10] = a02 * b20 + a12 * b21 + a22 * b22;
|
||
out[11] = a03 * b20 + a13 * b21 + a23 * b22;
|
||
|
||
if (a !== out) { // If the source and destination differ, copy the unchanged last row
|
||
out[12] = a[12];
|
||
out[13] = a[13];
|
||
out[14] = a[14];
|
||
out[15] = a[15];
|
||
}
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Rotates a matrix by the given angle around the X axis
|
||
*
|
||
* @param {mat4} out the receiving matrix
|
||
* @param {mat4} a the matrix to rotate
|
||
* @param {Number} rad the angle to rotate the matrix by
|
||
* @returns {mat4} out
|
||
*/
|
||
mat4.rotateX = function (out, a, rad) {
|
||
var s = Math.sin(rad),
|
||
c = Math.cos(rad),
|
||
a10 = a[4],
|
||
a11 = a[5],
|
||
a12 = a[6],
|
||
a13 = a[7],
|
||
a20 = a[8],
|
||
a21 = a[9],
|
||
a22 = a[10],
|
||
a23 = a[11];
|
||
|
||
if (a !== out) { // If the source and destination differ, copy the unchanged rows
|
||
out[0] = a[0];
|
||
out[1] = a[1];
|
||
out[2] = a[2];
|
||
out[3] = a[3];
|
||
out[12] = a[12];
|
||
out[13] = a[13];
|
||
out[14] = a[14];
|
||
out[15] = a[15];
|
||
}
|
||
|
||
// Perform axis-specific matrix multiplication
|
||
out[4] = a10 * c + a20 * s;
|
||
out[5] = a11 * c + a21 * s;
|
||
out[6] = a12 * c + a22 * s;
|
||
out[7] = a13 * c + a23 * s;
|
||
out[8] = a20 * c - a10 * s;
|
||
out[9] = a21 * c - a11 * s;
|
||
out[10] = a22 * c - a12 * s;
|
||
out[11] = a23 * c - a13 * s;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Rotates a matrix by the given angle around the Y axis
|
||
*
|
||
* @param {mat4} out the receiving matrix
|
||
* @param {mat4} a the matrix to rotate
|
||
* @param {Number} rad the angle to rotate the matrix by
|
||
* @returns {mat4} out
|
||
*/
|
||
mat4.rotateY = function (out, a, rad) {
|
||
var s = Math.sin(rad),
|
||
c = Math.cos(rad),
|
||
a00 = a[0],
|
||
a01 = a[1],
|
||
a02 = a[2],
|
||
a03 = a[3],
|
||
a20 = a[8],
|
||
a21 = a[9],
|
||
a22 = a[10],
|
||
a23 = a[11];
|
||
|
||
if (a !== out) { // If the source and destination differ, copy the unchanged rows
|
||
out[4] = a[4];
|
||
out[5] = a[5];
|
||
out[6] = a[6];
|
||
out[7] = a[7];
|
||
out[12] = a[12];
|
||
out[13] = a[13];
|
||
out[14] = a[14];
|
||
out[15] = a[15];
|
||
}
|
||
|
||
// Perform axis-specific matrix multiplication
|
||
out[0] = a00 * c - a20 * s;
|
||
out[1] = a01 * c - a21 * s;
|
||
out[2] = a02 * c - a22 * s;
|
||
out[3] = a03 * c - a23 * s;
|
||
out[8] = a00 * s + a20 * c;
|
||
out[9] = a01 * s + a21 * c;
|
||
out[10] = a02 * s + a22 * c;
|
||
out[11] = a03 * s + a23 * c;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Rotates a matrix by the given angle around the Z axis
|
||
*
|
||
* @param {mat4} out the receiving matrix
|
||
* @param {mat4} a the matrix to rotate
|
||
* @param {Number} rad the angle to rotate the matrix by
|
||
* @returns {mat4} out
|
||
*/
|
||
mat4.rotateZ = function (out, a, rad) {
|
||
var s = Math.sin(rad),
|
||
c = Math.cos(rad),
|
||
a00 = a[0],
|
||
a01 = a[1],
|
||
a02 = a[2],
|
||
a03 = a[3],
|
||
a10 = a[4],
|
||
a11 = a[5],
|
||
a12 = a[6],
|
||
a13 = a[7];
|
||
|
||
if (a !== out) { // If the source and destination differ, copy the unchanged last row
|
||
out[8] = a[8];
|
||
out[9] = a[9];
|
||
out[10] = a[10];
|
||
out[11] = a[11];
|
||
out[12] = a[12];
|
||
out[13] = a[13];
|
||
out[14] = a[14];
|
||
out[15] = a[15];
|
||
}
|
||
|
||
// Perform axis-specific matrix multiplication
|
||
out[0] = a00 * c + a10 * s;
|
||
out[1] = a01 * c + a11 * s;
|
||
out[2] = a02 * c + a12 * s;
|
||
out[3] = a03 * c + a13 * s;
|
||
out[4] = a10 * c - a00 * s;
|
||
out[5] = a11 * c - a01 * s;
|
||
out[6] = a12 * c - a02 * s;
|
||
out[7] = a13 * c - a03 * s;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Creates a matrix from a quaternion rotation and vector translation
|
||
* This is equivalent to (but much faster than):
|
||
*
|
||
* mat4.identity(dest);
|
||
* mat4.translate(dest, vec);
|
||
* var quatMat = mat4.create();
|
||
* quat4.toMat4(quat, quatMat);
|
||
* mat4.multiply(dest, quatMat);
|
||
*
|
||
* @param {mat4} out mat4 receiving operation result
|
||
* @param {quat4} q Rotation quaternion
|
||
* @param {vec3} v Translation vector
|
||
* @returns {mat4} out
|
||
*/
|
||
mat4.fromRotationTranslation = function (out, q, v) {
|
||
// Quaternion math
|
||
var x = q[0], y = q[1], z = q[2], w = q[3],
|
||
x2 = x + x,
|
||
y2 = y + y,
|
||
z2 = z + z,
|
||
|
||
xx = x * x2,
|
||
xy = x * y2,
|
||
xz = x * z2,
|
||
yy = y * y2,
|
||
yz = y * z2,
|
||
zz = z * z2,
|
||
wx = w * x2,
|
||
wy = w * y2,
|
||
wz = w * z2;
|
||
|
||
out[0] = 1 - (yy + zz);
|
||
out[1] = xy + wz;
|
||
out[2] = xz - wy;
|
||
out[3] = 0;
|
||
out[4] = xy - wz;
|
||
out[5] = 1 - (xx + zz);
|
||
out[6] = yz + wx;
|
||
out[7] = 0;
|
||
out[8] = xz + wy;
|
||
out[9] = yz - wx;
|
||
out[10] = 1 - (xx + yy);
|
||
out[11] = 0;
|
||
out[12] = v[0];
|
||
out[13] = v[1];
|
||
out[14] = v[2];
|
||
out[15] = 1;
|
||
|
||
return out;
|
||
};
|
||
|
||
mat4.fromQuat = function (out, q) {
|
||
var x = q[0], y = q[1], z = q[2], w = q[3],
|
||
x2 = x + x,
|
||
y2 = y + y,
|
||
z2 = z + z,
|
||
|
||
xx = x * x2,
|
||
yx = y * x2,
|
||
yy = y * y2,
|
||
zx = z * x2,
|
||
zy = z * y2,
|
||
zz = z * z2,
|
||
wx = w * x2,
|
||
wy = w * y2,
|
||
wz = w * z2;
|
||
|
||
out[0] = 1 - yy - zz;
|
||
out[1] = yx + wz;
|
||
out[2] = zx - wy;
|
||
out[3] = 0;
|
||
|
||
out[4] = yx - wz;
|
||
out[5] = 1 - xx - zz;
|
||
out[6] = zy + wx;
|
||
out[7] = 0;
|
||
|
||
out[8] = zx + wy;
|
||
out[9] = zy - wx;
|
||
out[10] = 1 - xx - yy;
|
||
out[11] = 0;
|
||
|
||
out[12] = 0;
|
||
out[13] = 0;
|
||
out[14] = 0;
|
||
out[15] = 1;
|
||
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Generates a frustum matrix with the given bounds
|
||
*
|
||
* @param {mat4} out mat4 frustum matrix will be written into
|
||
* @param {Number} left Left bound of the frustum
|
||
* @param {Number} right Right bound of the frustum
|
||
* @param {Number} bottom Bottom bound of the frustum
|
||
* @param {Number} top Top bound of the frustum
|
||
* @param {Number} near Near bound of the frustum
|
||
* @param {Number} far Far bound of the frustum
|
||
* @returns {mat4} out
|
||
*/
|
||
mat4.frustum = function (out, left, right, bottom, top, near, far) {
|
||
var rl = 1 / (right - left),
|
||
tb = 1 / (top - bottom),
|
||
nf = 1 / (near - far);
|
||
out[0] = (near * 2) * rl;
|
||
out[1] = 0;
|
||
out[2] = 0;
|
||
out[3] = 0;
|
||
out[4] = 0;
|
||
out[5] = (near * 2) * tb;
|
||
out[6] = 0;
|
||
out[7] = 0;
|
||
out[8] = (right + left) * rl;
|
||
out[9] = (top + bottom) * tb;
|
||
out[10] = (far + near) * nf;
|
||
out[11] = -1;
|
||
out[12] = 0;
|
||
out[13] = 0;
|
||
out[14] = (far * near * 2) * nf;
|
||
out[15] = 0;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Generates a perspective projection matrix with the given bounds
|
||
*
|
||
* @param {mat4} out mat4 frustum matrix will be written into
|
||
* @param {number} fovy Vertical field of view in radians
|
||
* @param {number} aspect Aspect ratio. typically viewport width/height
|
||
* @param {number} near Near bound of the frustum
|
||
* @param {number} far Far bound of the frustum
|
||
* @returns {mat4} out
|
||
*/
|
||
mat4.perspective = function (out, fovy, aspect, near, far) {
|
||
var f = 1.0 / Math.tan(fovy / 2),
|
||
nf = 1 / (near - far);
|
||
out[0] = f / aspect;
|
||
out[1] = 0;
|
||
out[2] = 0;
|
||
out[3] = 0;
|
||
out[4] = 0;
|
||
out[5] = f;
|
||
out[6] = 0;
|
||
out[7] = 0;
|
||
out[8] = 0;
|
||
out[9] = 0;
|
||
out[10] = (far + near) * nf;
|
||
out[11] = -1;
|
||
out[12] = 0;
|
||
out[13] = 0;
|
||
out[14] = (2 * far * near) * nf;
|
||
out[15] = 0;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Generates a orthogonal projection matrix with the given bounds
|
||
*
|
||
* @param {mat4} out mat4 frustum matrix will be written into
|
||
* @param {number} left Left bound of the frustum
|
||
* @param {number} right Right bound of the frustum
|
||
* @param {number} bottom Bottom bound of the frustum
|
||
* @param {number} top Top bound of the frustum
|
||
* @param {number} near Near bound of the frustum
|
||
* @param {number} far Far bound of the frustum
|
||
* @returns {mat4} out
|
||
*/
|
||
mat4.ortho = function (out, left, right, bottom, top, near, far) {
|
||
var lr = 1 / (left - right),
|
||
bt = 1 / (bottom - top),
|
||
nf = 1 / (near - far);
|
||
out[0] = -2 * lr;
|
||
out[1] = 0;
|
||
out[2] = 0;
|
||
out[3] = 0;
|
||
out[4] = 0;
|
||
out[5] = -2 * bt;
|
||
out[6] = 0;
|
||
out[7] = 0;
|
||
out[8] = 0;
|
||
out[9] = 0;
|
||
out[10] = 2 * nf;
|
||
out[11] = 0;
|
||
out[12] = (left + right) * lr;
|
||
out[13] = (top + bottom) * bt;
|
||
out[14] = (far + near) * nf;
|
||
out[15] = 1;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Generates a look-at matrix with the given eye position, focal point, and up axis
|
||
*
|
||
* @param {mat4} out mat4 frustum matrix will be written into
|
||
* @param {vec3} eye Position of the viewer
|
||
* @param {vec3} center Point the viewer is looking at
|
||
* @param {vec3} up vec3 pointing up
|
||
* @returns {mat4} out
|
||
*/
|
||
mat4.lookAt = function (out, eye, center, up) {
|
||
var x0, x1, x2, y0, y1, y2, z0, z1, z2, len,
|
||
eyex = eye[0],
|
||
eyey = eye[1],
|
||
eyez = eye[2],
|
||
upx = up[0],
|
||
upy = up[1],
|
||
upz = up[2],
|
||
centerx = center[0],
|
||
centery = center[1],
|
||
centerz = center[2];
|
||
|
||
if (Math.abs(eyex - centerx) < GLMAT_EPSILON &&
|
||
Math.abs(eyey - centery) < GLMAT_EPSILON &&
|
||
Math.abs(eyez - centerz) < GLMAT_EPSILON) {
|
||
return mat4.identity(out);
|
||
}
|
||
|
||
z0 = eyex - centerx;
|
||
z1 = eyey - centery;
|
||
z2 = eyez - centerz;
|
||
|
||
len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2);
|
||
z0 *= len;
|
||
z1 *= len;
|
||
z2 *= len;
|
||
|
||
x0 = upy * z2 - upz * z1;
|
||
x1 = upz * z0 - upx * z2;
|
||
x2 = upx * z1 - upy * z0;
|
||
len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2);
|
||
if (!len) {
|
||
x0 = 0;
|
||
x1 = 0;
|
||
x2 = 0;
|
||
} else {
|
||
len = 1 / len;
|
||
x0 *= len;
|
||
x1 *= len;
|
||
x2 *= len;
|
||
}
|
||
|
||
y0 = z1 * x2 - z2 * x1;
|
||
y1 = z2 * x0 - z0 * x2;
|
||
y2 = z0 * x1 - z1 * x0;
|
||
|
||
len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2);
|
||
if (!len) {
|
||
y0 = 0;
|
||
y1 = 0;
|
||
y2 = 0;
|
||
} else {
|
||
len = 1 / len;
|
||
y0 *= len;
|
||
y1 *= len;
|
||
y2 *= len;
|
||
}
|
||
|
||
out[0] = x0;
|
||
out[1] = y0;
|
||
out[2] = z0;
|
||
out[3] = 0;
|
||
out[4] = x1;
|
||
out[5] = y1;
|
||
out[6] = z1;
|
||
out[7] = 0;
|
||
out[8] = x2;
|
||
out[9] = y2;
|
||
out[10] = z2;
|
||
out[11] = 0;
|
||
out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez);
|
||
out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez);
|
||
out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez);
|
||
out[15] = 1;
|
||
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Returns a string representation of a mat4
|
||
*
|
||
* @param {mat4} mat matrix to represent as a string
|
||
* @returns {String} string representation of the matrix
|
||
*/
|
||
mat4.str = function (a) {
|
||
return 'mat4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' +
|
||
a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' +
|
||
a[8] + ', ' + a[9] + ', ' + a[10] + ', ' + a[11] + ', ' +
|
||
a[12] + ', ' + a[13] + ', ' + a[14] + ', ' + a[15] + ')';
|
||
};
|
||
|
||
/**
|
||
* Returns Frobenius norm of a mat4
|
||
*
|
||
* @param {mat4} a the matrix to calculate Frobenius norm of
|
||
* @returns {Number} Frobenius norm
|
||
*/
|
||
mat4.frob = function (a) {
|
||
return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2) + Math.pow(a[9], 2) + Math.pow(a[10], 2) + Math.pow(a[11], 2) + Math.pow(a[12], 2) + Math.pow(a[13], 2) + Math.pow(a[14], 2) + Math.pow(a[15], 2) ))
|
||
};
|
||
|
||
|
||
if(typeof(exports) !== 'undefined') {
|
||
exports.mat4 = mat4;
|
||
}
|
||
;
|
||
/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
|
||
|
||
Redistribution and use in source and binary forms, with or without modification,
|
||
are permitted provided that the following conditions are met:
|
||
|
||
* Redistributions of source code must retain the above copyright notice, this
|
||
list of conditions and the following disclaimer.
|
||
* Redistributions in binary form must reproduce the above copyright notice,
|
||
this list of conditions and the following disclaimer in the documentation
|
||
and/or other materials provided with the distribution.
|
||
|
||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
||
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
||
|
||
/**
|
||
* @class Quaternion
|
||
* @name quat
|
||
*/
|
||
|
||
var quat = {};
|
||
|
||
/**
|
||
* Creates a new identity quat
|
||
*
|
||
* @returns {quat} a new quaternion
|
||
*/
|
||
quat.create = function() {
|
||
var out = new GLMAT_ARRAY_TYPE(4);
|
||
out[0] = 0;
|
||
out[1] = 0;
|
||
out[2] = 0;
|
||
out[3] = 1;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Sets a quaternion to represent the shortest rotation from one
|
||
* vector to another.
|
||
*
|
||
* Both vectors are assumed to be unit length.
|
||
*
|
||
* @param {quat} out the receiving quaternion.
|
||
* @param {vec3} a the initial vector
|
||
* @param {vec3} b the destination vector
|
||
* @returns {quat} out
|
||
*/
|
||
quat.rotationTo = (function() {
|
||
var tmpvec3 = vec3.create();
|
||
var xUnitVec3 = vec3.fromValues(1,0,0);
|
||
var yUnitVec3 = vec3.fromValues(0,1,0);
|
||
|
||
return function(out, a, b) {
|
||
var dot = vec3.dot(a, b);
|
||
if (dot < -0.999999) {
|
||
vec3.cross(tmpvec3, xUnitVec3, a);
|
||
if (vec3.length(tmpvec3) < 0.000001)
|
||
vec3.cross(tmpvec3, yUnitVec3, a);
|
||
vec3.normalize(tmpvec3, tmpvec3);
|
||
quat.setAxisAngle(out, tmpvec3, Math.PI);
|
||
return out;
|
||
} else if (dot > 0.999999) {
|
||
out[0] = 0;
|
||
out[1] = 0;
|
||
out[2] = 0;
|
||
out[3] = 1;
|
||
return out;
|
||
} else {
|
||
vec3.cross(tmpvec3, a, b);
|
||
out[0] = tmpvec3[0];
|
||
out[1] = tmpvec3[1];
|
||
out[2] = tmpvec3[2];
|
||
out[3] = 1 + dot;
|
||
return quat.normalize(out, out);
|
||
}
|
||
};
|
||
})();
|
||
|
||
/**
|
||
* Sets the specified quaternion with values corresponding to the given
|
||
* axes. Each axis is a vec3 and is expected to be unit length and
|
||
* perpendicular to all other specified axes.
|
||
*
|
||
* @param {vec3} view the vector representing the viewing direction
|
||
* @param {vec3} right the vector representing the local "right" direction
|
||
* @param {vec3} up the vector representing the local "up" direction
|
||
* @returns {quat} out
|
||
*/
|
||
quat.setAxes = (function() {
|
||
var matr = mat3.create();
|
||
|
||
return function(out, view, right, up) {
|
||
matr[0] = right[0];
|
||
matr[3] = right[1];
|
||
matr[6] = right[2];
|
||
|
||
matr[1] = up[0];
|
||
matr[4] = up[1];
|
||
matr[7] = up[2];
|
||
|
||
matr[2] = -view[0];
|
||
matr[5] = -view[1];
|
||
matr[8] = -view[2];
|
||
|
||
return quat.normalize(out, quat.fromMat3(out, matr));
|
||
};
|
||
})();
|
||
|
||
/**
|
||
* Creates a new quat initialized with values from an existing quaternion
|
||
*
|
||
* @param {quat} a quaternion to clone
|
||
* @returns {quat} a new quaternion
|
||
* @function
|
||
*/
|
||
quat.clone = vec4.clone;
|
||
|
||
/**
|
||
* Creates a new quat initialized with the given values
|
||
*
|
||
* @param {Number} x X component
|
||
* @param {Number} y Y component
|
||
* @param {Number} z Z component
|
||
* @param {Number} w W component
|
||
* @returns {quat} a new quaternion
|
||
* @function
|
||
*/
|
||
quat.fromValues = vec4.fromValues;
|
||
|
||
/**
|
||
* Copy the values from one quat to another
|
||
*
|
||
* @param {quat} out the receiving quaternion
|
||
* @param {quat} a the source quaternion
|
||
* @returns {quat} out
|
||
* @function
|
||
*/
|
||
quat.copy = vec4.copy;
|
||
|
||
/**
|
||
* Set the components of a quat to the given values
|
||
*
|
||
* @param {quat} out the receiving quaternion
|
||
* @param {Number} x X component
|
||
* @param {Number} y Y component
|
||
* @param {Number} z Z component
|
||
* @param {Number} w W component
|
||
* @returns {quat} out
|
||
* @function
|
||
*/
|
||
quat.set = vec4.set;
|
||
|
||
/**
|
||
* Set a quat to the identity quaternion
|
||
*
|
||
* @param {quat} out the receiving quaternion
|
||
* @returns {quat} out
|
||
*/
|
||
quat.identity = function(out) {
|
||
out[0] = 0;
|
||
out[1] = 0;
|
||
out[2] = 0;
|
||
out[3] = 1;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Sets a quat from the given angle and rotation axis,
|
||
* then returns it.
|
||
*
|
||
* @param {quat} out the receiving quaternion
|
||
* @param {vec3} axis the axis around which to rotate
|
||
* @param {Number} rad the angle in radians
|
||
* @returns {quat} out
|
||
**/
|
||
quat.setAxisAngle = function(out, axis, rad) {
|
||
rad = rad * 0.5;
|
||
var s = Math.sin(rad);
|
||
out[0] = s * axis[0];
|
||
out[1] = s * axis[1];
|
||
out[2] = s * axis[2];
|
||
out[3] = Math.cos(rad);
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Adds two quat's
|
||
*
|
||
* @param {quat} out the receiving quaternion
|
||
* @param {quat} a the first operand
|
||
* @param {quat} b the second operand
|
||
* @returns {quat} out
|
||
* @function
|
||
*/
|
||
quat.add = vec4.add;
|
||
|
||
/**
|
||
* Multiplies two quat's
|
||
*
|
||
* @param {quat} out the receiving quaternion
|
||
* @param {quat} a the first operand
|
||
* @param {quat} b the second operand
|
||
* @returns {quat} out
|
||
*/
|
||
quat.multiply = function(out, a, b) {
|
||
var ax = a[0], ay = a[1], az = a[2], aw = a[3],
|
||
bx = b[0], by = b[1], bz = b[2], bw = b[3];
|
||
|
||
out[0] = ax * bw + aw * bx + ay * bz - az * by;
|
||
out[1] = ay * bw + aw * by + az * bx - ax * bz;
|
||
out[2] = az * bw + aw * bz + ax * by - ay * bx;
|
||
out[3] = aw * bw - ax * bx - ay * by - az * bz;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Alias for {@link quat.multiply}
|
||
* @function
|
||
*/
|
||
quat.mul = quat.multiply;
|
||
|
||
/**
|
||
* Scales a quat by a scalar number
|
||
*
|
||
* @param {quat} out the receiving vector
|
||
* @param {quat} a the vector to scale
|
||
* @param {Number} b amount to scale the vector by
|
||
* @returns {quat} out
|
||
* @function
|
||
*/
|
||
quat.scale = vec4.scale;
|
||
|
||
/**
|
||
* Rotates a quaternion by the given angle about the X axis
|
||
*
|
||
* @param {quat} out quat receiving operation result
|
||
* @param {quat} a quat to rotate
|
||
* @param {number} rad angle (in radians) to rotate
|
||
* @returns {quat} out
|
||
*/
|
||
quat.rotateX = function (out, a, rad) {
|
||
rad *= 0.5;
|
||
|
||
var ax = a[0], ay = a[1], az = a[2], aw = a[3],
|
||
bx = Math.sin(rad), bw = Math.cos(rad);
|
||
|
||
out[0] = ax * bw + aw * bx;
|
||
out[1] = ay * bw + az * bx;
|
||
out[2] = az * bw - ay * bx;
|
||
out[3] = aw * bw - ax * bx;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Rotates a quaternion by the given angle about the Y axis
|
||
*
|
||
* @param {quat} out quat receiving operation result
|
||
* @param {quat} a quat to rotate
|
||
* @param {number} rad angle (in radians) to rotate
|
||
* @returns {quat} out
|
||
*/
|
||
quat.rotateY = function (out, a, rad) {
|
||
rad *= 0.5;
|
||
|
||
var ax = a[0], ay = a[1], az = a[2], aw = a[3],
|
||
by = Math.sin(rad), bw = Math.cos(rad);
|
||
|
||
out[0] = ax * bw - az * by;
|
||
out[1] = ay * bw + aw * by;
|
||
out[2] = az * bw + ax * by;
|
||
out[3] = aw * bw - ay * by;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Rotates a quaternion by the given angle about the Z axis
|
||
*
|
||
* @param {quat} out quat receiving operation result
|
||
* @param {quat} a quat to rotate
|
||
* @param {number} rad angle (in radians) to rotate
|
||
* @returns {quat} out
|
||
*/
|
||
quat.rotateZ = function (out, a, rad) {
|
||
rad *= 0.5;
|
||
|
||
var ax = a[0], ay = a[1], az = a[2], aw = a[3],
|
||
bz = Math.sin(rad), bw = Math.cos(rad);
|
||
|
||
out[0] = ax * bw + ay * bz;
|
||
out[1] = ay * bw - ax * bz;
|
||
out[2] = az * bw + aw * bz;
|
||
out[3] = aw * bw - az * bz;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Calculates the W component of a quat from the X, Y, and Z components.
|
||
* Assumes that quaternion is 1 unit in length.
|
||
* Any existing W component will be ignored.
|
||
*
|
||
* @param {quat} out the receiving quaternion
|
||
* @param {quat} a quat to calculate W component of
|
||
* @returns {quat} out
|
||
*/
|
||
quat.calculateW = function (out, a) {
|
||
var x = a[0], y = a[1], z = a[2];
|
||
|
||
out[0] = x;
|
||
out[1] = y;
|
||
out[2] = z;
|
||
out[3] = Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z));
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Calculates the dot product of two quat's
|
||
*
|
||
* @param {quat} a the first operand
|
||
* @param {quat} b the second operand
|
||
* @returns {Number} dot product of a and b
|
||
* @function
|
||
*/
|
||
quat.dot = vec4.dot;
|
||
|
||
/**
|
||
* Performs a linear interpolation between two quat's
|
||
*
|
||
* @param {quat} out the receiving quaternion
|
||
* @param {quat} a the first operand
|
||
* @param {quat} b the second operand
|
||
* @param {Number} t interpolation amount between the two inputs
|
||
* @returns {quat} out
|
||
* @function
|
||
*/
|
||
quat.lerp = vec4.lerp;
|
||
|
||
/**
|
||
* Performs a spherical linear interpolation between two quat
|
||
*
|
||
* @param {quat} out the receiving quaternion
|
||
* @param {quat} a the first operand
|
||
* @param {quat} b the second operand
|
||
* @param {Number} t interpolation amount between the two inputs
|
||
* @returns {quat} out
|
||
*/
|
||
quat.slerp = function (out, a, b, t) {
|
||
// benchmarks:
|
||
// http://jsperf.com/quaternion-slerp-implementations
|
||
|
||
var ax = a[0], ay = a[1], az = a[2], aw = a[3],
|
||
bx = b[0], by = b[1], bz = b[2], bw = b[3];
|
||
|
||
var omega, cosom, sinom, scale0, scale1;
|
||
|
||
// calc cosine
|
||
cosom = ax * bx + ay * by + az * bz + aw * bw;
|
||
// adjust signs (if necessary)
|
||
if ( cosom < 0.0 ) {
|
||
cosom = -cosom;
|
||
bx = - bx;
|
||
by = - by;
|
||
bz = - bz;
|
||
bw = - bw;
|
||
}
|
||
// calculate coefficients
|
||
if ( (1.0 - cosom) > 0.000001 ) {
|
||
// standard case (slerp)
|
||
omega = Math.acos(cosom);
|
||
sinom = Math.sin(omega);
|
||
scale0 = Math.sin((1.0 - t) * omega) / sinom;
|
||
scale1 = Math.sin(t * omega) / sinom;
|
||
} else {
|
||
// "from" and "to" quaternions are very close
|
||
// ... so we can do a linear interpolation
|
||
scale0 = 1.0 - t;
|
||
scale1 = t;
|
||
}
|
||
// calculate final values
|
||
out[0] = scale0 * ax + scale1 * bx;
|
||
out[1] = scale0 * ay + scale1 * by;
|
||
out[2] = scale0 * az + scale1 * bz;
|
||
out[3] = scale0 * aw + scale1 * bw;
|
||
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Calculates the inverse of a quat
|
||
*
|
||
* @param {quat} out the receiving quaternion
|
||
* @param {quat} a quat to calculate inverse of
|
||
* @returns {quat} out
|
||
*/
|
||
quat.invert = function(out, a) {
|
||
var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
|
||
dot = a0*a0 + a1*a1 + a2*a2 + a3*a3,
|
||
invDot = dot ? 1.0/dot : 0;
|
||
|
||
// TODO: Would be faster to return [0,0,0,0] immediately if dot == 0
|
||
|
||
out[0] = -a0*invDot;
|
||
out[1] = -a1*invDot;
|
||
out[2] = -a2*invDot;
|
||
out[3] = a3*invDot;
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Calculates the conjugate of a quat
|
||
* If the quaternion is normalized, this function is faster than quat.inverse and produces the same result.
|
||
*
|
||
* @param {quat} out the receiving quaternion
|
||
* @param {quat} a quat to calculate conjugate of
|
||
* @returns {quat} out
|
||
*/
|
||
quat.conjugate = function (out, a) {
|
||
out[0] = -a[0];
|
||
out[1] = -a[1];
|
||
out[2] = -a[2];
|
||
out[3] = a[3];
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Calculates the length of a quat
|
||
*
|
||
* @param {quat} a vector to calculate length of
|
||
* @returns {Number} length of a
|
||
* @function
|
||
*/
|
||
quat.length = vec4.length;
|
||
|
||
/**
|
||
* Alias for {@link quat.length}
|
||
* @function
|
||
*/
|
||
quat.len = quat.length;
|
||
|
||
/**
|
||
* Calculates the squared length of a quat
|
||
*
|
||
* @param {quat} a vector to calculate squared length of
|
||
* @returns {Number} squared length of a
|
||
* @function
|
||
*/
|
||
quat.squaredLength = vec4.squaredLength;
|
||
|
||
/**
|
||
* Alias for {@link quat.squaredLength}
|
||
* @function
|
||
*/
|
||
quat.sqrLen = quat.squaredLength;
|
||
|
||
/**
|
||
* Normalize a quat
|
||
*
|
||
* @param {quat} out the receiving quaternion
|
||
* @param {quat} a quaternion to normalize
|
||
* @returns {quat} out
|
||
* @function
|
||
*/
|
||
quat.normalize = vec4.normalize;
|
||
|
||
/**
|
||
* Creates a quaternion from the given 3x3 rotation matrix.
|
||
*
|
||
* NOTE: The resultant quaternion is not normalized, so you should be sure
|
||
* to renormalize the quaternion yourself where necessary.
|
||
*
|
||
* @param {quat} out the receiving quaternion
|
||
* @param {mat3} m rotation matrix
|
||
* @returns {quat} out
|
||
* @function
|
||
*/
|
||
quat.fromMat3 = function(out, m) {
|
||
// Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
|
||
// article "Quaternion Calculus and Fast Animation".
|
||
var fTrace = m[0] + m[4] + m[8];
|
||
var fRoot;
|
||
|
||
if ( fTrace > 0.0 ) {
|
||
// |w| > 1/2, may as well choose w > 1/2
|
||
fRoot = Math.sqrt(fTrace + 1.0); // 2w
|
||
out[3] = 0.5 * fRoot;
|
||
fRoot = 0.5/fRoot; // 1/(4w)
|
||
out[0] = (m[5]-m[7])*fRoot;
|
||
out[1] = (m[6]-m[2])*fRoot;
|
||
out[2] = (m[1]-m[3])*fRoot;
|
||
} else {
|
||
// |w| <= 1/2
|
||
var i = 0;
|
||
if ( m[4] > m[0] )
|
||
i = 1;
|
||
if ( m[8] > m[i*3+i] )
|
||
i = 2;
|
||
var j = (i+1)%3;
|
||
var k = (i+2)%3;
|
||
|
||
fRoot = Math.sqrt(m[i*3+i]-m[j*3+j]-m[k*3+k] + 1.0);
|
||
out[i] = 0.5 * fRoot;
|
||
fRoot = 0.5 / fRoot;
|
||
out[3] = (m[j*3+k] - m[k*3+j]) * fRoot;
|
||
out[j] = (m[j*3+i] + m[i*3+j]) * fRoot;
|
||
out[k] = (m[k*3+i] + m[i*3+k]) * fRoot;
|
||
}
|
||
|
||
return out;
|
||
};
|
||
|
||
/**
|
||
* Returns a string representation of a quatenion
|
||
*
|
||
* @param {quat} vec vector to represent as a string
|
||
* @returns {String} string representation of the vector
|
||
*/
|
||
quat.str = function (a) {
|
||
return 'quat(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
|
||
};
|
||
|
||
if(typeof(exports) !== 'undefined') {
|
||
exports.quat = quat;
|
||
}
|
||
;
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
})(shim.exports);
|
||
})(this);
|
||
|
||
/******************************************************************************
|
||
* Creature Runtimes License
|
||
*
|
||
* Copyright (c) 2015, Kestrel Moon Studios
|
||
* All rights reserved.
|
||
*
|
||
* Preamble: This Agreement governs the relationship between Licensee and Kestrel Moon Studios(Hereinafter: Licensor).
|
||
* This Agreement sets the terms, rights, restrictions and obligations on using [Creature Runtimes] (hereinafter: The Software) created and owned by Licensor,
|
||
* as detailed herein:
|
||
* License Grant: Licensor hereby grants Licensee a Sublicensable, Non-assignable & non-transferable, Commercial, Royalty free,
|
||
* Including the rights to create but not distribute derivative works, Non-exclusive license, all with accordance with the terms set forth and
|
||
* other legal restrictions set forth in 3rd party software used while running Software.
|
||
* Limited: Licensee may use Software for the purpose of:
|
||
* Running Software on Licensee’s Website[s] and Server[s];
|
||
* Allowing 3rd Parties to run Software on Licensee’s Website[s] and Server[s];
|
||
* Publishing Software’s output to Licensee and 3rd Parties;
|
||
* Distribute verbatim copies of Software’s output (including compiled binaries);
|
||
* Modify Software to suit Licensee’s needs and specifications.
|
||
* Binary Restricted: Licensee may sublicense Software as a part of a larger work containing more than Software,
|
||
* distributed solely in Object or Binary form under a personal, non-sublicensable, limited license. Such redistribution shall be limited to unlimited codebases.
|
||
* Non Assignable & Non-Transferable: Licensee may not assign or transfer his rights and duties under this license.
|
||
* Commercial, Royalty Free: Licensee may use Software for any purpose, including paid-services, without any royalties
|
||
* Including the Right to Create Derivative Works: Licensee may create derivative works based on Software,
|
||
* including amending Software’s source code, modifying it, integrating it into a larger work or removing portions of Software,
|
||
* as long as no distribution of the derivative works is made
|
||
*
|
||
* THE RUNTIMES IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
* OUT OF OR IN CONNECTION WITH THE RUNTIMES OR THE USE OR OTHER DEALINGS IN THE
|
||
* RUNTIMES.
|
||
*****************************************************************************/
|
||
|
||
|
||
// dualQuat
|
||
|
||
var Q_X = 0;
|
||
var Q_Y = 1;
|
||
var Q_Z = 2;
|
||
var Q_W = 3;
|
||
|
||
function dualQuat()
|
||
{
|
||
this.real = quat.create();
|
||
this.real[Q_W] = 0;
|
||
|
||
this.imaginary = quat.create();
|
||
this.imaginary[Q_W] = 0;
|
||
|
||
this.tmpQ1 = quat.create();
|
||
};
|
||
|
||
dualQuat.prototype.reset = function()
|
||
{
|
||
quat.identity(this.real);
|
||
this.real[Q_W] = 0;
|
||
quat.identity(this.imaginary);
|
||
this.imaginary[Q_W] = 0;
|
||
quat.identity(this.tmpQ1);
|
||
};
|
||
|
||
dualQuat.prototype.createFromData = function(q0, t)
|
||
{
|
||
this.real = q0;
|
||
this.imaginary = quat.create();
|
||
this.imaginary[Q_W] = -0.5 * ( t[Q_X] * q0[Q_X] + t[Q_Y] * q0[Q_Y] + t[Q_Z] * q0[Q_Z]);
|
||
this.imaginary[Q_X] = 0.5 * ( t[Q_X] * q0[Q_W] + t[Q_Y] * q0[Q_Z] - t[Q_Z] * q0[Q_Y]);
|
||
this.imaginary[Q_Y] = 0.5 * (-t[Q_X] * q0[Q_Z] + t[Q_Y] * q0[Q_W] + t[Q_Z] * q0[Q_X]);
|
||
this.imaginary[Q_Z] = 0.5 * ( t[Q_X] * q0[Q_Y] - t[Q_Y] * q0[Q_X] + t[Q_Z] * q0[Q_W]);
|
||
|
||
};
|
||
|
||
dualQuat.prototype.add = function(quat_in, real_factor, imaginary_factor)
|
||
{
|
||
//real = real.add((quat_in.real.cpy().mul(real_factor)));
|
||
//var tmpQ = quat.clone(quat_in.real);
|
||
quat.copy(this.tmpQ1, quat_in.real);
|
||
|
||
quat.scale(this.tmpQ1, this.tmpQ1, real_factor);
|
||
quat.add(this.real, this.tmpQ1, this.real);
|
||
|
||
//imaginary = imaginary.add(quat_in.imaginary.cpy().mul(imaginary_factor));
|
||
//tmpQ = quat.clone(quat_in.imaginary);
|
||
quat.copy(this.tmpQ1, quat_in.imaginary);
|
||
quat.scale(this.tmpQ1, this.tmpQ1, imaginary_factor);
|
||
quat.add(this.imaginary, this.tmpQ1, this.imaginary);
|
||
};
|
||
|
||
dualQuat.prototype.normalize = function()
|
||
{
|
||
var norm = quat.length(this.real);
|
||
|
||
this.real = quat.scale(this.real, this.real, 1.0 / norm);
|
||
this.imaginary = quat.scale(this.imaginary, this.imaginary, 1.0 / norm);
|
||
};
|
||
|
||
var v0 = vec3.create();
|
||
var ve = vec3.create();
|
||
var trans = vec3.create();
|
||
var tmpVec1 = vec3.create();
|
||
var tmpVec2 = vec3.create();
|
||
var tmpVec0 = vec3.create();
|
||
var aVec = vec3.create();
|
||
var rot = vec3.create();
|
||
|
||
dualQuat.prototype.transform = function(p)
|
||
{
|
||
v0[Q_X] = this.real[Q_X]; v0[Q_Y] = this.real[Q_Y]; v0[Q_Z] = this.real[Q_Z];
|
||
|
||
ve[Q_X] = this.imaginary[Q_X]; ve[Q_Y] = this.imaginary[Q_Y]; ve[Q_Z] = this.imaginary[Q_Z];
|
||
|
||
//trans = (ve*real.w - v0*imaginary.w + Vector3.Cross(v0, ve)) * 2.0f;
|
||
|
||
// var tmpVec1 = v0.cpy().scl((float)imaginary.w);
|
||
tmpVec1 = vec3.scale(tmpVec1, v0, this.imaginary[Q_W]);
|
||
|
||
// var tmpVec2 = v0.cpy().crs(ve);
|
||
tmpVec2 = vec3.cross(tmpVec2, v0, ve);
|
||
|
||
//var tmpVec0 = ve.cpy().scl(real.w);
|
||
//trans = tmpVec0.sub(tmpVec1).add(tmpVec2);
|
||
//trans.scl(2.0f);
|
||
|
||
tmpVec0 = vec3.scale(tmpVec0, ve, this.real[Q_W]);
|
||
|
||
aVec = vec3.subtract(aVec, tmpVec0, tmpVec1);
|
||
trans = vec3.add(trans, aVec, tmpVec2);
|
||
trans = vec3.scale(trans, trans, 2.0);
|
||
|
||
//var rot = real.transform(p.cpy());
|
||
rot = vec3.transformQuat(rot, p, this.real);
|
||
|
||
//return rot.add(trans);
|
||
rot = vec3.add(rot, rot, trans);
|
||
|
||
return rot;
|
||
};
|
||
|
||
// Utils
|
||
var Utils = {};
|
||
|
||
Utils.setAxisMatrix = function(xAxis, yAxis, zAxis)
|
||
{
|
||
var retMat = mat4.create();
|
||
|
||
var M00 = 0;
|
||
var M01 = 4;
|
||
var M02 = 8;
|
||
var M03 = 12;
|
||
var M10 = 1;
|
||
var M11 = 5;
|
||
var M12 = 9;
|
||
var M13 = 13;
|
||
var M20 = 2;
|
||
var M21 = 6;
|
||
var M22 = 10;
|
||
var M23 = 14;
|
||
var M30 = 3;
|
||
var M31 = 7;
|
||
var M32 = 11;
|
||
var M33 = 15;
|
||
|
||
retMat[M00] = xAxis[Q_X];
|
||
retMat[M01] = xAxis[Q_Y];
|
||
retMat[M02] = xAxis[Q_Z];
|
||
retMat[M10] = yAxis[Q_X];
|
||
retMat[M11] = yAxis[Q_Y];
|
||
retMat[M12] = yAxis[Q_Z];
|
||
retMat[M20] = zAxis[Q_X];
|
||
retMat[M21] = zAxis[Q_Y];
|
||
retMat[M22] = zAxis[Q_Z];
|
||
retMat[M03] = 0;
|
||
retMat[M13] = 0;
|
||
retMat[M23] = 0;
|
||
retMat[M30] = 0;
|
||
retMat[M31] = 0;
|
||
retMat[M32] = 0;
|
||
retMat[M33] = 1;
|
||
|
||
retMat = mat4.transpose(retMat, retMat);
|
||
|
||
return retMat;
|
||
};
|
||
|
||
Utils.matrixToQuat = function(mat_in)
|
||
{
|
||
var retQuat = quat.create();
|
||
var te = mat_in,
|
||
|
||
m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
|
||
m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
|
||
m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ],
|
||
|
||
trace = m11 + m22 + m33,
|
||
s;
|
||
|
||
if ( trace > 0 ) {
|
||
|
||
s = 0.5 / Math.sqrt( trace + 1.0 );
|
||
|
||
retQuat[Q_W] = 0.25 / s;
|
||
retQuat[Q_X] = ( m32 - m23 ) * s;
|
||
retQuat[Q_Y] = ( m13 - m31 ) * s;
|
||
retQuat[Q_Z] = ( m21 - m12 ) * s;
|
||
|
||
} else if ( m11 > m22 && m11 > m33 ) {
|
||
|
||
s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 );
|
||
|
||
retQuat[Q_W] = ( m32 - m23 ) / s;
|
||
retQuat[Q_X] = 0.25 * s;
|
||
retQuat[Q_Y] = ( m12 + m21 ) / s;
|
||
retQuat[Q_Z] = ( m13 + m31 ) / s;
|
||
|
||
} else if ( m22 > m33 ) {
|
||
|
||
s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 );
|
||
|
||
retQuat[Q_W] = ( m13 - m31 ) / s;
|
||
retQuat[Q_X] = ( m12 + m21 ) / s;
|
||
retQuat[Q_Y] = 0.25 * s;
|
||
retQuat[Q_Z] = ( m23 + m32 ) / s;
|
||
|
||
} else {
|
||
|
||
s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 );
|
||
|
||
retQuat[Q_W] = ( m21 - m12 ) / s;
|
||
retQuat[Q_X] = ( m13 + m31 ) / s;
|
||
retQuat[Q_Y] = ( m23 + m32 ) / s;
|
||
retQuat[Q_Z] = 0.25 * s;
|
||
|
||
}
|
||
|
||
return retQuat;
|
||
};
|
||
|
||
Utils.rotateVec_90 = function(vec_in)
|
||
{
|
||
var ret_vec = vec3.fromValues(-vec_in[Q_Y], vec_in[Q_X], vec_in[Q_Z]);
|
||
|
||
return ret_vec;
|
||
};
|
||
|
||
Utils.calcRotateMat = function(vec_in)
|
||
{
|
||
var dir = vec3.clone(vec_in);
|
||
dir = vec3.normalize(dir, dir);
|
||
|
||
var pep_dir = Utils.rotateVec_90(dir);
|
||
|
||
var cur_tangent = vec3.fromValues(dir[Q_X], dir[Q_Y], 0);
|
||
var cur_normal = vec3.fromValues(pep_dir[Q_X], pep_dir[Q_Y], 0);
|
||
var cur_binormal = vec3.fromValues(0, 0, 1);
|
||
|
||
var cur_rotate = mat4.create();
|
||
cur_rotate = Utils.setAxisMatrix(cur_tangent, cur_normal, cur_binormal);
|
||
|
||
return cur_rotate;
|
||
};
|
||
|
||
Utils.getMatTranslate = function(mat_in)
|
||
{
|
||
var ret_pos = vec3.create();
|
||
ret_pos[Q_X] = mat_in[12];
|
||
ret_pos[Q_Y] = mat_in[13];
|
||
ret_pos[Q_Z] = mat_in[14];
|
||
|
||
return ret_pos;
|
||
};
|
||
|
||
Utils.addMat = function(mat1, mat2)
|
||
{
|
||
var retMat = mat4.create();
|
||
for(var i = 0; i < 16; i++)
|
||
{
|
||
retMat[i] = mat1[i] + mat2[i];
|
||
}
|
||
|
||
return retMat;
|
||
};
|
||
|
||
Utils.mulMat = function(mat_in, factor)
|
||
{
|
||
var retMat = mat4.create();
|
||
for(var i = 0; i < 16; i++)
|
||
{
|
||
retMat[i] = mat_in[i] * factor;
|
||
}
|
||
|
||
return retMat;
|
||
};
|
||
|
||
Utils.clamp = function(num, min, max) {
|
||
return num < min ? min : (num > max ? max : num);
|
||
};
|
||
|
||
var newVec1 = vec3.create();
|
||
var newVec2 = vec3.create();
|
||
|
||
Utils.vecInterp = function(vec1, vec2, ratio)
|
||
{
|
||
newVec1 = vec3.scale(newVec1, vec1, 1.0 - ratio);
|
||
newVec2 = vec3.scale(newVec2, vec2, ratio);
|
||
|
||
var retVec = vec3.create();
|
||
retVec = vec3.add(retVec, newVec1, newVec2);
|
||
|
||
return retVec;
|
||
};
|
||
|
||
Utils.vec2Interp = function(vec_1, vec_2, ratio)
|
||
{
|
||
var newVec1 = vec2.create();
|
||
var newVec2 = vec2.create();
|
||
|
||
newVec1 = vec2.scale(newVec1, vec_1, 1.0 - ratio);
|
||
newVec2 = vec2.scale(newVec2, vec_2, ratio);
|
||
|
||
var retVec = vec2.create();
|
||
retVec = vec2.add(retVec, newVec1, newVec2);
|
||
|
||
return retVec;
|
||
};
|
||
|
||
// MeshBone
|
||
function MeshBone(key_in, start_pt_in, end_pt_in, parent_transform)
|
||
{
|
||
this.key = key_in;
|
||
this.world_rest_angle = 0;
|
||
this.rest_parent_mat = mat4.create();
|
||
this.rest_parent_inv_mat = mat4.create();
|
||
this.rest_world_mat = mat4.create();
|
||
this.rest_world_inv_mat = mat4.create();
|
||
this.bind_world_mat = mat4.create();
|
||
this.bind_world_inv_mat = mat4.create();
|
||
this.parent_world_mat = mat4.create();
|
||
this.parent_world_inv_mat = mat4.create();
|
||
this.local_rest_start_pt = null;
|
||
this.local_rest_end_pt = null;
|
||
|
||
this.setRestParentMat(parent_transform, null);
|
||
this.setLocalRestStartPt(start_pt_in);
|
||
this.setLocalRestEndPt(end_pt_in);
|
||
this.setParentWorldInvMat(mat4.create());
|
||
this.setParentWorldMat(mat4.create());
|
||
|
||
this.local_binormal_dir = vec3.fromValues(0.0,0.0,1.0);
|
||
this.tag_id = 0;
|
||
|
||
this.children = [];
|
||
};
|
||
|
||
MeshBone.prototype.setRestParentMat = function(transform_in, inverse_in)
|
||
{
|
||
this.rest_parent_mat = transform_in;
|
||
if(inverse_in == null) {
|
||
this.rest_parent_inv_mat = mat4.clone(this.rest_parent_mat);
|
||
//rest_parent_inv_mat.inv();
|
||
mat4.invert(this.rest_parent_inv_mat, this.rest_parent_inv_mat);
|
||
}
|
||
else {
|
||
this.rest_parent_inv_mat = mat4.clone(inverse_in);
|
||
}
|
||
};
|
||
|
||
MeshBone.prototype.setParentWorldMat = function(transform_in)
|
||
{
|
||
this.parent_world_mat = transform_in;
|
||
};
|
||
|
||
MeshBone.prototype.setParentWorldInvMat = function(transform_in)
|
||
{
|
||
this.parent_world_inv_mat = transform_in;
|
||
};
|
||
|
||
MeshBone.prototype.getLocalRestStartPt = function()
|
||
{
|
||
return this.local_rest_start_pt;
|
||
};
|
||
|
||
MeshBone.prototype.getLocalRestEndPt = function()
|
||
{
|
||
return this.local_rest_end_pt;
|
||
};
|
||
|
||
MeshBone.prototype.setLocalRestStartPt = function(world_pt_in)
|
||
{
|
||
//local_rest_start_pt = Vector3.Transform(world_pt_in, rest_parent_inv_mat);
|
||
//this.local_rest_start_pt = world_pt_in.cpy().traMul(rest_parent_inv_mat);
|
||
this.local_rest_start_pt = vec3.create();
|
||
this.local_rest_start_pt = vec3.transformMat4(this.local_rest_start_pt, world_pt_in, this.rest_parent_inv_mat);
|
||
this.calcRestData();
|
||
};
|
||
|
||
MeshBone.prototype.setLocalRestEndPt = function(world_pt_in)
|
||
{
|
||
//local_rest_end_pt = Vector3.Transform(world_pt_in, rest_parent_inv_mat);
|
||
//this.local_rest_end_pt = world_pt_in.cpy().traMul(rest_parent_inv_mat);
|
||
this.local_rest_end_pt = vec3.create();
|
||
this.local_rest_end_pt = vec3.transformMat4(this.local_rest_end_pt, world_pt_in, this.rest_parent_inv_mat);
|
||
this.calcRestData();
|
||
};
|
||
|
||
MeshBone.prototype.calcRestData = function()
|
||
{
|
||
if(this.local_rest_start_pt == null || this.local_rest_end_pt == null)
|
||
{
|
||
return;
|
||
}
|
||
|
||
var calc = this.computeDirs(this.local_rest_start_pt, this.local_rest_end_pt);
|
||
|
||
this.local_rest_dir = calc.first;
|
||
this.local_rest_normal_dir = calc.second;
|
||
|
||
this.computeRestLength();
|
||
};
|
||
|
||
MeshBone.prototype.setWorldStartPt = function(world_pt_in)
|
||
{
|
||
this.world_start_pt = world_pt_in;
|
||
};
|
||
|
||
MeshBone.prototype.setWorldEndPt = function(world_pt_in)
|
||
{
|
||
this.world_end_pt = world_pt_in;
|
||
};
|
||
|
||
MeshBone.prototype.fixDQs = function(ref_dq)
|
||
{
|
||
// if( Quaternion.Dot(world_dq.real, ref_dq.real) < 0) {
|
||
//if( world_dq.real.dot(ref_dq.real) < 0) {
|
||
if(quat.dot(this.world_dq.real, ref_dq.real) < 0) {
|
||
//this.world_dq.real = world_dq.real.cpy().mul(-1);
|
||
this.world_dq.real = quat.scale(this.world_dq.real, this.world_dq.real, -1);
|
||
//this.world_dq.imaginary = world_dq.imaginary.cpy().mul(-1);
|
||
this.world_dq.imaginary = quat.scale(this.world_dq.imaginary, this.world_dq.imaginary, -1);
|
||
}
|
||
|
||
for(var i = 0; i < this.children.length; i++) {
|
||
var cur_child = this.children[i];
|
||
cur_child.fixDQs(this.world_dq);
|
||
}
|
||
};
|
||
|
||
MeshBone.prototype.initWorldPts = function()
|
||
{
|
||
this.setWorldStartPt(this.getWorldRestStartPt());
|
||
this.setWorldEndPt(this.getWorldRestEndPt());
|
||
|
||
for(var i = 0; i < this.children.length; i++) {
|
||
this.children[i].initWorldPts();
|
||
}
|
||
};
|
||
|
||
MeshBone.prototype.getWorldRestStartPt = function()
|
||
{
|
||
//Vector3 ret_vec = Vector3.Transform(local_rest_start_pt, rest_parent_mat);
|
||
var tmp_mat = this.rest_parent_mat;
|
||
var ret_vec = vec3.create();
|
||
ret_vec = vec3.transformMat4(ret_vec, this.local_rest_start_pt, tmp_mat);
|
||
|
||
return ret_vec;
|
||
};
|
||
|
||
MeshBone.prototype.getWorldRestEndPt = function()
|
||
{
|
||
// Vector3 ret_vec = Vector3.Transform(local_rest_end_pt, rest_parent_mat);
|
||
var tmp_mat = this.rest_parent_mat;
|
||
var ret_vec = vec3.create();
|
||
ret_vec = vec3.transformMat4(ret_vec, this.local_rest_end_pt, tmp_mat);
|
||
|
||
return ret_vec;
|
||
};
|
||
|
||
MeshBone.prototype.getWorldRestAngle = function()
|
||
{
|
||
return this.world_rest_angle;
|
||
};
|
||
|
||
MeshBone.prototype.getWorldRestPos = function()
|
||
{
|
||
return this.world_rest_pos;
|
||
};
|
||
|
||
MeshBone.prototype.getWorldStartPt = function()
|
||
{
|
||
return this.world_start_pt;
|
||
};
|
||
|
||
MeshBone.prototype.getWorldEndPt = function()
|
||
{
|
||
return this.world_end_pt;
|
||
};
|
||
|
||
MeshBone.prototype.getRestParentMat = function()
|
||
{
|
||
return this.rest_parent_mat;
|
||
};
|
||
|
||
MeshBone.prototype.getRestWorldMat = function()
|
||
{
|
||
return this.rest_world_mat;
|
||
};
|
||
|
||
MeshBone.prototype.getWorldDeltaMat = function()
|
||
{
|
||
return this.world_delta_mat;
|
||
};
|
||
|
||
MeshBone.prototype.getParentWorldMat = function()
|
||
{
|
||
return this.parent_world_mat;
|
||
};
|
||
|
||
MeshBone.prototype.getParentWorldInvMat = function()
|
||
{
|
||
return this.parent_world_inv_mat;
|
||
};
|
||
|
||
MeshBone.prototype.getWorldDq = function()
|
||
{
|
||
return this.world_dq;
|
||
};
|
||
|
||
MeshBone.prototype.computeRestParentTransforms = function()
|
||
{
|
||
var cur_tangent = vec3.fromValues(this.local_rest_dir[Q_X], this.local_rest_dir[Q_Y], 0);
|
||
var cur_binormal = vec3.fromValues(this.local_binormal_dir[Q_X], this.local_binormal_dir[Q_Y], this.local_binormal_dir[Q_Z]);
|
||
var cur_normal = vec3.fromValues(this.local_rest_normal_dir[Q_X], this.local_rest_normal_dir[Q_Y], 0);
|
||
|
||
var cur_translate = mat4.create();
|
||
//cur_translate.setTranslation(local_rest_end_pt.x, local_rest_end_pt.y, 0);
|
||
mat4.translate(cur_translate, cur_translate, this.local_rest_end_pt);
|
||
|
||
var cur_rotate = mat4.create();
|
||
/*
|
||
cur_rotate.Right = cur_tangent;
|
||
cur_rotate.Up = cur_normal;
|
||
cur_rotate.Backward = cur_binormal;
|
||
*/
|
||
//cur_rotate.set(cur_tangent, cur_normal, cur_binormal, new Vector3(0,0,0));
|
||
cur_rotate = Utils.setAxisMatrix(cur_tangent, cur_normal, cur_binormal);
|
||
//cur_rotate.tra();
|
||
|
||
//Matrix4 cur_final = cur_translate.cpy().mul(cur_rotate);
|
||
var cur_final = mat4.create();
|
||
cur_final = mat4.multiply(cur_final, cur_translate, cur_rotate);
|
||
|
||
//rest_world_mat = rest_parent_mat.cpy().mul(cur_final);
|
||
this.rest_world_mat = mat4.create();
|
||
this.rest_world_mat = mat4.multiply(this.rest_world_mat, this.rest_parent_mat, cur_final);
|
||
|
||
this.rest_world_inv_mat = mat4.clone(this.rest_world_mat);
|
||
this.rest_world_inv_mat = mat4.invert(this.rest_world_inv_mat, this.rest_world_inv_mat);
|
||
//Matrix4.Invert(ref rest_world_mat, out rest_world_inv_mat);
|
||
|
||
// var world_rest_dir = getWorldRestEndPt().cpy().sub( getWorldRestStartPt());
|
||
var world_rest_dir = vec3.clone(this.getWorldRestEndPt());
|
||
world_rest_dir = vec3.subtract(world_rest_dir, world_rest_dir, this.getWorldRestStartPt());
|
||
|
||
world_rest_dir = vec3.normalize(world_rest_dir, world_rest_dir);
|
||
this.world_rest_pos = this.getWorldRestStartPt();
|
||
|
||
|
||
var bind_translate = mat4.create();
|
||
//bind_translate.setTranslation(getWorldRestStartPt().x, getWorldRestStartPt().y, 0);
|
||
bind_translate = mat4.translate(bind_translate, bind_translate, this.getWorldRestStartPt());
|
||
|
||
var tVec = vec3.create();
|
||
tVec = vec3.sub(tVec, this.getWorldRestEndPt(), this.getWorldRestStartPt());
|
||
var bind_rotate = Utils.calcRotateMat(tVec);
|
||
//Matrix4 cur_bind_final = bind_translate.cpy().mul(bind_rotate);
|
||
var cur_bind_final = mat4.create();
|
||
cur_bind_final = mat4.multiply(cur_bind_final, bind_translate, bind_rotate);
|
||
|
||
this.bind_world_mat = mat4.clone(cur_bind_final);
|
||
this.bind_world_inv_mat = mat4.clone(this.bind_world_mat);
|
||
this.bind_world_inv_mat = mat4.invert(this.bind_world_inv_mat, this.bind_world_inv_mat);
|
||
//Matrix4.Invert(ref bind_world_mat, out bind_world_inv_mat);
|
||
|
||
for(var i = 0; i < this.children.length; i++) {
|
||
var cur_bone = this.children[i];
|
||
cur_bone.setRestParentMat(this.rest_world_mat, this.rest_world_inv_mat);
|
||
cur_bone.computeRestParentTransforms();
|
||
}
|
||
};
|
||
|
||
MeshBone.prototype.computeParentTransforms = function()
|
||
{
|
||
var translate_parent = mat4.create();
|
||
translate_parent = mat4.translate(translate_parent, translate_parent, this.getWorldEndPt());
|
||
|
||
var tVec = vec3.create();
|
||
tVec = vec3.subtract(tVec, this.getWorldEndpt(), this.getWorldStartPt());
|
||
var rotate_parent = Utils.calcRotateMat(tVec);
|
||
|
||
var final_transform = mat4.create();
|
||
final_transform = mat4.multiply(final_transform, translate_parent, rotate_parent);
|
||
|
||
var final_inv_transform = mat4.clone(final_transform);
|
||
//final_inv_transform.inv();
|
||
final_inv_transform = mat4.invert(final_inv_transform, final_inv_transform);
|
||
|
||
for(var i = 0; i < children.length; i++) {
|
||
var cur_bone = children[i];
|
||
cur_bone.setParentWorldMat(final_transform);
|
||
cur_bone.setParentWorldInvMat(final_inv_transform);
|
||
cur_bone.computeParentTransforms();
|
||
}
|
||
};
|
||
|
||
MeshBone.prototype.computeWorldDeltaTransforms = function()
|
||
{
|
||
var calc = this.computeDirs(this.world_start_pt, this.world_end_pt);
|
||
var cur_tangent = vec3.fromValues(calc["first"][Q_X], calc["first"][Q_Y], 0);
|
||
var cur_normal = vec3.fromValues(calc["second"][Q_X], calc["second"][Q_Y], 0);
|
||
var cur_binormal = vec3.fromValues(this.local_binormal_dir[Q_X], this.local_binormal_dir[Q_Y], this.local_binormal_dir[Q_Z]);
|
||
|
||
var cur_rotate = mat4.create();
|
||
/*
|
||
cur_rotate.Right = cur_tangent;
|
||
cur_rotate.Up = cur_normal;
|
||
cur_rotate.Backward = cur_binormal;
|
||
*/
|
||
//cur_rotate.set(cur_tangent, cur_normal, cur_binormal, new Vector3(0,0,0));
|
||
cur_rotate = Utils.setAxisMatrix(cur_tangent, cur_normal, cur_binormal);
|
||
|
||
//cur_rotate.tra();
|
||
|
||
var cur_translate = mat4.create();
|
||
//cur_translate.setTranslation(world_start_pt.x, world_start_pt.y, 0);
|
||
cur_translate = mat4.translate(cur_translate, cur_translate, this.world_start_pt);
|
||
|
||
/*
|
||
world_delta_mat = (cur_translate * cur_rotate)
|
||
* bind_world_inv_mat;
|
||
*/
|
||
|
||
this.world_delta_mat = mat4.create();
|
||
// world_delta_mat = (cur_translate.cpy().mul(cur_rotate)).mul(bind_world_inv_mat);
|
||
this.world_delta_mat = mat4.multiply(this.world_delta_mat, cur_translate, cur_rotate);
|
||
this.world_delta_mat = mat4.multiply(this.world_delta_mat, this.world_delta_mat, this.bind_world_inv_mat);
|
||
|
||
|
||
// Quaternion cur_quat = XnaGeometry.Quaternion.CreateFromRotationMatrix(world_delta_mat);
|
||
//var tmpMat = mat3.create();
|
||
//tmpMat = mat3.fromMat4(tmpMat, this.world_delta_mat);
|
||
var cur_quat = Utils.matrixToQuat(this.world_delta_mat);
|
||
|
||
|
||
var tmp_pos = Utils.getMatTranslate(this.world_delta_mat);
|
||
this.world_dq = new dualQuat();
|
||
this.world_dq.createFromData(cur_quat, tmp_pos);
|
||
|
||
for(var i = 0; i < this.children.length; i++) {
|
||
var cur_bone = this.children[i];
|
||
cur_bone.computeWorldDeltaTransforms();
|
||
}
|
||
};
|
||
|
||
MeshBone.prototype.addChild = function(bone_in)
|
||
{
|
||
bone_in.setRestParentMat(this.rest_world_mat, this.rest_world_inv_mat);
|
||
this.children.push(bone_in);
|
||
};
|
||
|
||
MeshBone.prototype.getChildren = function()
|
||
{
|
||
return this.children;
|
||
};
|
||
|
||
MeshBone.prototype.hasBone = function(bone_in)
|
||
{
|
||
for(var i = 0; i < this.children.length; i++) {
|
||
var cur_bone = this.children[i];
|
||
if(cur_bone == bone_in) {
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
};
|
||
|
||
MeshBone.prototype.getChildByKey = function(search_key)
|
||
{
|
||
if(this.key === search_key) {
|
||
return this;
|
||
}
|
||
|
||
var ret_data = null;
|
||
for(var i = 0; i < this.children.length; i++) {
|
||
var cur_bone = this.children[i];
|
||
|
||
var result = cur_bone.getChildByKey(search_key);
|
||
if(result != null) {
|
||
ret_data = result;
|
||
break;
|
||
}
|
||
}
|
||
|
||
return ret_data;
|
||
};
|
||
|
||
MeshBone.prototype.getKey = function()
|
||
{
|
||
return this.key;
|
||
};
|
||
|
||
MeshBone.prototype.getAllBoneKeys = function()
|
||
{
|
||
var ret_data = [];
|
||
ret_data.push(this.getKey());
|
||
|
||
for(var i = 0; i < this.children.length; i++) {
|
||
var append_data = this.children[i].getAllBoneKeys();
|
||
ret_data = ret_data.concat(append_data);
|
||
}
|
||
|
||
return ret_data;
|
||
};
|
||
|
||
MeshBone.prototype.getAllChildren = function()
|
||
{
|
||
var ret_data = [];
|
||
ret_data.push(this);
|
||
for(var i = 0; i < this.children.length; i++) {
|
||
var append_data = this.children[i].getAllChildren();
|
||
ret_data = ret_data.concat(append_data);
|
||
}
|
||
|
||
return ret_data;
|
||
};
|
||
|
||
MeshBone.prototype.getBoneDepth = function(bone_in, depth)
|
||
{
|
||
if(bone_in == this) {
|
||
return depth;
|
||
}
|
||
|
||
for(var i = 0; i < this.children.length; i++) {
|
||
var cur_bone = this.children[i];
|
||
var ret_val = cur_bone.getBoneDepth(bone_in, depth + 1);
|
||
if(ret_val != -1) {
|
||
return ret_val;
|
||
}
|
||
}
|
||
|
||
return -1;
|
||
};
|
||
|
||
MeshBone.prototype.isLeaf = function()
|
||
{
|
||
return this.children.length == 0;
|
||
};
|
||
|
||
MeshBone.prototype.deleteChildren = function()
|
||
{
|
||
for(var i = 0; i < this.children.length; i++) {
|
||
var cur_bone = this.children[i];
|
||
cur_bone.deleteChildren();
|
||
}
|
||
|
||
this.children = [];
|
||
};
|
||
|
||
MeshBone.prototype.setTagId = function(value_in)
|
||
{
|
||
this.tag_id = value_in;
|
||
};
|
||
|
||
MeshBone.prototype.getTagId = function()
|
||
{
|
||
return this.tag_id;
|
||
};
|
||
|
||
MeshBone.prototype.computeDirs = function(start_pt, end_pt)
|
||
{
|
||
var tangent = vec3.create();
|
||
tangent = vec3.subtract(tangent, end_pt, start_pt);
|
||
tangent = vec3.normalize(tangent, tangent);
|
||
|
||
var normal = Utils.rotateVec_90(tangent);
|
||
|
||
var retData = {};
|
||
retData["first"] = tangent;
|
||
retData["second"] = normal;
|
||
|
||
return retData;
|
||
};
|
||
|
||
MeshBone.prototype.computeRestLength = function()
|
||
{
|
||
var tmp_dir = vec3.create();
|
||
//Vector3 tmp_dir = local_rest_end_pt.cpy().sub(local_rest_start_pt);
|
||
tmp_dir = vec3.subtract(tmp_dir, this.local_rest_end_pt, this.local_rest_start_pt);
|
||
|
||
this.rest_length = vec3.length(tmp_dir);
|
||
};
|
||
|
||
// MeshRenderRegion
|
||
function MeshRenderRegion(indices_in, rest_pts_in, uvs_in, start_pt_index_in, end_pt_index_in,
|
||
start_index_in, end_index_in)
|
||
{
|
||
this.store_indices = indices_in;
|
||
this.store_rest_pts = rest_pts_in;
|
||
this.store_uvs = uvs_in;
|
||
|
||
this.use_local_displacements = false;
|
||
this.use_post_displacements = false;
|
||
this.use_uv_warp = false;
|
||
this.uv_warp_local_offset = vec2.fromValues(0,0);
|
||
this.uv_warp_global_offset = vec2.fromValues(0,0);
|
||
this.uv_warp_scale = vec2.fromValues(1,1);
|
||
this.start_pt_index = start_pt_index_in;
|
||
this.end_pt_index = end_pt_index_in;
|
||
this.start_index = start_index_in;
|
||
this.end_index = end_index_in;
|
||
this.main_bone = null;
|
||
this.local_displacements = [];
|
||
this.post_displacements = [];
|
||
this.uv_warp_ref_uvs = [];
|
||
this.normal_weight_map = {};
|
||
this.fast_normal_weight_map = [];
|
||
this.fast_bones_map = [];
|
||
this.relevant_bones_indices = [];
|
||
this.use_dq = true;
|
||
this.tag_id = -1;
|
||
|
||
this.initUvWarp();
|
||
};
|
||
|
||
MeshRenderRegion.prototype.getIndicesIndex = function()
|
||
{
|
||
// return store_indices + (start_index);
|
||
return this.start_index;
|
||
};
|
||
|
||
MeshRenderRegion.prototype.getRestPtsIndex = function()
|
||
{
|
||
// return store_rest_pts + (3 * start_pt_index);
|
||
return 3 * this.start_pt_index;
|
||
};
|
||
|
||
MeshRenderRegion.prototype.getUVsIndex = function()
|
||
{
|
||
// return store_uvs + (2 * start_pt_index);
|
||
return 2 * this.start_pt_index;
|
||
};
|
||
|
||
MeshRenderRegion.prototype.getNumPts = function()
|
||
{
|
||
return this.end_pt_index - this.start_pt_index + 1;
|
||
};
|
||
|
||
MeshRenderRegion.prototype.getStartPtIndex = function()
|
||
{
|
||
return this.start_pt_index;
|
||
};
|
||
|
||
MeshRenderRegion.prototype.getEndPtIndex = function()
|
||
{
|
||
return this.end_pt_index;
|
||
};
|
||
|
||
MeshRenderRegion.prototype.getNumIndices = function()
|
||
{
|
||
return this.end_index - this.start_index + 1;
|
||
};
|
||
|
||
MeshRenderRegion.prototype.getStartIndex = function()
|
||
{
|
||
return this.start_index;
|
||
};
|
||
|
||
MeshRenderRegion.prototype.getEndIndex = function()
|
||
{
|
||
return this.end_index;
|
||
};
|
||
|
||
var accum_dq = new dualQuat();
|
||
var accum_mat = mat4.create();
|
||
var final_pt = vec3.create();
|
||
var tmp1 = vec3.create();
|
||
var tmp2 = vec3.create();
|
||
|
||
MeshRenderRegion.prototype.poseFinalPts = function(output_pts, output_start_index, bones_map)
|
||
{
|
||
var read_pt_index = this.getRestPtsIndex();
|
||
var write_pt_index = output_start_index;
|
||
|
||
// point posing
|
||
for(var i = 0; i < 16; i++)
|
||
{
|
||
accum_mat[i] = 0.0;
|
||
}
|
||
|
||
var boneKeys = Object.keys(bones_map);
|
||
var boneKeyLength = boneKeys.length;
|
||
|
||
for(var i = 0, l = this.getNumPts(); i < l; i++) {
|
||
var cur_rest_pt =
|
||
vec3.set(tmp1, this.store_rest_pts[0 + read_pt_index],
|
||
this.store_rest_pts[1 + read_pt_index],
|
||
this.store_rest_pts[2 + read_pt_index]);
|
||
// vec3.fromValues(this.store_rest_pts[0 + read_pt_index],
|
||
// this.store_rest_pts[1 + read_pt_index],
|
||
// this.store_rest_pts[2 + read_pt_index]);
|
||
|
||
if(this.use_local_displacements == true) {
|
||
cur_rest_pt[Q_X] += this.local_displacements[i][Q_X];
|
||
cur_rest_pt[Q_Y] += this.local_displacements[i][Q_Y];
|
||
}
|
||
|
||
for(var j = 0; j < 16; j++)
|
||
{
|
||
accum_mat[j] = 0.0;
|
||
}
|
||
// reuse
|
||
// var accum_dq = new dualQuat();
|
||
accum_dq.reset();
|
||
|
||
var curBoneIndices = this.relevant_bones_indices[i];
|
||
var relevantIndicesLength = curBoneIndices.length;
|
||
for (var j = 0; j < relevantIndicesLength; j++)
|
||
{
|
||
var idx_lookup = curBoneIndices[j];
|
||
var cur_bone = this.fast_bones_map[idx_lookup];
|
||
var cur_weight_val = this.fast_normal_weight_map[idx_lookup][i];
|
||
var cur_im_weight_val = cur_weight_val;
|
||
|
||
var world_dq = cur_bone.getWorldDq();
|
||
accum_dq.add(world_dq, cur_weight_val, cur_im_weight_val);
|
||
}
|
||
|
||
accum_dq.normalize();
|
||
var tmp_pt = vec3.set(tmp2, cur_rest_pt[Q_X], cur_rest_pt[Q_Y], cur_rest_pt[Q_Z]);
|
||
// var tmp_pt = vec3.fromValues(cur_rest_pt[Q_X], cur_rest_pt[Q_Y], cur_rest_pt[Q_Z]);
|
||
final_pt = accum_dq.transform(tmp_pt);
|
||
|
||
// debug start
|
||
|
||
// debug end
|
||
|
||
if(this.use_post_displacements == true) {
|
||
final_pt[Q_X] += this.post_displacements[i][Q_X];
|
||
final_pt[Q_Y] += this.post_displacements[i][Q_Y];
|
||
}
|
||
|
||
output_pts[0 + write_pt_index] = final_pt[Q_X];
|
||
output_pts[1 + write_pt_index] = final_pt[Q_Y];
|
||
output_pts[2 + write_pt_index] = final_pt[Q_Z];
|
||
|
||
|
||
|
||
read_pt_index += 3;
|
||
write_pt_index += 3;
|
||
}
|
||
|
||
// uv warping
|
||
if(this.use_uv_warp == true) {
|
||
this.runUvWarp();
|
||
}
|
||
};
|
||
|
||
MeshRenderRegion.prototype.setMainBoneKey = function(key_in)
|
||
{
|
||
this.main_bone_key = key_in;
|
||
};
|
||
|
||
MeshRenderRegion.prototype.determineMainBone = function(root_bone_in)
|
||
{
|
||
this.main_bone = root_bone_in.getChildByKey(this.main_bone_key);
|
||
};
|
||
|
||
MeshRenderRegion.prototype.setUseDq = function(flag_in)
|
||
{
|
||
this.use_dq = flag_in;
|
||
};
|
||
|
||
MeshRenderRegion.prototype.setName = function(name_in)
|
||
{
|
||
this.name = name_in;
|
||
};
|
||
|
||
MeshRenderRegion.prototype.getName = function()
|
||
{
|
||
return this.name;
|
||
};
|
||
|
||
MeshRenderRegion.prototype.setUseLocalDisplacements = function(flag_in)
|
||
{
|
||
this.use_local_displacements = flag_in;
|
||
if((this.local_displacements.length != this.getNumPts())
|
||
&& this.use_local_displacements)
|
||
{
|
||
this.local_displacements = [];
|
||
for(var i = 0; i < this.getNumPts(); i++) {
|
||
this.local_displacements.push (vec2.create());
|
||
}
|
||
}
|
||
};
|
||
|
||
MeshRenderRegion.prototype. getUseLocalDisplacements = function()
|
||
{
|
||
return this.use_local_displacements;
|
||
};
|
||
|
||
MeshRenderRegion.prototype.setUsePostDisplacements = function(flag_in)
|
||
{
|
||
this.use_post_displacements = flag_in;
|
||
if((this.post_displacements.length != this.getNumPts())
|
||
&& this.use_post_displacements)
|
||
{
|
||
this.post_displacements = [];
|
||
for(var i = 0; i < this.getNumPts(); i++) {
|
||
this.post_displacements.push(vec2.create());
|
||
}
|
||
}
|
||
};
|
||
|
||
MeshRenderRegion.prototype.getUsePostDisplacements = function()
|
||
{
|
||
return this.use_post_displacements;
|
||
};
|
||
|
||
MeshRenderRegion.prototype.getRestLocalPt = function(index_in)
|
||
{
|
||
var read_pt_index = this.getRestPtsIndex() + (3 * index_in);
|
||
var return_pt = vec2.fromValues(this.store_rest_pts[0 + read_pt_index],
|
||
this.store_rest_pts[1 + read_pt_index]);
|
||
return return_pt;
|
||
};
|
||
|
||
MeshRenderRegion.prototype.getLocalIndex = function(index_in)
|
||
{
|
||
var read_index = this.getIndicesIndex() + index_in;
|
||
return this.store_indices[read_index];
|
||
};
|
||
|
||
MeshRenderRegion.prototype.clearLocalDisplacements = function()
|
||
{
|
||
for(var i = 0; i < this.local_displacements.length; i++) {
|
||
this.local_displacements[i] = vec2.create();
|
||
}
|
||
};
|
||
|
||
MeshRenderRegion.prototype.clearPostDisplacements = function()
|
||
{
|
||
for(var i = 0; i < this.post_displacements.length; i++) {
|
||
this.post_displacements[i] = vec2.create();
|
||
}
|
||
};
|
||
|
||
MeshRenderRegion.prototype.setUseUvWarp = function(flag_in)
|
||
{
|
||
this.use_uv_warp = flag_in;
|
||
if(this.use_uv_warp == false) {
|
||
this.restoreRefUv();
|
||
}
|
||
};
|
||
|
||
MeshRenderRegion.prototype. getUseUvWarp = function()
|
||
{
|
||
return this.use_uv_warp;
|
||
};
|
||
|
||
MeshRenderRegion.prototype.setUvWarpLocalOffset = function(vec_in)
|
||
{
|
||
this.uv_warp_local_offset = vec_in;
|
||
};
|
||
|
||
MeshRenderRegion.prototype.setUvWarpGlobalOffset = function(vec_in)
|
||
{
|
||
this.uv_warp_global_offset = vec_in;
|
||
};
|
||
|
||
MeshRenderRegion.prototype.setUvWarpScale = function(vec_in)
|
||
{
|
||
this.uv_warp_scale = vec_in;
|
||
};
|
||
|
||
MeshRenderRegion.prototype. getUvWarpLocalOffset = function()
|
||
{
|
||
return this.uv_warp_local_offset;
|
||
};
|
||
|
||
MeshRenderRegion.prototype. getUvWarpGlobalOffset = function()
|
||
{
|
||
return this.uv_warp_global_offset;
|
||
};
|
||
|
||
MeshRenderRegion.prototype. getUvWarpScale = function()
|
||
{
|
||
return this.uv_warp_scale;
|
||
};
|
||
|
||
MeshRenderRegion.prototype.runUvWarp = function()
|
||
{
|
||
var cur_uvs_index = this.getUVsIndex();
|
||
for(var i = 0; i < this.uv_warp_ref_uvs.length; i++) {
|
||
var set_uv = vec2.clone(this.uv_warp_ref_uvs[i]);
|
||
|
||
|
||
set_uv = vec2.subtract(set_uv, set_uv, this.uv_warp_local_offset);
|
||
set_uv[Q_X] *= this.uv_warp_scale[Q_X];
|
||
set_uv[Q_Y] *= this.uv_warp_scale[Q_Y];
|
||
set_uv = vec2.add(set_uv, set_uv, this.uv_warp_global_offset);
|
||
|
||
|
||
/*
|
||
set_uv.sub(uv_warp_local_offset);
|
||
set_uv.scl(uv_warp_scale);
|
||
set_uv.add(uv_warp_global_offset);
|
||
*/
|
||
|
||
|
||
this.store_uvs[0 + cur_uvs_index] = set_uv[Q_X];
|
||
this.store_uvs[1 + cur_uvs_index] = set_uv[Q_Y];
|
||
|
||
|
||
cur_uvs_index += 2;
|
||
}
|
||
};
|
||
|
||
MeshRenderRegion.prototype.restoreRefUv = function()
|
||
{
|
||
var cur_uvs_index = this.getUVsIndex();
|
||
for(var i = 0; i < this.uv_warp_ref_uvs.length; i++) {
|
||
var set_uv = this.uv_warp_ref_uvs[i];
|
||
|
||
this.store_uvs[0 + cur_uvs_index] = set_uv[Q_X];
|
||
this.store_uvs[1 + cur_uvs_index] = set_uv[Q_Y];
|
||
|
||
cur_uvs_index += 2;
|
||
}
|
||
};
|
||
|
||
MeshRenderRegion.prototype.getTagId = function()
|
||
{
|
||
return this.tag_id;
|
||
};
|
||
|
||
MeshRenderRegion.prototype.setTagId = function(value_in)
|
||
{
|
||
this.tag_id = value_in;
|
||
};
|
||
|
||
MeshRenderRegion.prototype.initFastNormalWeightMap = function(bones_map)
|
||
{
|
||
this.relevant_bones_indices = [];
|
||
|
||
// fast normal weight map lookup, avoids hash lookups
|
||
for (var cur_key in bones_map) {
|
||
var values = this.normal_weight_map[cur_key];
|
||
this.fast_normal_weight_map.push(values);
|
||
}
|
||
|
||
// relevant bone indices
|
||
var cutoff_val = 0.05;
|
||
for(var i = 0; i < this.getNumPts(); i++) {
|
||
var curIndicesArray = [];
|
||
for (var j = 0; j < this.fast_normal_weight_map.length; j++)
|
||
{
|
||
var cur_val = this.fast_normal_weight_map[j][i];
|
||
if(cur_val > cutoff_val)
|
||
{
|
||
curIndicesArray.push(j);
|
||
}
|
||
}
|
||
|
||
this.relevant_bones_indices.push(curIndicesArray);
|
||
}
|
||
|
||
// fast bone map lookup
|
||
for (var cur_key in bones_map) {
|
||
var cur_bone = bones_map[cur_key];
|
||
this.fast_bones_map.push(cur_bone);
|
||
}
|
||
};
|
||
|
||
MeshRenderRegion.prototype.initUvWarp = function()
|
||
{
|
||
var cur_uvs_index = this.getUVsIndex();
|
||
// uv_warp_ref_uvs = new java.util.Vector<Vector2>(new Vector2[getNumPts()]);
|
||
this.uv_warp_ref_uvs = [];;
|
||
|
||
for(var i = 0; i < this.getNumPts(); i++) {
|
||
this.uv_warp_ref_uvs.push(vec2.create());
|
||
|
||
this.uv_warp_ref_uvs[i] = vec2.fromValues(this.store_uvs[cur_uvs_index],
|
||
this.store_uvs[cur_uvs_index + 1]);
|
||
|
||
|
||
|
||
cur_uvs_index += 2;
|
||
}
|
||
};
|
||
|
||
|
||
// MeshRenderBoneComposition
|
||
function MeshRenderBoneComposition()
|
||
{
|
||
this.root_bone = null;
|
||
this.bones_map = {};
|
||
this.regions = [];
|
||
this.regions_map = {};
|
||
};
|
||
|
||
MeshRenderBoneComposition.prototype.addRegion = function(region_in)
|
||
{
|
||
this.regions.push(region_in);
|
||
};
|
||
|
||
MeshRenderBoneComposition.prototype.setRootBone = function(root_bone_in)
|
||
{
|
||
this.root_bone = root_bone_in;
|
||
};
|
||
|
||
MeshRenderBoneComposition.prototype.getRootBone = function()
|
||
{
|
||
return this.root_bone;
|
||
};
|
||
|
||
MeshRenderBoneComposition.prototype.initBoneMap = function()
|
||
{
|
||
this.bones_map = MeshRenderBoneComposition.genBoneMap(this.root_bone);
|
||
};
|
||
|
||
MeshRenderBoneComposition.prototype.initRegionsMap = function()
|
||
{
|
||
this.regions_map = {};
|
||
for(var i = 0; i < this.regions.length; i++) {
|
||
cur_key = this.regions[i].getName();
|
||
this.regions_map[cur_key] = this.regions[i];
|
||
}
|
||
};
|
||
|
||
MeshRenderBoneComposition.genBoneMap = function(input_bone)
|
||
{
|
||
var ret_map = {};
|
||
var all_keys = input_bone.getAllBoneKeys();
|
||
for(var i = 0; i < all_keys.length; i++) {
|
||
var cur_key = all_keys[i];
|
||
ret_map[cur_key] = input_bone.getChildByKey(cur_key);
|
||
}
|
||
|
||
return ret_map;
|
||
};
|
||
|
||
MeshRenderBoneComposition.prototype.getBonesMap = function()
|
||
{
|
||
return this.bones_map;
|
||
};
|
||
|
||
MeshRenderBoneComposition.prototype.getRegionsMap = function()
|
||
{
|
||
return this.regions_map;
|
||
};
|
||
|
||
MeshRenderBoneComposition.prototype.getRegions = function()
|
||
{
|
||
return this.regions;
|
||
};
|
||
|
||
MeshRenderBoneComposition.prototype.getRegionWithId = function(id_in)
|
||
{
|
||
for(var i = 0; i < this.regions.length; i++) {
|
||
var cur_region = this.regions[i];
|
||
if(cur_region.getTagId() == id_in) {
|
||
return cur_region;
|
||
}
|
||
}
|
||
|
||
return null;
|
||
};
|
||
|
||
MeshRenderBoneComposition.prototype.resetToWorldRestPts = function()
|
||
{
|
||
this.getRootBone().initWorldPts();
|
||
};
|
||
|
||
MeshRenderBoneComposition.prototype.updateAllTransforms = function(update_parent_xf)
|
||
{
|
||
if(update_parent_xf) {
|
||
this.getRootBone().computeParentTransforms();
|
||
}
|
||
|
||
this.getRootBone().computeWorldDeltaTransforms();
|
||
this.getRootBone().fixDQs(this.getRootBone().getWorldDq());
|
||
};
|
||
|
||
// MeshBoneCache
|
||
function MeshBoneCache(key_in)
|
||
{
|
||
this.key = key_in;
|
||
};
|
||
|
||
MeshBoneCache.prototype.setWorldStartPt = function(pt_in) {
|
||
this.world_start_pt = pt_in;
|
||
};
|
||
|
||
MeshBoneCache.prototype.setWorldEndPt = function(pt_in) {
|
||
this.world_end_pt = pt_in;
|
||
};
|
||
|
||
MeshBoneCache.prototype.getWorldStartPt = function() {
|
||
return this.world_start_pt;
|
||
};
|
||
|
||
MeshBoneCache.prototype.getWorldEndPt = function() {
|
||
return this.world_end_pt;
|
||
};
|
||
|
||
MeshBoneCache.prototype.getKey = function() {
|
||
return this.key;
|
||
};
|
||
|
||
// MeshDisplacementCache
|
||
function MeshDisplacementCache(key_in)
|
||
{
|
||
this.key = key_in;
|
||
this.local_displacements = [];
|
||
this.post_displacements = [];
|
||
};
|
||
|
||
MeshDisplacementCache.prototype.setLocalDisplacements = function(displacements_in)
|
||
{
|
||
this.local_displacements = displacements_in;
|
||
};
|
||
|
||
MeshDisplacementCache.prototype.setPostDisplacements = function(displacements_in)
|
||
{
|
||
this.post_displacements = displacements_in;
|
||
};
|
||
|
||
MeshDisplacementCache.prototype.getKey = function() {
|
||
return this.key;
|
||
};
|
||
|
||
MeshDisplacementCache.prototype.getLocalDisplacements = function()
|
||
{
|
||
return this.local_displacements;
|
||
};
|
||
|
||
MeshDisplacementCache.prototype.getPostDisplacements = function()
|
||
{
|
||
return this.post_displacements;
|
||
};
|
||
|
||
|
||
// MeshUVWarpCache
|
||
function MeshUVWarpCache(key_in)
|
||
{
|
||
this.uv_warp_global_offset = vec2.create();
|
||
this.uv_warp_local_offset = vec2.create();
|
||
this.uv_warp_scale = vec2.fromValues(-1,-1);
|
||
this.key = key_in;
|
||
this.enabled = false;
|
||
};
|
||
|
||
MeshUVWarpCache.prototype.setUvWarpLocalOffset = function(vec_in)
|
||
{
|
||
this.uv_warp_local_offset = vec_in;
|
||
};
|
||
|
||
MeshUVWarpCache.prototype.setUvWarpGlobalOffset = function(vec_in)
|
||
{
|
||
this.uv_warp_global_offset = vec_in;
|
||
};
|
||
|
||
MeshUVWarpCache.prototype.setUvWarpScale = function(vec_in)
|
||
{
|
||
this.uv_warp_scale = vec_in;
|
||
};
|
||
|
||
MeshUVWarpCache.prototype.getUvWarpLocalOffset = function()
|
||
{
|
||
return this.uv_warp_local_offset;
|
||
};
|
||
|
||
MeshUVWarpCache.prototype.getUvWarpGlobalOffset = function()
|
||
{
|
||
return this.uv_warp_global_offset;
|
||
};
|
||
|
||
MeshUVWarpCache.prototype.getUvWarpScale = function()
|
||
{
|
||
return this.uv_warp_scale;
|
||
};
|
||
|
||
MeshUVWarpCache.prototype.getKey = function() {
|
||
return this.key;
|
||
};
|
||
|
||
MeshUVWarpCache.prototype.setEnabled = function(flag_in)
|
||
{
|
||
this.enabled = flag_in;
|
||
};
|
||
|
||
MeshUVWarpCache.prototype.getEnabled = function() {
|
||
return this.enabled;
|
||
};
|
||
|
||
// MeshBoneCacheManager
|
||
function MeshBoneCacheManager()
|
||
{
|
||
this.is_ready = false;
|
||
this.bone_cache_table = null;
|
||
this.bone_cache_data_ready = null;
|
||
this.bone_cache_table = [];
|
||
this.bone_cache_data_ready = [];
|
||
};
|
||
|
||
MeshBoneCacheManager.prototype.init = function(start_time_in, end_time_in)
|
||
{
|
||
this.start_time = start_time_in;
|
||
this.end_time = end_time_in;
|
||
|
||
var num_frames = this.end_time - this.start_time + 1;
|
||
this.bone_cache_table = [];
|
||
|
||
this.bone_cache_data_ready = [];
|
||
for(var i = 0; i < num_frames; i++) {
|
||
this.bone_cache_table.push([]);
|
||
this.bone_cache_data_ready.push(false);
|
||
}
|
||
|
||
this.is_ready = false;
|
||
};
|
||
|
||
MeshBoneCacheManager.prototype.getStartTime = function()
|
||
{
|
||
return this.start_time;
|
||
};
|
||
|
||
MeshBoneCacheManager.prototype.getEndime = function()
|
||
{
|
||
return this.end_time;
|
||
};
|
||
|
||
MeshBoneCacheManager.prototype.getIndexByTime = function(time_in)
|
||
{
|
||
var retval = time_in - this.start_time;
|
||
retval = Utils.clamp(retval, 0, (this.bone_cache_table.length) - 1);
|
||
|
||
return retval;
|
||
};
|
||
|
||
MeshBoneCacheManager.prototype.retrieveValuesAtTime = function(time_in, bone_map)
|
||
{
|
||
var base_time = this.getIndexByTime(Math.floor(time_in));
|
||
var end_time = this.getIndexByTime(Math.ceil(time_in));
|
||
|
||
var ratio = (time_in - Math.floor(time_in));
|
||
|
||
if(this.bone_cache_data_ready.length == 0) {
|
||
return;
|
||
}
|
||
|
||
if((this.bone_cache_data_ready[base_time] == false)
|
||
|| ((this.bone_cache_data_ready[end_time] == false)))
|
||
{
|
||
return;
|
||
}
|
||
|
||
var base_cache = this.bone_cache_table[base_time];
|
||
var end_cache = this.bone_cache_table[end_time];
|
||
|
||
for(var i = 0, l = base_cache.length; i < l; i++) {
|
||
var base_data = base_cache[i];
|
||
var end_data = end_cache[i];
|
||
var cur_key = base_data.getKey();
|
||
|
||
var final_world_start_pt = Utils.vecInterp(base_data.getWorldStartPt(), end_data.getWorldStartPt(), ratio);
|
||
|
||
var final_world_end_pt = Utils.vecInterp(base_data.getWorldEndPt(), end_data.getWorldEndPt(), ratio);
|
||
|
||
/*
|
||
Vector3 final_world_start_pt = ((1.0f - ratio) * base_data.getWorldStartPt()) +
|
||
(ratio * end_data.getWorldStartPt());
|
||
|
||
Vector3 final_world_end_pt = ((1.0f - ratio) * base_data.getWorldEndPt()) +
|
||
(ratio * end_data.getWorldEndPt());
|
||
*/
|
||
|
||
bone_map[cur_key].setWorldStartPt(final_world_start_pt);
|
||
bone_map[cur_key].setWorldEndPt(final_world_end_pt);
|
||
}
|
||
};
|
||
|
||
MeshBoneCacheManager.prototype.allReady = function()
|
||
{
|
||
if(this.is_ready) {
|
||
return true;
|
||
}
|
||
else {
|
||
var num_frames = this.end_time - this.start_time + 1;
|
||
var ready_cnt = 0;
|
||
for(var i = 0; i < this.bone_cache_data_ready.size(); i++) {
|
||
if(this.bone_cache_data_ready[i]) {
|
||
ready_cnt++;
|
||
}
|
||
}
|
||
|
||
if(ready_cnt == num_frames) {
|
||
this.is_ready = true;
|
||
}
|
||
}
|
||
|
||
return this.is_ready;
|
||
};
|
||
|
||
MeshBoneCacheManager.prototype.makeAllReady = function()
|
||
{
|
||
for(var i = 0; i < this.bone_cache_data_ready.length; i++) {
|
||
this.bone_cache_data_ready[i] = true;
|
||
}
|
||
};
|
||
|
||
// MeshDisplacementCacheManager
|
||
function MeshDisplacementCacheManager()
|
||
{
|
||
this.is_ready = false;
|
||
this.displacement_cache_table = null;
|
||
this.displacement_cache_data_ready = null;
|
||
this.displacement_cache_table = [];
|
||
this.displacement_cache_data_ready = [];
|
||
};
|
||
|
||
MeshDisplacementCacheManager.prototype.init = function(start_time_in, end_time_in)
|
||
{
|
||
this.start_time = start_time_in;
|
||
this.end_time = end_time_in;
|
||
|
||
var num_frames = this.end_time - this.start_time + 1;
|
||
this.displacement_cache_table = [];
|
||
|
||
this.displacement_cache_data_ready = [];
|
||
for(var i = 0; i < num_frames; i++) {
|
||
this.displacement_cache_table.push([]);
|
||
this.displacement_cache_data_ready.push(false);
|
||
}
|
||
|
||
this.is_ready = false;
|
||
};
|
||
|
||
MeshDisplacementCacheManager.prototype.getStartTime = function()
|
||
{
|
||
return this.start_time;
|
||
};
|
||
|
||
MeshDisplacementCacheManager.prototype.getEndime = function()
|
||
{
|
||
return this.end_time;
|
||
};
|
||
|
||
MeshDisplacementCacheManager.prototype.getIndexByTime = function(time_in)
|
||
{
|
||
var retval = time_in - this.start_time;
|
||
retval = Utils.clamp(retval, 0, (this.displacement_cache_table.length) - 1);
|
||
|
||
return retval;
|
||
};
|
||
|
||
MeshDisplacementCacheManager.prototype.retrieveValuesAtTime = function(time_in, regions_map)
|
||
{
|
||
var base_time = this.getIndexByTime(Math.floor(time_in));
|
||
var end_time = this.getIndexByTime(Math.ceil(time_in));
|
||
|
||
var ratio = (time_in - Math.floor(time_in));
|
||
|
||
if(this.displacement_cache_data_ready.length == 0) {
|
||
return;
|
||
}
|
||
|
||
if((this.displacement_cache_data_ready[base_time] == false)
|
||
|| (this.displacement_cache_data_ready[end_time] == false))
|
||
{
|
||
return;
|
||
}
|
||
|
||
var base_cache = this.displacement_cache_table[base_time];
|
||
var end_cache = this.displacement_cache_table[end_time];
|
||
|
||
for(var i = 0; i < base_cache.length; i++) {
|
||
var base_data = base_cache[i];
|
||
var end_data = end_cache[i];
|
||
var cur_key = base_data.getKey();
|
||
|
||
var set_region = regions_map[cur_key];
|
||
|
||
if(set_region.getUseLocalDisplacements()) {
|
||
var displacements =
|
||
set_region.local_displacements;
|
||
if((base_data.getLocalDisplacements().length == displacements.length)
|
||
&& (end_data.getLocalDisplacements().length == displacements.length))
|
||
{
|
||
for(var j = 0; j < displacements.length; j++) {
|
||
var interp_val = Utils.vec2Interp(base_data.getLocalDisplacements()[j],
|
||
end_data.getLocalDisplacements()[j],
|
||
ratio);
|
||
|
||
/*
|
||
Vector2 interp_val =
|
||
((1.0f - ratio) * base_data.getLocalDisplacements().get(j)) +
|
||
(ratio * end_data.getLocalDisplacements().get(j));
|
||
*/
|
||
|
||
displacements[j] = interp_val;
|
||
}
|
||
}
|
||
else {
|
||
for(var j = 0; j < displacements.length; j++) {
|
||
displacements[j] = vec2.create();
|
||
}
|
||
}
|
||
}
|
||
|
||
if(set_region.getUsePostDisplacements()) {
|
||
var displacements =
|
||
set_region.post_displacements;
|
||
if((base_data.getPostDisplacements().length == displacements.length)
|
||
&& (end_data.getPostDisplacements().length == displacements.length))
|
||
{
|
||
|
||
for(var j = 0; j < displacements.length; j++) {
|
||
var interp_val = Utils.vec2Interp(base_data.getPostDisplacements()[j],
|
||
end_data.getPostDisplacements()[j],
|
||
ratio);
|
||
|
||
/*
|
||
Vector2 interp_val =
|
||
((1.0f - ratio) * base_data.getPostDisplacements()[j]) +
|
||
(ratio * end_data.getPostDisplacements()[j]);
|
||
*/
|
||
displacements[j] = interp_val;
|
||
}
|
||
}
|
||
else {
|
||
for(var j = 0; j < displacements.length; j++) {
|
||
displacements.set[j] = vec2.create();
|
||
}
|
||
}
|
||
}
|
||
}
|
||
};
|
||
|
||
MeshDisplacementCacheManager.prototype.allReady = function()
|
||
{
|
||
if(this.is_ready) {
|
||
return true;
|
||
}
|
||
else {
|
||
var num_frames = this.end_time - this.start_time + 1;
|
||
var ready_cnt = 0;
|
||
for(var i = 0; i < this.displacement_cache_data_ready.length; i++) {
|
||
if(this.displacement_cache_data_ready[i]) {
|
||
ready_cnt++;
|
||
}
|
||
}
|
||
|
||
if(ready_cnt == num_frames) {
|
||
this.is_ready = true;
|
||
}
|
||
}
|
||
|
||
return this.is_ready;
|
||
};
|
||
|
||
MeshDisplacementCacheManager.prototype.makeAllReady = function()
|
||
{
|
||
for(var i = 0; i < this.displacement_cache_data_ready.length; i++) {
|
||
this.displacement_cache_data_ready[i] = true;
|
||
}
|
||
};
|
||
|
||
// MeshUVWarpCacheManager
|
||
function MeshUVWarpCacheManager()
|
||
{
|
||
this.is_ready = false;
|
||
this.uv_cache_table = null;
|
||
this.uv_cache_data_ready = null;
|
||
this.uv_cache_table = [];
|
||
this.uv_cache_data_ready = [];
|
||
};
|
||
|
||
MeshUVWarpCacheManager.prototype.init = function(start_time_in, end_time_in)
|
||
{
|
||
this.start_time = start_time_in;
|
||
this.end_time = end_time_in;
|
||
|
||
var num_frames = this.end_time - this.start_time + 1;
|
||
this.uv_cache_table = [];
|
||
|
||
this.uv_cache_data_ready = [];
|
||
for(var i = 0; i < num_frames; i++) {
|
||
this.uv_cache_table.push([]);
|
||
this.uv_cache_data_ready.push(false);
|
||
}
|
||
|
||
this.is_ready = false;
|
||
};
|
||
|
||
MeshUVWarpCacheManager.prototype.getStartTime = function()
|
||
{
|
||
return this.start_time;
|
||
};
|
||
|
||
MeshUVWarpCacheManager.prototype.getEndime = function()
|
||
{
|
||
return this.end_time;
|
||
};
|
||
|
||
MeshUVWarpCacheManager.prototype.getIndexByTime = function(time_in)
|
||
{
|
||
var retval = time_in - this.start_time;
|
||
retval = Utils.clamp(retval, 0, (this.uv_cache_table.length) - 1);
|
||
|
||
return retval;
|
||
};
|
||
|
||
MeshUVWarpCacheManager.prototype.retrieveValuesAtTime = function(time_in, regions_map)
|
||
{
|
||
var base_time = this.getIndexByTime(Math.floor(time_in));
|
||
var end_time = this.getIndexByTime(Math.ceil(time_in));
|
||
|
||
var ratio = (time_in - Math.floor(time_in));
|
||
|
||
if(this.uv_cache_data_ready.length == 0) {
|
||
return;
|
||
}
|
||
|
||
if((this.uv_cache_data_ready[base_time] == false)
|
||
|| (this.uv_cache_data_ready[end_time] == false))
|
||
{
|
||
return;
|
||
}
|
||
|
||
var base_cache = this.uv_cache_table[base_time];
|
||
var end_cache = this.uv_cache_table[end_time];
|
||
|
||
for(var i = 0; i < base_cache.length; i++) {
|
||
var base_data = base_cache[i];
|
||
var end_data = end_cache[i];
|
||
var cur_key = base_data.getKey();
|
||
|
||
var set_region = regions_map[cur_key];
|
||
if(set_region.getUseUvWarp()) {
|
||
var final_local_offset = base_data.getUvWarpLocalOffset();
|
||
|
||
|
||
var final_global_offset = base_data.getUvWarpGlobalOffset();
|
||
|
||
var final_scale = base_data.getUvWarpScale();
|
||
/*
|
||
Vector2 final_local_offset = ((1.0f - ratio) * base_data.getUvWarpLocalOffset()) +
|
||
(ratio * end_data.getUvWarpLocalOffset());
|
||
|
||
Vector2 final_global_offset = ((1.0f - ratio) * base_data.getUvWarpGlobalOffset()) +
|
||
(ratio * end_data.getUvWarpGlobalOffset());
|
||
|
||
Vector2 final_scale = ((1.0f - ratio) * base_data.getUvWarpScale()) +
|
||
(ratio * end_data.getUvWarpScale());
|
||
|
||
*/
|
||
|
||
|
||
set_region.setUvWarpLocalOffset(final_local_offset);
|
||
set_region.setUvWarpGlobalOffset(final_global_offset);
|
||
set_region.setUvWarpScale(final_scale);
|
||
}
|
||
}
|
||
};
|
||
|
||
MeshUVWarpCacheManager.prototype.allReady = function()
|
||
{
|
||
if(this.is_ready) {
|
||
return true;
|
||
}
|
||
else {
|
||
var num_frames = this.end_time - this.start_time + 1;
|
||
var ready_cnt = 0;
|
||
for(var i = 0; i < this.uv_cache_data_ready.length; i++) {
|
||
if(uv_cache_data_ready[i]) {
|
||
ready_cnt++;
|
||
}
|
||
}
|
||
|
||
if(ready_cnt == num_frames) {
|
||
this.is_ready = true;
|
||
}
|
||
}
|
||
|
||
return this.is_ready;
|
||
};
|
||
|
||
MeshUVWarpCacheManager.prototype.makeAllReady = function()
|
||
{
|
||
for(var i = 0; i < this.uv_cache_data_ready.length; i++) {
|
||
this.uv_cache_data_ready[i] = true;
|
||
}
|
||
};
|
||
|
||
// CreatureModuleUtils
|
||
var CreatureModuleUtils = {};
|
||
|
||
CreatureModuleUtils.GetAllAnimationNames = function(json_data)
|
||
{
|
||
var json_animations = json_data["animation"];
|
||
var keys = [];
|
||
for (var name in json_animations)
|
||
{
|
||
keys.push(name);
|
||
}
|
||
|
||
return keys;
|
||
};
|
||
|
||
CreatureModuleUtils.getFloatArray = function(raw_data)
|
||
{
|
||
return raw_data;
|
||
};
|
||
|
||
CreatureModuleUtils.getIntArray = function(raw_data)
|
||
{
|
||
return raw_data;
|
||
};
|
||
|
||
|
||
CreatureModuleUtils.ReadPointsArray2DJSON = function(data, key)
|
||
{
|
||
var raw_array = CreatureModuleUtils.getFloatArray(data[key]);
|
||
var ret_list = [];
|
||
var num_points = raw_array.length / 2;
|
||
for (var i = 0; i < num_points; i++)
|
||
{
|
||
var cur_index = i * 2;
|
||
ret_list.push(
|
||
vec2.fromValues(raw_array[0 + cur_index], raw_array[1 + cur_index]));
|
||
}
|
||
|
||
return ret_list;
|
||
};
|
||
|
||
CreatureModuleUtils.ReadFloatArray3DJSON = function(data, key)
|
||
{
|
||
var raw_array = CreatureModuleUtils.getFloatArray(data[key]);
|
||
|
||
var ret_list = [];
|
||
var num_points = raw_array.length / 2;
|
||
for (var i = 0; i < num_points; i++)
|
||
{
|
||
var cur_index = i * 2;
|
||
ret_list.push(raw_array[0 + cur_index]);
|
||
ret_list.push(raw_array[1 + cur_index]);
|
||
ret_list.push(0);
|
||
}
|
||
|
||
return ret_list;
|
||
};
|
||
|
||
CreatureModuleUtils.ReadBoolJSON = function(data, key)
|
||
{
|
||
var val = data[key];
|
||
return val;
|
||
};
|
||
|
||
CreatureModuleUtils.ReadFloatArrayJSON = function(data, key)
|
||
{
|
||
/*
|
||
var raw_array = getFloatArray(data.get[key]);
|
||
var ret_list = [];
|
||
for(var i = 0; i < raw_array.length; i++)
|
||
{
|
||
ret_list.push(raw_array[i]);
|
||
}
|
||
|
||
return ret_list;
|
||
*/
|
||
|
||
return data[key];
|
||
};
|
||
|
||
CreatureModuleUtils.ReadIntArrayJSON = function(data, key)
|
||
{
|
||
/*
|
||
int[] raw_array = getIntArray (data.get(key));
|
||
java.util.Vector<Integer> ret_list = new java.util.Vector<Integer>();
|
||
|
||
for(int i = 0; i < raw_array.length; i++) {
|
||
ret_list.add(raw_array[i]);
|
||
}
|
||
|
||
return ret_list;
|
||
*/
|
||
return data[key];
|
||
};
|
||
|
||
CreatureModuleUtils.ReadMatrixJSON = function(data, key)
|
||
{
|
||
var raw_array = CreatureModuleUtils.getFloatArray(data[key]);
|
||
var retMat = mat4.create();
|
||
for(var i = 0; i < 16; i++)
|
||
{
|
||
retMat[i] = raw_array[i];
|
||
}
|
||
|
||
return retMat;
|
||
};
|
||
|
||
CreatureModuleUtils.ReadVector2JSON = function(data, key)
|
||
{
|
||
var raw_array = CreatureModuleUtils.getFloatArray(data[key]);
|
||
return vec2.fromValues(raw_array[0], raw_array[1]);
|
||
};
|
||
|
||
|
||
CreatureModuleUtils.ReadVector3JSON = function(data, key)
|
||
{
|
||
var raw_array = CreatureModuleUtils.getFloatArray(data[key]);
|
||
return vec3.fromValues(raw_array[0], raw_array[1], 0);
|
||
};
|
||
|
||
CreatureModuleUtils.CreateBones = function(json_obj, key) {
|
||
var root_bone = null;
|
||
var base_obj = json_obj[key];
|
||
//var bone_data = new HashMap<Integer, Tuple<MeshBone, Vector<Integer>>>();
|
||
var bone_data = {};
|
||
var child_set = {};
|
||
|
||
// layout bones
|
||
for (var cur_name in base_obj)
|
||
{
|
||
|
||
var cur_node = base_obj[cur_name];
|
||
|
||
var cur_id = cur_node["id"]; //GetJSONNodeFromKey(*cur_node, "id")->value.toNumber();
|
||
var cur_parent_mat = CreatureModuleUtils.ReadMatrixJSON(cur_node, "restParentMat");
|
||
|
||
var cur_local_rest_start_pt = CreatureModuleUtils.ReadVector3JSON(cur_node, "localRestStartPt");
|
||
var cur_local_rest_end_pt = CreatureModuleUtils.ReadVector3JSON(cur_node, "localRestEndPt");
|
||
var cur_children_ids = CreatureModuleUtils.ReadIntArrayJSON(cur_node, "children");
|
||
|
||
var new_bone = new MeshBone(cur_name,
|
||
vec3.create(),
|
||
vec3.create(),
|
||
cur_parent_mat);
|
||
new_bone.local_rest_start_pt = cur_local_rest_start_pt;
|
||
new_bone.local_rest_end_pt = cur_local_rest_end_pt;
|
||
new_bone.calcRestData();
|
||
new_bone.setTagId(cur_id);
|
||
|
||
bone_data[cur_id] = {first:new_bone, second:cur_children_ids};
|
||
|
||
for(var i = 0; i < cur_children_ids.length; i++){
|
||
var cur_child_id = cur_children_ids[i];
|
||
child_set[cur_child_id] = cur_child_id;
|
||
}
|
||
}
|
||
|
||
// Find root
|
||
for(var cur_id in bone_data)
|
||
{
|
||
if( (cur_id in child_set) == false) {
|
||
// not a child, so is root
|
||
var cur_data = bone_data[cur_id];
|
||
root_bone = cur_data.first;
|
||
break;
|
||
}
|
||
}
|
||
|
||
// construct hierarchy
|
||
for(var cur_id in bone_data)
|
||
{
|
||
var cur_data = bone_data[cur_id];
|
||
|
||
var cur_bone = cur_data.first;
|
||
var children_ids = cur_data.second;
|
||
for(var i = 0; i < children_ids.length; i++)
|
||
{
|
||
var cur_child_id = children_ids[i];
|
||
var child_bone = bone_data[cur_child_id].first;
|
||
cur_bone.addChild(child_bone);
|
||
}
|
||
|
||
}
|
||
|
||
|
||
return root_bone;
|
||
};
|
||
|
||
CreatureModuleUtils.CreateRegions = function(json_obj, key, indices_in, rest_pts_in, uvs_in)
|
||
{
|
||
var ret_regions = [];
|
||
var base_obj = json_obj[key];
|
||
|
||
for (var cur_name in base_obj)
|
||
{
|
||
var cur_node = base_obj[cur_name];
|
||
|
||
var cur_id = cur_node["id"]; //(int)GetJSONNodeFromKey(*cur_node, "id")->value.toNumber();
|
||
var cur_start_pt_index = cur_node["start_pt_index"]; //(int)GetJSONNodeFromKey(*cur_node, "start_pt_index")->value.toNumber();
|
||
var cur_end_pt_index = cur_node["end_pt_index"]; //(int)GetJSONNodeFromKey(*cur_node, "end_pt_index")->value.toNumber();
|
||
var cur_start_index = cur_node["start_index"]; //(int)GetJSONNodeFromKey(*cur_node, "start_index")->value.toNumber();
|
||
var cur_end_index = cur_node["end_index"]; //(int)GetJSONNodeFromKey(*cur_node, "end_index")->value.toNumber();
|
||
|
||
var new_region = new MeshRenderRegion(indices_in,
|
||
rest_pts_in,
|
||
uvs_in,
|
||
cur_start_pt_index,
|
||
cur_end_pt_index,
|
||
cur_start_index,
|
||
cur_end_index);
|
||
|
||
new_region.setName(cur_name);
|
||
new_region.setTagId(cur_id);
|
||
|
||
// Read in weights
|
||
var weight_map =
|
||
new_region.normal_weight_map;
|
||
var weight_obj = cur_node["weights"];
|
||
|
||
for (var w_key in weight_obj)
|
||
{
|
||
var w_node = weight_obj[w_key];
|
||
var values = CreatureModuleUtils.ReadFloatArrayJSON(weight_obj, w_key);
|
||
weight_map[w_key] = values;
|
||
}
|
||
|
||
ret_regions.push(new_region);
|
||
}
|
||
|
||
return ret_regions;
|
||
};
|
||
|
||
CreatureModuleUtils.GetStartEndTimes = function(json_obj, key)
|
||
{
|
||
var start_time = 0;
|
||
var end_time = 0;
|
||
var first = true;
|
||
var base_obj = json_obj[key];
|
||
|
||
for (var cur_val in base_obj)
|
||
{
|
||
var cur_node = base_obj[cur_val];
|
||
var cur_num = parseInt(cur_val);
|
||
if(first) {
|
||
start_time = cur_num;
|
||
end_time = cur_num;
|
||
first = false;
|
||
}
|
||
else {
|
||
if(cur_num > end_time) {
|
||
end_time = cur_num;
|
||
}
|
||
|
||
if(cur_num < start_time) {
|
||
start_time = cur_num;
|
||
}
|
||
}
|
||
}
|
||
|
||
return {first:start_time, second:end_time};
|
||
};
|
||
|
||
CreatureModuleUtils.FillBoneCache = function(json_obj, key, start_time, end_time, cache_manager)
|
||
{
|
||
var base_obj = json_obj[key];
|
||
|
||
cache_manager.init(start_time, end_time);
|
||
|
||
for (var cur_time in base_obj)
|
||
{
|
||
var cur_node = base_obj[cur_time];
|
||
|
||
cache_list = [];
|
||
|
||
for (var cur_name in cur_node)
|
||
{
|
||
var bone_node = cur_node[cur_name];
|
||
|
||
var cur_start_pt = CreatureModuleUtils.ReadVector3JSON(bone_node, "start_pt"); //ReadJSONVec4_2(*bone_node, "start_pt");
|
||
var cur_end_pt = CreatureModuleUtils.ReadVector3JSON(bone_node, "end_pt"); //ReadJSONVec4_2(*bone_node, "end_pt");
|
||
|
||
var cache_data = new MeshBoneCache(cur_name);
|
||
cache_data.setWorldStartPt(cur_start_pt);
|
||
cache_data.setWorldEndPt(cur_end_pt);
|
||
|
||
cache_list.push(cache_data);
|
||
}
|
||
|
||
var set_index = cache_manager.getIndexByTime(cur_time);
|
||
cache_manager.bone_cache_table[set_index] = cache_list;
|
||
}
|
||
|
||
cache_manager.makeAllReady();
|
||
};
|
||
|
||
CreatureModuleUtils.FillDeformationCache = function(json_obj, key, start_time, end_time, cache_manager)
|
||
{
|
||
var base_obj = json_obj[key];
|
||
|
||
cache_manager.init(start_time, end_time);
|
||
|
||
for (var cur_time in base_obj)
|
||
{
|
||
var cur_node = base_obj[cur_time];
|
||
|
||
var cache_list = [];
|
||
|
||
for (var cur_name in cur_node)
|
||
{
|
||
var mesh_node = cur_node[cur_name];
|
||
|
||
var cache_data = new MeshDisplacementCache(cur_name);
|
||
|
||
var use_local_displacement = CreatureModuleUtils.ReadBoolJSON(mesh_node, "use_local_displacements"); //GetJSONNodeFromKey(*mesh_node, "use_local_displacements")->value.toBool();
|
||
var use_post_displacement = CreatureModuleUtils.ReadBoolJSON(mesh_node, "use_post_displacements"); //GetJSONNodeFromKey(*mesh_node, "use_post_displacements")->value.toBool();
|
||
|
||
if(use_local_displacement == true) {
|
||
var read_pts = CreatureModuleUtils.ReadPointsArray2DJSON(mesh_node, "local_displacements"); //ReadJSONPoints2DVector(*mesh_node, "local_displacements");
|
||
cache_data.setLocalDisplacements(read_pts);
|
||
}
|
||
|
||
if(use_post_displacement == true) {
|
||
var read_pts = CreatureModuleUtils.ReadPointsArray2DJSON(mesh_node, "post_displacements"); //ReadJSONPoints2DVector(*mesh_node, "post_displacements");
|
||
cache_data.setPostDisplacements(read_pts);
|
||
}
|
||
|
||
cache_list.push(cache_data);
|
||
}
|
||
|
||
var set_index = cache_manager.getIndexByTime(cur_time);
|
||
cache_manager.displacement_cache_table[set_index] = cache_list;
|
||
}
|
||
|
||
cache_manager.makeAllReady();
|
||
};
|
||
|
||
CreatureModuleUtils.FillUVSwapCache = function(json_obj, key, start_time, end_time, cache_manager)
|
||
{
|
||
var base_obj = json_obj[key];
|
||
|
||
cache_manager.init(start_time, end_time);
|
||
|
||
for (var cur_time in base_obj)
|
||
{
|
||
var cur_node = base_obj[cur_time];
|
||
|
||
var cache_list = [];
|
||
|
||
for (var cur_name in cur_node)
|
||
{
|
||
var uv_node = cur_node[cur_name];
|
||
|
||
var cache_data = new MeshUVWarpCache(cur_name);
|
||
var use_uv = CreatureModuleUtils.ReadBoolJSON(uv_node, "enabled"); //GetJSONNodeFromKey(*uv_node, "enabled")->value.toBool();
|
||
cache_data.setEnabled(use_uv);
|
||
if(use_uv == true) {
|
||
var local_offset = CreatureModuleUtils.ReadVector2JSON(uv_node, "local_offset"); //ReadJSONVec2(*uv_node, "local_offset");
|
||
var global_offset = CreatureModuleUtils.ReadVector2JSON(uv_node, "global_offset"); //ReadJSONVec2(*uv_node, "global_offset");
|
||
var scale = CreatureModuleUtils.ReadVector2JSON(uv_node, "scale"); //ReadJSONVec2(*uv_node, "scale");
|
||
cache_data.setUvWarpLocalOffset(local_offset);
|
||
cache_data.setUvWarpGlobalOffset(global_offset);
|
||
cache_data.setUvWarpScale(scale);
|
||
}
|
||
|
||
cache_list.push(cache_data);
|
||
}
|
||
|
||
var set_index = cache_manager.getIndexByTime(cur_time);
|
||
cache_manager.uv_cache_table[set_index] = cache_list;
|
||
}
|
||
|
||
cache_manager.makeAllReady();
|
||
};
|
||
|
||
// Creature
|
||
function Creature(load_data)
|
||
{
|
||
this.total_num_pts = 0;
|
||
this.total_num_indices = 0;
|
||
this.global_indices = null;
|
||
this.global_pts = null;
|
||
this.global_uvs = null;
|
||
this.render_pts = null;
|
||
this.render_colours = null;
|
||
this.render_composition = null;
|
||
this.boundary_indices = [];
|
||
this.boundary_min = vec2.create();
|
||
this.boundary_max = vec2.create();
|
||
|
||
this.LoadFromData(load_data);
|
||
};
|
||
|
||
// Fills entire mesh with (r,g,b,a) colours
|
||
Creature.prototype.FillRenderColours = function(r, g, b, a)
|
||
{
|
||
for(var i = 0; i < this.total_num_pts; i++)
|
||
{
|
||
var cur_colour_index = i * 4;
|
||
this.render_colours[0 + cur_colour_index] = r;
|
||
this.render_colours[1 + cur_colour_index] = g;
|
||
this.render_colours[2 + cur_colour_index] = b;
|
||
this.render_colours[3 + cur_colour_index] = a;
|
||
}
|
||
};
|
||
|
||
// Compute boundary indices
|
||
|
||
Creature.prototype.ComputeBoundaryIndices = function()
|
||
{
|
||
var freq_table = {};
|
||
for(var i = 0; i < this.total_num_pts; i++)
|
||
{
|
||
freq_table[i] = 0;
|
||
}
|
||
|
||
var cur_regions = this.render_composition.getRegions();
|
||
for(var i = 0; i < this.global_indices.length; i++)
|
||
{
|
||
var cur_idx = this.global_indices[i];
|
||
var is_found = false;
|
||
for(var j = 0; j < cur_regions.length; j++)
|
||
{
|
||
var cur_region = cur_regions[j];
|
||
var cur_start_index = cur_region.getStartPtIndex();
|
||
var cur_end_index = cur_region.getEndPtIndex();
|
||
|
||
if(cur_idx >= cur_start_index && cur_idx <= cur_end_index)
|
||
{
|
||
is_found = true;
|
||
break;
|
||
}
|
||
}
|
||
|
||
|
||
if(is_found)
|
||
{
|
||
freq_table[cur_idx]++;
|
||
}
|
||
}
|
||
|
||
// now find the boundary indices who have <= 5 referenced triangles
|
||
this.boundary_indices = [];
|
||
for(var i = 0; i < this.total_num_pts; i++)
|
||
{
|
||
if(freq_table[i] <=5)
|
||
{
|
||
this.boundary_indices.push(i);
|
||
}
|
||
}
|
||
};
|
||
|
||
// Compute min and max bounds of the animated mesh
|
||
Creature.prototype.ComputeBoundaryMinMax = function()
|
||
{
|
||
|
||
if(this.boundary_indices.length <= 0)
|
||
{
|
||
this.ComputeBoundaryIndices();
|
||
}
|
||
|
||
|
||
var firstIdx = this.boundary_indices[0] * 3;
|
||
var minPt = vec2.fromValues(this.render_pts[firstIdx + 0], this.render_pts[firstIdx + 1]);
|
||
var maxPt = vec2.fromValues(minPt[0], minPt[1]);
|
||
|
||
|
||
for(var i = 0; i < this.boundary_indices.length; i++)
|
||
{
|
||
var ref_idx = this.boundary_indices[i] * 3;
|
||
var ref_x = this.render_pts[ref_idx];
|
||
var ref_y = this.render_pts[ref_idx + 1];
|
||
|
||
if(minPt[0] > ref_x)
|
||
{
|
||
minPt[0] = ref_x;
|
||
}
|
||
|
||
if(minPt[1] > ref_y)
|
||
{
|
||
minPt[1] = ref_y;
|
||
}
|
||
|
||
if(maxPt[0] < ref_x)
|
||
{
|
||
maxPt[0] = ref_x;
|
||
}
|
||
|
||
if(maxPt[1] < ref_y)
|
||
{
|
||
maxPt[1] = ref_y;
|
||
}
|
||
}
|
||
|
||
this.boundary_min = minPt;
|
||
this.boundary_max = maxPt;
|
||
};
|
||
|
||
|
||
// Load data
|
||
Creature.prototype.LoadFromData = function(load_data)
|
||
{
|
||
// Load points and topology
|
||
var json_mesh = load_data["mesh"];
|
||
|
||
this.global_pts = CreatureModuleUtils.ReadFloatArray3DJSON(json_mesh, "points");
|
||
this.total_num_pts = this.global_pts.length / 3;
|
||
|
||
this.global_indices = CreatureModuleUtils.ReadIntArrayJSON (json_mesh, "indices");
|
||
this.total_num_indices = this.global_indices.length;
|
||
|
||
this.global_uvs = CreatureModuleUtils.ReadFloatArrayJSON (json_mesh, "uvs");
|
||
|
||
|
||
this.render_colours = [];
|
||
for(var i = 0; i < this.total_num_pts * 4; i++)
|
||
{
|
||
this.render_colours.push(0);
|
||
}
|
||
this.FillRenderColours(1, 1, 1, 1);
|
||
|
||
this.render_pts = [];
|
||
|
||
// Load bones
|
||
var root_bone = CreatureModuleUtils.CreateBones(load_data, "skeleton");
|
||
|
||
|
||
// Load regions
|
||
var regions = CreatureModuleUtils.CreateRegions(json_mesh,
|
||
"regions",
|
||
this.global_indices,
|
||
this.global_pts,
|
||
this.global_uvs);
|
||
|
||
// Add into composition
|
||
this.render_composition = new MeshRenderBoneComposition();
|
||
this.render_composition.setRootBone(root_bone);
|
||
this.render_composition.getRootBone().computeRestParentTransforms();
|
||
|
||
for(var i = 0; i < regions.length; i++) {
|
||
var cur_region = regions[i];
|
||
cur_region.setMainBoneKey(root_bone.getKey());
|
||
cur_region.determineMainBone(root_bone);
|
||
this.render_composition.addRegion(cur_region);
|
||
}
|
||
|
||
this.render_composition.initBoneMap();
|
||
this.render_composition.initRegionsMap();
|
||
|
||
for(var i = 0; i < regions.length; i++) {
|
||
var cur_region = regions[i];
|
||
cur_region.initFastNormalWeightMap(this.render_composition.bones_map);
|
||
}
|
||
|
||
this.render_composition.resetToWorldRestPts();
|
||
};
|
||
|
||
// CreatureAnimation
|
||
function CreatureAnimation(load_data, name_in)
|
||
{
|
||
this.name = name_in;
|
||
this.bones_cache = new MeshBoneCacheManager();
|
||
this.displacement_cache = new MeshDisplacementCacheManager();
|
||
this.uv_warp_cache = new MeshUVWarpCacheManager();
|
||
this.cache_pts = [];
|
||
this.fill_cache_pts = [];
|
||
|
||
this.LoadFromData(name_in, load_data);
|
||
};
|
||
|
||
CreatureAnimation.prototype.LoadFromData = function(name_in, load_data)
|
||
{
|
||
var json_anim_base = load_data["animation"];
|
||
var json_clip = json_anim_base[name_in];
|
||
|
||
var start_end_times = CreatureModuleUtils.GetStartEndTimes(json_clip, "bones");
|
||
this.start_time = start_end_times.first;
|
||
this.end_time = start_end_times.second;
|
||
|
||
// bone animation
|
||
CreatureModuleUtils.FillBoneCache(json_clip,
|
||
"bones",
|
||
this.start_time,
|
||
this.end_time,
|
||
this.bones_cache);
|
||
|
||
// mesh deformation animation
|
||
CreatureModuleUtils.FillDeformationCache(json_clip,
|
||
"meshes",
|
||
this.start_time,
|
||
this.end_time,
|
||
this.displacement_cache);
|
||
|
||
// uv swapping animation
|
||
CreatureModuleUtils.FillUVSwapCache(json_clip,
|
||
"uv_swaps",
|
||
this.start_time,
|
||
this.end_time,
|
||
this.uv_warp_cache);
|
||
};
|
||
|
||
CreatureAnimation.prototype.getIndexByTime = function(time_in)
|
||
{
|
||
var retval = time_in - this.start_time;
|
||
retval = Utils.clamp(retval, 0, (this.cache_pts.length) - 1);
|
||
|
||
return retval;
|
||
};
|
||
|
||
CreatureAnimation.prototype.verifyFillCache = function()
|
||
{
|
||
if(this.fill_cache_pts.length == (this.end_time - this.start_time + 1))
|
||
{
|
||
// ready to switch over
|
||
this.cache_pts = this.fill_cache_pts;
|
||
}
|
||
};
|
||
|
||
CreatureAnimation.prototype.poseFromCachePts = function(time_in, target_pts, num_pts)
|
||
{
|
||
var cur_floor_time = this.getIndexByTime(Math.floor(time_in));
|
||
var cur_ceil_time = this.getIndexByTime(Math.ceil(time_in));
|
||
var cur_ratio = time_in - Math.floor(time_in);
|
||
|
||
var set_pt = target_pts;
|
||
var floor_pts = this.cache_pts[cur_floor_time];
|
||
var ceil_pts = this.cache_pts[cur_ceil_time];
|
||
|
||
var set_idx = 0;
|
||
var floor_idx = 0;
|
||
var ceil_idx = 0;
|
||
|
||
for(var i = 0; i < num_pts; i++)
|
||
{
|
||
set_pt[set_idx + 0] = ((1.0 - cur_ratio) * floor_pts[floor_idx + 0]) + (cur_ratio * ceil_pts[ceil_idx + 0]);
|
||
set_pt[set_idx + 1] = ((1.0 - cur_ratio) * floor_pts[floor_idx + 1]) + (cur_ratio * ceil_pts[ceil_idx + 1]);
|
||
set_pt[set_idx + 2] = ((1.0 - cur_ratio) * floor_pts[floor_idx + 2]) + (cur_ratio * ceil_pts[ceil_idx + 2]);
|
||
|
||
set_idx += 3;
|
||
floor_idx += 3;
|
||
ceil_idx += 3;
|
||
}
|
||
};
|
||
|
||
// CreatureManager
|
||
function CreatureManager(target_creature_in)
|
||
{
|
||
this.target_creature = target_creature_in;
|
||
this.is_playing = false;
|
||
this.run_time = 0;
|
||
this.time_scale = 30.0;
|
||
this.blending_factor = 0;
|
||
this.should_loop = true;
|
||
this.use_custom_time_range = false;
|
||
this.custom_start_time = 0;
|
||
this.custom_end_time = 0;
|
||
this.animations = {};
|
||
this.bones_override_callback = null;
|
||
|
||
this.blend_render_pts = [];
|
||
this.blend_render_pts.push([]);
|
||
this.blend_render_pts.push([]);
|
||
this.do_blending = false;
|
||
|
||
this.active_blend_animation_names = [];
|
||
this.active_blend_animation_names.push("");
|
||
this.active_blend_animation_names.push("");
|
||
};
|
||
|
||
// Create an animation
|
||
CreatureManager.prototype.CreateAnimation = function(load_data, name_in)
|
||
{
|
||
var new_animation = new CreatureAnimation(load_data, name_in);
|
||
this.AddAnimation(new_animation);
|
||
};
|
||
|
||
// Create all animations
|
||
CreatureManager.prototype.CreateAllAnimations = function(load_data)
|
||
{
|
||
var all_animation_names = CreatureModuleUtils.GetAllAnimationNames (load_data);
|
||
for(var i = 0; i < all_animation_names.length; i++)
|
||
{
|
||
var cur_name = all_animation_names[i];
|
||
this.CreateAnimation(load_data, cur_name);
|
||
}
|
||
|
||
this.SetActiveAnimationName (all_animation_names.get(0));
|
||
};
|
||
|
||
// Add an animation
|
||
CreatureManager.prototype.AddAnimation = function(animation_in)
|
||
{
|
||
this.animations[animation_in.name] = animation_in;
|
||
};
|
||
|
||
// Return an animation
|
||
CreatureManager.prototype.GetAnimation = function(name_in)
|
||
{
|
||
return this.animations[name_in];
|
||
};
|
||
|
||
// Return the creature
|
||
CreatureManager.prototype.GetCreature = function()
|
||
{
|
||
return this.target_creature;
|
||
};
|
||
|
||
// Returns all the animation names
|
||
CreatureManager.prototype.GetAnimationNames = function()
|
||
{
|
||
var ret_names = [];
|
||
for(var cur_name in animations) {
|
||
ret_names.push(cur_name);
|
||
}
|
||
|
||
return ret_names;
|
||
};
|
||
|
||
// Sets the current animation to be active by name
|
||
CreatureManager.prototype.SetActiveAnimationName = function(name_in, check_already_active)
|
||
{
|
||
if (name_in == null || (name_in in this.animations) == false) {
|
||
return false;
|
||
}
|
||
|
||
if(check_already_active == true)
|
||
{
|
||
if(this.active_animation_name == name_in)
|
||
{
|
||
return false;
|
||
}
|
||
}
|
||
|
||
this.active_animation_name = name_in;
|
||
var cur_animation = this.animations[this.active_animation_name];
|
||
this.run_time = cur_animation.start_time;
|
||
|
||
var displacement_cache_manager = cur_animation.displacement_cache;
|
||
var displacement_table =
|
||
displacement_cache_manager.displacement_cache_table[0];
|
||
|
||
var uv_warp_cache_manager = cur_animation.uv_warp_cache;
|
||
var uv_swap_table =
|
||
uv_warp_cache_manager.uv_cache_table[0];
|
||
|
||
var render_composition =
|
||
this.target_creature.render_composition;
|
||
|
||
var all_regions = render_composition.getRegions();
|
||
|
||
var index = 0;
|
||
for(var i = 0; i < all_regions.length; i++)
|
||
{
|
||
var cur_region = all_regions[i];
|
||
// Setup active or inactive displacements
|
||
var use_local_displacements = !(displacement_table[index].getLocalDisplacements().length == 0);
|
||
var use_post_displacements = !(displacement_table[index].getPostDisplacements().length == 0);
|
||
cur_region.setUseLocalDisplacements(use_local_displacements);
|
||
cur_region.setUsePostDisplacements(use_post_displacements);
|
||
|
||
// Setup active or inactive uv swaps
|
||
cur_region.setUseUvWarp(uv_swap_table[index].getEnabled());
|
||
|
||
index++;
|
||
}
|
||
|
||
return true;
|
||
};
|
||
|
||
// Returns the name of the currently active animation
|
||
CreatureManager.prototype.GetActiveAnimationName = function()
|
||
{
|
||
return this.active_animation_name;
|
||
};
|
||
|
||
// Returns the table of all animations
|
||
CreatureManager.prototype.GetAllAnimations = function()
|
||
{
|
||
return this.animations;
|
||
};
|
||
|
||
// Creates a point cache for the current animation
|
||
CreatureManager.prototype.MakePointCache = function(animation_name_in)
|
||
{
|
||
var store_run_time = this.getRunTime();
|
||
var cur_animation = this.animations[animation_name_in];
|
||
if(cur_animation.length > 0)
|
||
{
|
||
// cache already generated, just exit
|
||
return;
|
||
}
|
||
|
||
var cache_pts_list = cur_animation.cache_pts;
|
||
|
||
for(var i = cur_animation.start_time; i <= cur_animation.end_time; i++)
|
||
{
|
||
this.setRunTime(i);
|
||
var new_pts = [];
|
||
for (var j = 0; j < this.target_creature.total_num_pts * 3; j++) new_pts[j] = 0;
|
||
//auto new_pts = new glm::float32[target_creature->GetTotalNumPoints() * 3];
|
||
this.PoseCreature(animation_name_in, new_pts);
|
||
|
||
cache_pts_list.push(new_pts);
|
||
}
|
||
|
||
this.setRunTime(store_run_time);
|
||
};
|
||
|
||
// Fills up a single frame for a point cache animation
|
||
// Point caching is only enabled when the cache is FULLY filled up
|
||
// Remember the new filled cache is Appended onto the end of a list
|
||
// There is no indexing by time here so MAKE SURE this cache is filled up sequentially!
|
||
CreatureManager.prototype.FillSinglePointCacheFrame = function(animation_name_in, time_in)
|
||
{
|
||
var store_run_time = this.getRunTime();
|
||
var cur_animation = this.animations[animation_name_in];
|
||
|
||
this.setRunTime(time_in);
|
||
var new_pts = [];
|
||
for (var j = 0; j < this.target_creature.total_num_pts * 3; j++) new_pts[j] = 0;
|
||
this.PoseCreature(animation_name_in, new_pts);
|
||
|
||
cur_animation.fill_cache_pts.push(new_pts);
|
||
cur_animation.verifyFillCache();
|
||
|
||
this.setRunTime(store_run_time);
|
||
};
|
||
|
||
// Returns if animation is playing
|
||
CreatureManager.prototype.GetIsPlaying = function()
|
||
{
|
||
return this.is_playing;
|
||
};
|
||
|
||
// Sets whether to loop the animation
|
||
CreatureManager.prototype.SetShouldLoop = function(flag_in)
|
||
{
|
||
this.should_loop = flag_in;
|
||
};
|
||
|
||
// Sets whether to use a user defined custom time range for the currently
|
||
// active animation clip
|
||
CreatureManager.prototype.SetUseCustomTimeRange = function(flag_in)
|
||
{
|
||
this.use_custom_time_range = flag_in;
|
||
};
|
||
|
||
// Sets the user defined custom time range
|
||
CreatureManager.prototype.SetCustomTimeRange = function(start_time_in, end_time_in)
|
||
{
|
||
this.custom_start_time = start_time_in;
|
||
this.custom_end_time = end_time_in;
|
||
};
|
||
|
||
// Sets whether the animation is playing
|
||
CreatureManager.prototype.SetIsPlaying = function(flag_in)
|
||
{
|
||
this.is_playing = flag_in;
|
||
};
|
||
|
||
// Resets animation to start time
|
||
CreatureManager.prototype.ResetToStartTimes = function()
|
||
{
|
||
var cur_animation = this.animations[active_animation_name];
|
||
this.run_time = cur_animation.start_time;
|
||
};
|
||
|
||
// Sets the run time of the animation
|
||
CreatureManager.prototype.setRunTime = function(time_in)
|
||
{
|
||
this.run_time = time_in;
|
||
this.correctTime ();
|
||
};
|
||
|
||
// Increments the run time of the animation by a delta value
|
||
CreatureManager.prototype.increRunTime = function(delta_in)
|
||
{
|
||
this.run_time += delta_in;
|
||
this.correctTime ();
|
||
};
|
||
|
||
CreatureManager.prototype.correctTime = function()
|
||
{
|
||
var cur_animation = this.animations[this.active_animation_name];
|
||
var anim_start_time = cur_animation.start_time;
|
||
var anim_end_time = cur_animation.end_time;
|
||
|
||
if(this.use_custom_time_range)
|
||
{
|
||
anim_start_time = this.custom_start_time;
|
||
anim_end_time = this.custom_end_time;
|
||
}
|
||
|
||
if(this.run_time > anim_end_time)
|
||
{
|
||
if(this.should_loop)
|
||
{
|
||
this.run_time = anim_start_time;
|
||
}
|
||
else {
|
||
this.run_time = anim_end_time;
|
||
}
|
||
}
|
||
else if(this.run_time < anim_start_time)
|
||
{
|
||
if(this.should_loop)
|
||
{
|
||
this.run_time = anim_end_time;
|
||
}
|
||
else {
|
||
this.run_time = anim_start_time;
|
||
}
|
||
}
|
||
};
|
||
|
||
// Returns the current run time of the animation
|
||
CreatureManager.prototype.getRunTime = function()
|
||
{
|
||
return this.run_time;
|
||
};
|
||
|
||
// Runs a single step of the animation for a given delta timestep
|
||
CreatureManager.prototype.Update = function(delta)
|
||
{
|
||
if(!this.is_playing)
|
||
{
|
||
return;
|
||
}
|
||
|
||
this.increRunTime(delta * this.time_scale);
|
||
|
||
this.RunCreature ();
|
||
};
|
||
|
||
CreatureManager.prototype.RunAtTime = function(time_in)
|
||
{
|
||
if(!this.is_playing)
|
||
{
|
||
return;
|
||
}
|
||
|
||
this.setRunTime(time_in);
|
||
this.RunCreature ();
|
||
};
|
||
|
||
CreatureManager.prototype.RunCreature = function()
|
||
{
|
||
if(this.do_blending)
|
||
{
|
||
for(var i = 0; i < 2; i++) {
|
||
var cur_animation = this.animations[this.active_blend_animation_names[i]];
|
||
if(cur_animation.cache_pts.length > 0)
|
||
{
|
||
cur_animation.poseFromCachePts(this.getRunTime(), this.blend_render_pts[i], this.target_creature.total_num_pts);
|
||
}
|
||
else {
|
||
this.PoseCreature(this.active_blend_animation_names[i], this.blend_render_pts[i]);
|
||
}
|
||
}
|
||
|
||
for(var j = 0; j < this.target_creature.total_num_pts * 3; j++)
|
||
{
|
||
var set_data_index = j;
|
||
var read_data_1 = this.blend_render_pts[0][j];
|
||
var read_data_2 = this.blend_render_pts[1][j];
|
||
/*
|
||
target_creature.render_pts[set_data_index] =
|
||
((1.0f - blending_factor) * (read_data_1)) +
|
||
(blending_factor * (read_data_2));
|
||
*/
|
||
this.target_creature.render_pts.set(set_data_index,
|
||
((1.0 - blending_factor) * (read_data_1)) +
|
||
(blending_factor * (read_data_2)));
|
||
|
||
}
|
||
}
|
||
else {
|
||
var cur_animation = this.animations[this.active_animation_name];
|
||
if(cur_animation.cache_pts.length > 0)
|
||
{
|
||
cur_animation.poseFromCachePts(this.getRunTime(), this.target_creature.render_pts, this.target_creature.total_num_pts);
|
||
// cur_animation->poseFromCachePts(getRunTime(), target_creature->GetRenderPts(), target_creature->GetTotalNumPoints());
|
||
}
|
||
else {
|
||
this.PoseCreature(this.active_animation_name, this.target_creature.render_pts);
|
||
}
|
||
}
|
||
};
|
||
|
||
// Sets scaling for time
|
||
CreatureManager.prototype.SetTimeScale = function(scale_in)
|
||
{
|
||
this.time_scale = scale_in;
|
||
};
|
||
|
||
// Enables/Disables blending
|
||
CreatureManager.prototype.SetBlending = function(flag_in)
|
||
{
|
||
this.do_blending = flag_in;
|
||
|
||
if (this.do_blending) {
|
||
if (this.blend_render_pts[0].length == 0) {
|
||
var new_vec = [];
|
||
for(var i = 0; i < target_creature.total_num_pts * 3; i++)
|
||
{
|
||
new_vec.push(0);
|
||
}
|
||
|
||
this.blend_render_pts.set(0, new_vec);
|
||
}
|
||
|
||
if (this.blend_render_pts[1].length == 0) {
|
||
var new_vec = [];
|
||
for(var i = 0; i < this.target_creature.total_num_pts * 3; i++)
|
||
{
|
||
new_vec.push(0);
|
||
}
|
||
|
||
this.blend_render_pts[1] = new_vec;
|
||
}
|
||
|
||
}
|
||
};
|
||
|
||
// Sets blending animation names
|
||
CreatureManager.prototype.SetBlendingAnimations = function(name_1, name_2)
|
||
{
|
||
this.active_blend_animation_names[0] = name_1;
|
||
this.active_blend_animation_names[1] = name_2;
|
||
};
|
||
|
||
// Sets the blending factor
|
||
CreatureManager.prototype.SetBlendingFactor = function(value_in)
|
||
{
|
||
this.blending_factor = value_in;
|
||
};
|
||
|
||
// Given a set of coordinates in local creature space,
|
||
// see if any bone is in contact
|
||
CreatureManager.prototype.IsContactBone = function(pt_in, radius)
|
||
{
|
||
var cur_bone = this.target_creature.render_composition.getRootBone();
|
||
return this.ProcessContactBone(pt_in, radius, cur_bone);
|
||
};
|
||
|
||
|
||
CreatureManager.prototype.PoseCreature = function(animation_name_in, target_pts)
|
||
{
|
||
var cur_animation = this.animations[animation_name_in];
|
||
|
||
var bone_cache_manager = cur_animation.bones_cache;
|
||
var displacement_cache_manager = cur_animation.displacement_cache;
|
||
var uv_warp_cache_manager = cur_animation.uv_warp_cache;
|
||
|
||
var render_composition =
|
||
this.target_creature.render_composition;
|
||
|
||
// Extract values from caches
|
||
var bones_map =
|
||
render_composition.getBonesMap();
|
||
var regions_map =
|
||
render_composition.getRegionsMap();
|
||
|
||
bone_cache_manager.retrieveValuesAtTime(this.getRunTime(),
|
||
bones_map);
|
||
|
||
if(this.bones_override_callback != null)
|
||
{
|
||
this.bones_override_callback(bones_map);
|
||
}
|
||
|
||
displacement_cache_manager.retrieveValuesAtTime(this.getRunTime(),
|
||
regions_map);
|
||
uv_warp_cache_manager.retrieveValuesAtTime(this.getRunTime(),
|
||
regions_map);
|
||
|
||
|
||
// Do posing, decide if we are blending or not
|
||
var cur_regions =
|
||
render_composition.getRegions();
|
||
var cur_bones =
|
||
render_composition.getBonesMap();
|
||
|
||
render_composition.updateAllTransforms(false);
|
||
for(var j = 0, l = cur_regions.length; j < l; j++) {
|
||
var cur_region = cur_regions[j];
|
||
|
||
var cur_pt_index = cur_region.getStartPtIndex();
|
||
|
||
|
||
cur_region.poseFinalPts(target_pts,
|
||
cur_pt_index * 3,
|
||
cur_bones);
|
||
|
||
// add in z offsets for different regions
|
||
|
||
var start = cur_region.getStartPtIndex() * 3;
|
||
var end = cur_region.getEndPtIndex() * 3;
|
||
for(var k = start;
|
||
k <= end;
|
||
k+=3)
|
||
{
|
||
target_pts[k + 2] = -j * 0.001;
|
||
}
|
||
|
||
}
|
||
};
|
||
|