phaser/src/math/Vector3.js
Richard Davey 11dc4dcce2
Merge pull request #4290 from Aedalus/master
Vector2/3 Constants
2019-01-18 16:09:54 +00:00

879 lines
22 KiB
JavaScript

/**
* @author Richard Davey <rich@photonstorm.com>
* @copyright 2019 Photon Storm Ltd.
* @license {@link https://github.com/photonstorm/phaser/blob/master/license.txt|MIT License}
*/
// Adapted from [gl-matrix](https://github.com/toji/gl-matrix) by toji
// and [vecmath](https://github.com/mattdesl/vecmath) by mattdesl
var Class = require('../utils/Class');
/**
* @classdesc
* A representation of a vector in 3D space.
*
* A three-component vector.
*
* @class Vector3
* @memberof Phaser.Math
* @constructor
* @since 3.0.0
*
* @param {number} [x] - The x component.
* @param {number} [y] - The y component.
* @param {number} [z] - The z component.
*/
var Vector3 = new Class({
initialize:
function Vector3 (x, y, z)
{
/**
* The x component of this Vector.
*
* @name Phaser.Math.Vector3#x
* @type {number}
* @default 0
* @since 3.0.0
*/
this.x = 0;
/**
* The y component of this Vector.
*
* @name Phaser.Math.Vector3#y
* @type {number}
* @default 0
* @since 3.0.0
*/
this.y = 0;
/**
* The z component of this Vector.
*
* @name Phaser.Math.Vector3#z
* @type {number}
* @default 0
* @since 3.0.0
*/
this.z = 0;
if (typeof x === 'object')
{
this.x = x.x || 0;
this.y = x.y || 0;
this.z = x.z || 0;
}
else
{
this.x = x || 0;
this.y = y || 0;
this.z = z || 0;
}
},
/**
* Set this Vector to point up.
*
* Sets the y component of the vector to 1, and the others to 0.
*
* @method Phaser.Math.Vector3#up
* @since 3.0.0
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
up: function ()
{
this.x = 0;
this.y = 1;
this.z = 0;
return this;
},
/**
* Make a clone of this Vector3.
*
* @method Phaser.Math.Vector3#clone
* @since 3.0.0
*
* @return {Phaser.Math.Vector3} A new Vector3 object containing this Vectors values.
*/
clone: function ()
{
return new Vector3(this.x, this.y, this.z);
},
/**
* Calculate the cross (vector) product of two given Vectors.
*
* @method Phaser.Math.Vector3#crossVectors
* @since 3.0.0
*
* @param {Phaser.Math.Vector3} a - The first Vector to multiply.
* @param {Phaser.Math.Vector3} b - The second Vector to multiply.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
crossVectors: function (a, b)
{
var ax = a.x;
var ay = a.y;
var az = a.z;
var bx = b.x;
var by = b.y;
var bz = b.z;
this.x = ay * bz - az * by;
this.y = az * bx - ax * bz;
this.z = ax * by - ay * bx;
return this;
},
/**
* Check whether this Vector is equal to a given Vector.
*
* Performs a strict equality check against each Vector's components.
*
* @method Phaser.Math.Vector3#equals
* @since 3.0.0
*
* @param {Phaser.Math.Vector3} v - The Vector3 to compare against.
*
* @return {boolean} True if the two vectors strictly match, otherwise false.
*/
equals: function (v)
{
return ((this.x === v.x) && (this.y === v.y) && (this.z === v.z));
},
/**
* Copy the components of a given Vector into this Vector.
*
* @method Phaser.Math.Vector3#copy
* @since 3.0.0
*
* @param {(Phaser.Math.Vector2|Phaser.Math.Vector3)} src - The Vector to copy the components from.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
copy: function (src)
{
this.x = src.x;
this.y = src.y;
this.z = src.z || 0;
return this;
},
/**
* Set the `x`, `y`, and `z` components of this Vector to the given `x`, `y`, and `z` values.
*
* @method Phaser.Math.Vector3#set
* @since 3.0.0
*
* @param {(number|object)} x - The x value to set for this Vector, or an object containing x, y and z components.
* @param {number} [y] - The y value to set for this Vector.
* @param {number} [z] - The z value to set for this Vector.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
set: function (x, y, z)
{
if (typeof x === 'object')
{
this.x = x.x || 0;
this.y = x.y || 0;
this.z = x.z || 0;
}
else
{
this.x = x || 0;
this.y = y || 0;
this.z = z || 0;
}
return this;
},
/**
* Add a given Vector to this Vector. Addition is component-wise.
*
* @method Phaser.Math.Vector3#add
* @since 3.0.0
*
* @param {(Phaser.Math.Vector2|Phaser.Math.Vector3)} v - The Vector to add to this Vector.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
add: function (v)
{
this.x += v.x;
this.y += v.y;
this.z += v.z || 0;
return this;
},
/**
* Subtract the given Vector from this Vector. Subtraction is component-wise.
*
* @method Phaser.Math.Vector3#subtract
* @since 3.0.0
*
* @param {(Phaser.Math.Vector2|Phaser.Math.Vector3)} v - The Vector to subtract from this Vector.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
subtract: function (v)
{
this.x -= v.x;
this.y -= v.y;
this.z -= v.z || 0;
return this;
},
/**
* Perform a component-wise multiplication between this Vector and the given Vector.
*
* Multiplies this Vector by the given Vector.
*
* @method Phaser.Math.Vector3#multiply
* @since 3.0.0
*
* @param {(Phaser.Math.Vector2|Phaser.Math.Vector3)} v - The Vector to multiply this Vector by.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
multiply: function (v)
{
this.x *= v.x;
this.y *= v.y;
this.z *= v.z || 1;
return this;
},
/**
* Scale this Vector by the given value.
*
* @method Phaser.Math.Vector3#scale
* @since 3.0.0
*
* @param {number} scale - The value to scale this Vector by.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
scale: function (scale)
{
if (isFinite(scale))
{
this.x *= scale;
this.y *= scale;
this.z *= scale;
}
else
{
this.x = 0;
this.y = 0;
this.z = 0;
}
return this;
},
/**
* Perform a component-wise division between this Vector and the given Vector.
*
* Divides this Vector by the given Vector.
*
* @method Phaser.Math.Vector3#divide
* @since 3.0.0
*
* @param {(Phaser.Math.Vector2|Phaser.Math.Vector3)} v - The Vector to divide this Vector by.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
divide: function (v)
{
this.x /= v.x;
this.y /= v.y;
this.z /= v.z || 1;
return this;
},
/**
* Negate the `x`, `y` and `z` components of this Vector.
*
* @method Phaser.Math.Vector3#negate
* @since 3.0.0
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
negate: function ()
{
this.x = -this.x;
this.y = -this.y;
this.z = -this.z;
return this;
},
/**
* Calculate the distance between this Vector and the given Vector.
*
* @method Phaser.Math.Vector3#distance
* @since 3.0.0
*
* @param {(Phaser.Math.Vector2|Phaser.Math.Vector3)} v - The Vector to calculate the distance to.
*
* @return {number} The distance from this Vector to the given Vector.
*/
distance: function (v)
{
var dx = v.x - this.x;
var dy = v.y - this.y;
var dz = v.z - this.z || 0;
return Math.sqrt(dx * dx + dy * dy + dz * dz);
},
/**
* Calculate the distance between this Vector and the given Vector, squared.
*
* @method Phaser.Math.Vector3#distanceSq
* @since 3.0.0
*
* @param {(Phaser.Math.Vector2|Phaser.Math.Vector3)} v - The Vector to calculate the distance to.
*
* @return {number} The distance from this Vector to the given Vector, squared.
*/
distanceSq: function (v)
{
var dx = v.x - this.x;
var dy = v.y - this.y;
var dz = v.z - this.z || 0;
return dx * dx + dy * dy + dz * dz;
},
/**
* Calculate the length (or magnitude) of this Vector.
*
* @method Phaser.Math.Vector3#length
* @since 3.0.0
*
* @return {number} The length of this Vector.
*/
length: function ()
{
var x = this.x;
var y = this.y;
var z = this.z;
return Math.sqrt(x * x + y * y + z * z);
},
/**
* Calculate the length of this Vector squared.
*
* @method Phaser.Math.Vector3#lengthSq
* @since 3.0.0
*
* @return {number} The length of this Vector, squared.
*/
lengthSq: function ()
{
var x = this.x;
var y = this.y;
var z = this.z;
return x * x + y * y + z * z;
},
/**
* Normalize this Vector.
*
* Makes the vector a unit length vector (magnitude of 1) in the same direction.
*
* @method Phaser.Math.Vector3#normalize
* @since 3.0.0
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
normalize: function ()
{
var x = this.x;
var y = this.y;
var z = this.z;
var len = x * x + y * y + z * z;
if (len > 0)
{
len = 1 / Math.sqrt(len);
this.x = x * len;
this.y = y * len;
this.z = z * len;
}
return this;
},
/**
* Calculate the dot product of this Vector and the given Vector.
*
* @method Phaser.Math.Vector3#dot
* @since 3.0.0
*
* @param {Phaser.Math.Vector3} v - The Vector3 to dot product with this Vector3.
*
* @return {number} The dot product of this Vector and `v`.
*/
dot: function (v)
{
return this.x * v.x + this.y * v.y + this.z * v.z;
},
/**
* Calculate the cross (vector) product of this Vector (which will be modified) and the given Vector.
*
* @method Phaser.Math.Vector3#cross
* @since 3.0.0
*
* @param {Phaser.Math.Vector3} v - The Vector to cross product with.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
cross: function (v)
{
var ax = this.x;
var ay = this.y;
var az = this.z;
var bx = v.x;
var by = v.y;
var bz = v.z;
this.x = ay * bz - az * by;
this.y = az * bx - ax * bz;
this.z = ax * by - ay * bx;
return this;
},
/**
* Linearly interpolate between this Vector and the given Vector.
*
* Interpolates this Vector towards the given Vector.
*
* @method Phaser.Math.Vector3#lerp
* @since 3.0.0
*
* @param {Phaser.Math.Vector3} v - The Vector3 to interpolate towards.
* @param {number} [t=0] - The interpolation percentage, between 0 and 1.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
lerp: function (v, t)
{
if (t === undefined) { t = 0; }
var ax = this.x;
var ay = this.y;
var az = this.z;
this.x = ax + t * (v.x - ax);
this.y = ay + t * (v.y - ay);
this.z = az + t * (v.z - az);
return this;
},
/**
* Transform this Vector with the given Matrix.
*
* @method Phaser.Math.Vector3#transformMat3
* @since 3.0.0
*
* @param {Phaser.Math.Matrix3} mat - The Matrix3 to transform this Vector3 with.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
transformMat3: function (mat)
{
var x = this.x;
var y = this.y;
var z = this.z;
var m = mat.val;
this.x = x * m[0] + y * m[3] + z * m[6];
this.y = x * m[1] + y * m[4] + z * m[7];
this.z = x * m[2] + y * m[5] + z * m[8];
return this;
},
/**
* Transform this Vector with the given Matrix.
*
* @method Phaser.Math.Vector3#transformMat4
* @since 3.0.0
*
* @param {Phaser.Math.Matrix4} mat - The Matrix4 to transform this Vector3 with.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
transformMat4: function (mat)
{
var x = this.x;
var y = this.y;
var z = this.z;
var m = mat.val;
this.x = m[0] * x + m[4] * y + m[8] * z + m[12];
this.y = m[1] * x + m[5] * y + m[9] * z + m[13];
this.z = m[2] * x + m[6] * y + m[10] * z + m[14];
return this;
},
/**
* Transforms the coordinates of this Vector3 with the given Matrix4.
*
* @method Phaser.Math.Vector3#transformCoordinates
* @since 3.0.0
*
* @param {Phaser.Math.Matrix4} mat - The Matrix4 to transform this Vector3 with.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
transformCoordinates: function (mat)
{
var x = this.x;
var y = this.y;
var z = this.z;
var m = mat.val;
var tx = (x * m[0]) + (y * m[4]) + (z * m[8]) + m[12];
var ty = (x * m[1]) + (y * m[5]) + (z * m[9]) + m[13];
var tz = (x * m[2]) + (y * m[6]) + (z * m[10]) + m[14];
var tw = (x * m[3]) + (y * m[7]) + (z * m[11]) + m[15];
this.x = tx / tw;
this.y = ty / tw;
this.z = tz / tw;
return this;
},
/**
* Transform this Vector with the given Quaternion.
*
* @method Phaser.Math.Vector3#transformQuat
* @since 3.0.0
*
* @param {Phaser.Math.Quaternion} q - The Quaternion to transform this Vector with.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
transformQuat: function (q)
{
// benchmarks: http://jsperf.com/quaternion-transform-vec3-implementations
var x = this.x;
var y = this.y;
var z = this.z;
var qx = q.x;
var qy = q.y;
var qz = q.z;
var qw = q.w;
// calculate quat * vec
var ix = qw * x + qy * z - qz * y;
var iy = qw * y + qz * x - qx * z;
var iz = qw * z + qx * y - qy * x;
var iw = -qx * x - qy * y - qz * z;
// calculate result * inverse quat
this.x = ix * qw + iw * -qx + iy * -qz - iz * -qy;
this.y = iy * qw + iw * -qy + iz * -qx - ix * -qz;
this.z = iz * qw + iw * -qz + ix * -qy - iy * -qx;
return this;
},
/**
* Multiplies this Vector3 by the specified matrix, applying a W divide. This is useful for projection,
* e.g. unprojecting a 2D point into 3D space.
*
* @method Phaser.Math.Vector3#project
* @since 3.0.0
*
* @param {Phaser.Math.Matrix4} mat - The Matrix4 to multiply this Vector3 with.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
project: function (mat)
{
var x = this.x;
var y = this.y;
var z = this.z;
var m = mat.val;
var a00 = m[0];
var a01 = m[1];
var a02 = m[2];
var a03 = m[3];
var a10 = m[4];
var a11 = m[5];
var a12 = m[6];
var a13 = m[7];
var a20 = m[8];
var a21 = m[9];
var a22 = m[10];
var a23 = m[11];
var a30 = m[12];
var a31 = m[13];
var a32 = m[14];
var a33 = m[15];
var lw = 1 / (x * a03 + y * a13 + z * a23 + a33);
this.x = (x * a00 + y * a10 + z * a20 + a30) * lw;
this.y = (x * a01 + y * a11 + z * a21 + a31) * lw;
this.z = (x * a02 + y * a12 + z * a22 + a32) * lw;
return this;
},
/**
* Unproject this point from 2D space to 3D space.
* The point should have its x and y properties set to
* 2D screen space, and the z either at 0 (near plane)
* or 1 (far plane). The provided matrix is assumed to already
* be combined, i.e. projection * view * model.
*
* After this operation, this vector's (x, y, z) components will
* represent the unprojected 3D coordinate.
*
* @method Phaser.Math.Vector3#unproject
* @since 3.0.0
*
* @param {Phaser.Math.Vector4} viewport - Screen x, y, width and height in pixels.
* @param {Phaser.Math.Matrix4} invProjectionView - Combined projection and view matrix.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
unproject: function (viewport, invProjectionView)
{
var viewX = viewport.x;
var viewY = viewport.y;
var viewWidth = viewport.z;
var viewHeight = viewport.w;
var x = this.x - viewX;
var y = (viewHeight - this.y - 1) - viewY;
var z = this.z;
this.x = (2 * x) / viewWidth - 1;
this.y = (2 * y) / viewHeight - 1;
this.z = 2 * z - 1;
return this.project(invProjectionView);
},
/**
* Make this Vector the zero vector (0, 0, 0).
*
* @method Phaser.Math.Vector3#reset
* @since 3.0.0
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
reset: function ()
{
this.x = 0;
this.y = 0;
this.z = 0;
return this;
}
});
/**
* A static zero Vector3 for use by reference.
*
* This constant is meant for comparison operations and should not be modified directly.
*
* @constant
* @name Phaser.Math.Vector3.ZERO
* @type {Phaser.Math.Vector3}
* @since 3.16.0
*/
Vector3.ZERO = new Vector3();
/**
* A static right Vector3 for use by reference.
*
* This constant is meant for comparison operations and should not be modified directly.
*
* @constant
* @name Phaser.Math.Vector3.RIGHT
* @type {Phaser.Math.Vector3}
* @since 3.16.0
*/
Vector3.RIGHT = new Vector3(1,0,0);
/**
* A static left Vector3 for use by reference.
*
* This constant is meant for comparison operations and should not be modified directly.
*
* @constant
* @name Phaser.Math.Vector3.LEFT
* @type {Phaser.Math.Vector3}
* @since 3.16.0
*/
Vector3.LEFT = new Vector3(-1,0,0);
/**
* A static up Vector3 for use by reference.
*
* This constant is meant for comparison operations and should not be modified directly.
*
* @constant
* @name Phaser.Math.Vector3.UP
* @type {Phaser.Math.Vector3}
* @since 3.16.0
*/
Vector3.UP = new Vector3(0,-1,0);
/**
* A static down Vector3 for use by reference.
*
* This constant is meant for comparison operations and should not be modified directly.
*
* @constant
* @name Phaser.Math.Vector3.DOWN
* @type {Phaser.Math.Vector3}
* @since 3.16.0
*/
Vector3.DOWN = new Vector3(0,1,0);
/**
* A static forward Vector3 for use by reference.
*
* This constant is meant for comparison operations and should not be modified directly.
*
* @constant
* @name Phaser.Math.Vector3.FORWARD
* @type {Phaser.Math.Vector3}
* @since 3.16.0
*/
Vector3.FORWARD = new Vector3(0,0,1);
/**
* A static back Vector3 for use by reference.
*
* This constant is meant for comparison operations and should not be modified directly.
*
* @constant
* @name Phaser.Math.Vector3.BACK
* @type {Phaser.Math.Vector3}
* @since 3.16.0
*/
Vector3.BACK = new Vector3(0,0,-1);
/**
* A static one Vector3 for use by reference.
*
* This constant is meant for comparison operations and should not be modified directly.
*
* @constant
* @name Phaser.Math.Vector3.ONE
* @type {Phaser.Math.Vector3}
* @since 3.16.0
*/
Vector3.ONE = new Vector3(1,1,1);
/*
Vector3.Zero = function ()
{
return new Vector3(0, 0, 0);
};
Vector3.Up = function ()
{
return new Vector3(0, 1.0, 0);
};
Vector3.Copy = function (source)
{
return new Vector3(source.x, source.y, source.z);
};
Vector3.TransformCoordinates = function (vector, transformation)
{
var x = (vector.x * transformation.m[0]) + (vector.y * transformation.m[4]) + (vector.z * transformation.m[8]) + transformation.m[12];
var y = (vector.x * transformation.m[1]) + (vector.y * transformation.m[5]) + (vector.z * transformation.m[9]) + transformation.m[13];
var z = (vector.x * transformation.m[2]) + (vector.y * transformation.m[6]) + (vector.z * transformation.m[10]) + transformation.m[14];
var w = (vector.x * transformation.m[3]) + (vector.y * transformation.m[7]) + (vector.z * transformation.m[11]) + transformation.m[15];
return new Vector3(x / w, y / w, z / w);
};
Vector3.TransformNormal = function (vector, transformation)
{
var x = (vector.x * transformation.m[0]) + (vector.y * transformation.m[4]) + (vector.z * transformation.m[8]);
var y = (vector.x * transformation.m[1]) + (vector.y * transformation.m[5]) + (vector.z * transformation.m[9]);
var z = (vector.x * transformation.m[2]) + (vector.y * transformation.m[6]) + (vector.z * transformation.m[10]);
return new Vector3(x, y, z);
};
Vector3.Dot = function (left, right)
{
return (left.x * right.x + left.y * right.y + left.z * right.z);
};
Vector3.Cross = function (left, right)
{
var x = left.y * right.z - left.z * right.y;
var y = left.z * right.x - left.x * right.z;
var z = left.x * right.y - left.y * right.x;
return new Vector3(x, y, z);
};
Vector3.Normalize = function (vector)
{
var newVector = Vector3.Copy(vector);
newVector.normalize();
return newVector;
};
Vector3.Distance = function (value1, value2)
{
return Math.sqrt(Vector3.DistanceSquared(value1, value2));
};
Vector3.DistanceSquared = function (value1, value2)
{
var x = value1.x - value2.x;
var y = value1.y - value2.y;
var z = value1.z - value2.z;
return (x * x) + (y * y) + (z * z);
};
*/
module.exports = Vector3;