phaser/wip/geom/Line.js
2018-01-09 22:12:16 +00:00

737 lines
22 KiB
JavaScript

/**
* @author Richard Davey <rich@photonstorm.com>
* @copyright 2016 Photon Storm Ltd.
* @license {@link https://github.com/photonstorm/phaser/blob/master/license.txt|MIT License}
*/
/**
* Creates a new Line object with a start and an end point.
*
* @class Phaser.Line
* @constructor
* @param {number} [x1=0] - The x coordinate of the start of the line.
* @param {number} [y1=0] - The y coordinate of the start of the line.
* @param {number} [x2=0] - The x coordinate of the end of the line.
* @param {number} [y2=0] - The y coordinate of the end of the line.
*/
Phaser.Line = function (x1, y1, x2, y2) {
x1 = x1 || 0;
y1 = y1 || 0;
x2 = x2 || 0;
y2 = y2 || 0;
/**
* @property {Phaser.Point} start - The start point of the line.
*/
this.start = new Phaser.Point(x1, y1);
/**
* @property {Phaser.Point} end - The end point of the line.
*/
this.end = new Phaser.Point(x2, y2);
/**
* @property {number} type - The const type of this object.
* @readonly
*/
this.type = Phaser.LINE;
};
Phaser.Line.prototype.constructor = Phaser.Line;
Phaser.Line.prototype = {
/**
* Sets the components of the Line to the specified values.
*
* @method Phaser.Line#setTo
* @param {number} [x1=0] - The x coordinate of the start of the line.
* @param {number} [y1=0] - The y coordinate of the start of the line.
* @param {number} [x2=0] - The x coordinate of the end of the line.
* @param {number} [y2=0] - The y coordinate of the end of the line.
* @return {Phaser.Line} This line object
*/
setTo: function (x1, y1, x2, y2) {
this.start.setTo(x1, y1);
this.end.setTo(x2, y2);
return this;
},
/**
* Sets the line to match the x/y coordinates of the two given sprites.
* Can optionally be calculated from their center coordinates.
*
* @method Phaser.Line#fromSprite
* @param {Phaser.Sprite} startSprite - The coordinates of this Sprite will be set to the Line.start point.
* @param {Phaser.Sprite} endSprite - The coordinates of this Sprite will be set to the Line.start point.
* @param {boolean} [useCenter=false] - If true it will use startSprite.centerX, if false startSprite.x.
* @return {Phaser.Line} This line object
*/
fromSprite: function (startSprite, endSprite, useCenter) {
if (useCenter === undefined) { useCenter = false; }
if (useCenter)
{
return this.setTo(startSprite.centerX, startSprite.centerY, endSprite.centerX, endSprite.centerY);
}
return this.setTo(startSprite.x, startSprite.y, endSprite.x, endSprite.y);
},
/**
* Sets this line to start at the given `x` and `y` coordinates and for the segment to extend at `angle` for the given `length`.
*
* @method Phaser.Line#fromAngle
* @param {number} x - The x coordinate of the start of the line.
* @param {number} y - The y coordinate of the start of the line.
* @param {number} angle - The angle of the line in radians.
* @param {number} length - The length of the line in pixels.
* @return {Phaser.Line} This line object
*/
fromAngle: function (x, y, angle, length) {
this.start.setTo(x, y);
this.end.setTo(x + (Math.cos(angle) * length), y + (Math.sin(angle) * length));
return this;
},
/**
* Rotates the line by the amount specified in `angle`.
*
* Rotation takes place from the center of the line.
* If you wish to rotate around a different point see Line.rotateAround.
*
* If you wish to rotate the ends of the Line then see Line.start.rotate or Line.end.rotate.
*
* @method Phaser.Line#rotate
* @param {number} angle - The angle in radians (unless asDegrees is true) to rotate the line by.
* @param {boolean} [asDegrees=false] - Is the given angle in radians (false) or degrees (true)?
* @return {Phaser.Line} This line object
*/
rotate: function (angle, asDegrees) {
var cx = (this.start.x + this.end.x) / 2;
var cy = (this.start.y + this.end.y) / 2;
this.start.rotate(cx, cy, angle, asDegrees);
this.end.rotate(cx, cy, angle, asDegrees);
return this;
},
/**
* Rotates the line by the amount specified in `angle`.
*
* Rotation takes place around the coordinates given.
*
* @method Phaser.Line#rotateAround
* @param {number} x - The x coordinate to offset the rotation from.
* @param {number} y - The y coordinate to offset the rotation from.
* @param {number} angle - The angle in radians (unless asDegrees is true) to rotate the line by.
* @param {boolean} [asDegrees=false] - Is the given angle in radians (false) or degrees (true)?
* @return {Phaser.Line} This line object
*/
rotateAround: function (x, y, angle, asDegrees) {
this.start.rotate(x, y, angle, asDegrees);
this.end.rotate(x, y, angle, asDegrees);
return this;
},
/**
* Checks for intersection between this line and another Line.
* If asSegment is true it will check for segment intersection. If asSegment is false it will check for line intersection.
* Returns the intersection segment of AB and EF as a Point, or null if there is no intersection.
*
* @method Phaser.Line#intersects
* @param {Phaser.Line} line - The line to check against this one.
* @param {boolean} [asSegment=true] - If true it will check for segment intersection, otherwise full line intersection.
* @param {Phaser.Point} [result] - A Point object to store the result in, if not given a new one will be created.
* @return {Phaser.Point} The intersection segment of the two lines as a Point, or null if there is no intersection.
*/
intersects: function (line, asSegment, result) {
return Phaser.Line.intersectsPoints(this.start, this.end, line.start, line.end, asSegment, result);
},
/**
* Returns the reflected angle between two lines.
* This is the outgoing angle based on the angle of this line and the normalAngle of the given line.
*
* @method Phaser.Line#reflect
* @param {Phaser.Line} line - The line to reflect off this line.
* @return {number} The reflected angle in radians.
*/
reflect: function (line) {
return Phaser.Line.reflect(this, line);
},
/**
* Returns a Point object where the x and y values correspond to the center (or midpoint) of the Line segment.
*
* @method Phaser.Line#midPoint
* @param {Phaser.Point} [out] - A Phaser.Point object into which the result will be populated. If not given a new Point object is created.
* @return {Phaser.Point} A Phaser.Point object with the x and y values set to the center of the line segment.
*/
midPoint: function (out) {
if (out === undefined) { out = new Phaser.Point(); }
out.x = (this.start.x + this.end.x) / 2;
out.y = (this.start.y + this.end.y) / 2;
return out;
},
/**
* Centers this Line on the given coordinates.
*
* The line is centered by positioning the start and end points so that the lines midpoint matches
* the coordinates given.
*
* @method Phaser.Line#centerOn
* @param {number} x - The x position to center the line on.
* @param {number} y - The y position to center the line on.
* @return {Phaser.Line} This line object
*/
centerOn: function (x, y) {
var cx = (this.start.x + this.end.x) / 2;
var cy = (this.start.y + this.end.y) / 2;
var tx = x - cx;
var ty = y - cy;
this.start.add(tx, ty);
this.end.add(tx, ty);
},
/**
* Tests if the given coordinates fall on this line. See pointOnSegment to test against just the line segment.
*
* @method Phaser.Line#pointOnLine
* @param {number} x - The line to check against this one.
* @param {number} y - The line to check against this one.
* @return {boolean} True if the point is on the line, false if not.
*/
pointOnLine: function (x, y) {
return ((x - this.start.x) * (this.end.y - this.start.y) === (this.end.x - this.start.x) * (y - this.start.y));
},
/**
* Tests if the given coordinates fall on this line and within the segment. See pointOnLine to test against just the line.
*
* @method Phaser.Line#pointOnSegment
* @param {number} x - The line to check against this one.
* @param {number} y - The line to check against this one.
* @return {boolean} True if the point is on the line and segment, false if not.
*/
pointOnSegment: function (x, y) {
var xMin = Math.min(this.start.x, this.end.x);
var xMax = Math.max(this.start.x, this.end.x);
var yMin = Math.min(this.start.y, this.end.y);
var yMax = Math.max(this.start.y, this.end.y);
return (this.pointOnLine(x, y) && (x >= xMin && x <= xMax) && (y >= yMin && y <= yMax));
},
/**
* Picks a random point from anywhere on the Line segment and returns it.
*
* @method Phaser.Line#random
* @param {Phaser.Point|object} [out] - A Phaser.Point, or any object with public x/y properties, that the values will be set in.
* If no object is provided a new Phaser.Point object will be created. In high performance areas avoid this by re-using an object.
* @return {Phaser.Point} An object containing the random point in its `x` and `y` properties.
*/
random: function (out) {
if (out === undefined) { out = new Phaser.Point(); }
var t = Math.random();
out.x = this.start.x + t * (this.end.x - this.start.x);
out.y = this.start.y + t * (this.end.y - this.start.y);
return out;
},
/**
* Using Bresenham's line algorithm this will return an array of all coordinates on this line.
* The start and end points are rounded before this runs as the algorithm works on integers.
*
* @method Phaser.Line#coordinatesOnLine
* @param {number} [stepRate=1] - How many steps will we return? 1 = every coordinate on the line, 2 = every other coordinate, etc.
* @param {array} [results] - The array to store the results in. If not provided a new one will be generated.
* @return {array} An array of coordinates.
*/
coordinatesOnLine: function (stepRate, results) {
if (stepRate === undefined) { stepRate = 1; }
if (results === undefined) { results = []; }
var x1 = Math.round(this.start.x);
var y1 = Math.round(this.start.y);
var x2 = Math.round(this.end.x);
var y2 = Math.round(this.end.y);
var dx = Math.abs(x2 - x1);
var dy = Math.abs(y2 - y1);
var sx = (x1 < x2) ? 1 : -1;
var sy = (y1 < y2) ? 1 : -1;
var err = dx - dy;
results.push([x1, y1]);
var i = 1;
while (!((x1 === x2) && (y1 === y2)))
{
var e2 = err << 1;
if (e2 > -dy)
{
err -= dy;
x1 += sx;
}
if (e2 < dx)
{
err += dx;
y1 += sy;
}
if (i % stepRate === 0)
{
results.push([x1, y1]);
}
i++;
}
return results;
},
/**
* Returns a new Line object with the same values for the start and end properties as this Line object.
* @method Phaser.Line#clone
* @param {Phaser.Line} output - Optional Line object. If given the values will be set into the object, otherwise a brand new Line object will be created and returned.
* @return {Phaser.Line} The cloned Line object.
*/
clone: function (output) {
if (output === undefined || output === null)
{
output = new Phaser.Line(this.start.x, this.start.y, this.end.x, this.end.y);
}
else
{
output.setTo(this.start.x, this.start.y, this.end.x, this.end.y);
}
return output;
}
};
/**
* @name Phaser.Line#length
* @property {number} length - Gets the length of the line segment.
* @readonly
*/
Object.defineProperty(Phaser.Line.prototype, "length", {
get: function () {
return Math.sqrt((this.end.x - this.start.x) * (this.end.x - this.start.x) + (this.end.y - this.start.y) * (this.end.y - this.start.y));
}
});
/**
* @name Phaser.Line#angle
* @property {number} angle - Gets the angle of the line in radians.
* @readonly
*/
Object.defineProperty(Phaser.Line.prototype, "angle", {
get: function () {
return Math.atan2(this.end.y - this.start.y, this.end.x - this.start.x);
}
});
/**
* @name Phaser.Line#slope
* @property {number} slope - Gets the slope of the line (y/x).
* @readonly
*/
Object.defineProperty(Phaser.Line.prototype, "slope", {
get: function () {
return (this.end.y - this.start.y) / (this.end.x - this.start.x);
}
});
/**
* @name Phaser.Line#perpSlope
* @property {number} perpSlope - Gets the perpendicular slope of the line (x/y).
* @readonly
*/
Object.defineProperty(Phaser.Line.prototype, "perpSlope", {
get: function () {
return -((this.end.x - this.start.x) / (this.end.y - this.start.y));
}
});
/**
* @name Phaser.Line#x
* @property {number} x - Gets the x coordinate of the top left of the bounds around this line.
* @readonly
*/
Object.defineProperty(Phaser.Line.prototype, "x", {
get: function () {
return Math.min(this.start.x, this.end.x);
}
});
/**
* @name Phaser.Line#y
* @property {number} y - Gets the y coordinate of the top left of the bounds around this line.
* @readonly
*/
Object.defineProperty(Phaser.Line.prototype, "y", {
get: function () {
return Math.min(this.start.y, this.end.y);
}
});
/**
* @name Phaser.Line#left
* @property {number} left - Gets the left-most point of this line.
* @readonly
*/
Object.defineProperty(Phaser.Line.prototype, "left", {
get: function () {
return Math.min(this.start.x, this.end.x);
}
});
/**
* @name Phaser.Line#right
* @property {number} right - Gets the right-most point of this line.
* @readonly
*/
Object.defineProperty(Phaser.Line.prototype, "right", {
get: function () {
return Math.max(this.start.x, this.end.x);
}
});
/**
* @name Phaser.Line#top
* @property {number} top - Gets the top-most point of this line.
* @readonly
*/
Object.defineProperty(Phaser.Line.prototype, "top", {
get: function () {
return Math.min(this.start.y, this.end.y);
}
});
/**
* @name Phaser.Line#bottom
* @property {number} bottom - Gets the bottom-most point of this line.
* @readonly
*/
Object.defineProperty(Phaser.Line.prototype, "bottom", {
get: function () {
return Math.max(this.start.y, this.end.y);
}
});
/**
* @name Phaser.Line#width
* @property {number} width - Gets the width of this bounds of this line.
* @readonly
*/
Object.defineProperty(Phaser.Line.prototype, "width", {
get: function () {
return Math.abs(this.start.x - this.end.x);
}
});
/**
* @name Phaser.Line#height
* @property {number} height - Gets the height of this bounds of this line.
* @readonly
*/
Object.defineProperty(Phaser.Line.prototype, "height", {
get: function () {
return Math.abs(this.start.y - this.end.y);
}
});
/**
* @name Phaser.Line#normalX
* @property {number} normalX - Gets the x component of the left-hand normal of this line.
* @readonly
*/
Object.defineProperty(Phaser.Line.prototype, "normalX", {
get: function () {
return Math.cos(this.angle - 1.5707963267948966);
}
});
/**
* @name Phaser.Line#normalY
* @property {number} normalY - Gets the y component of the left-hand normal of this line.
* @readonly
*/
Object.defineProperty(Phaser.Line.prototype, "normalY", {
get: function () {
return Math.sin(this.angle - 1.5707963267948966);
}
});
/**
* @name Phaser.Line#normalAngle
* @property {number} normalAngle - Gets the angle in radians of the normal of this line (line.angle - 90 degrees.)
* @readonly
*/
Object.defineProperty(Phaser.Line.prototype, "normalAngle", {
get: function () {
return Phaser.Math.wrap(this.angle - 1.5707963267948966, -Math.PI, Math.PI);
}
});
/**
* Checks for intersection between two lines as defined by the given start and end points.
* If asSegment is true it will check for line segment intersection. If asSegment is false it will check for line intersection.
* Returns the intersection segment of AB and EF as a Point, or null if there is no intersection.
* Adapted from code by Keith Hair
*
* @method Phaser.Line.intersectsPoints
* @param {Phaser.Point} a - The start of the first Line to be checked.
* @param {Phaser.Point} b - The end of the first line to be checked.
* @param {Phaser.Point} e - The start of the second Line to be checked.
* @param {Phaser.Point} f - The end of the second line to be checked.
* @param {boolean} [asSegment=true] - If true it will check for segment intersection, otherwise full line intersection.
* @param {Phaser.Point|object} [result] - A Point object to store the result in, if not given a new one will be created.
* @return {Phaser.Point} The intersection segment of the two lines as a Point, or null if there is no intersection.
*/
Phaser.Line.intersectsPoints = function (a, b, e, f, asSegment, result) {
if (asSegment === undefined) { asSegment = true; }
if (result === undefined) { result = new Phaser.Point(); }
var a1 = b.y - a.y;
var a2 = f.y - e.y;
var b1 = a.x - b.x;
var b2 = e.x - f.x;
var c1 = (b.x * a.y) - (a.x * b.y);
var c2 = (f.x * e.y) - (e.x * f.y);
var denom = (a1 * b2) - (a2 * b1);
if (denom === 0)
{
return null;
}
result.x = ((b1 * c2) - (b2 * c1)) / denom;
result.y = ((a2 * c1) - (a1 * c2)) / denom;
if (asSegment)
{
var uc = ((f.y - e.y) * (b.x - a.x) - (f.x - e.x) * (b.y - a.y));
var ua = (((f.x - e.x) * (a.y - e.y)) - (f.y - e.y) * (a.x - e.x)) / uc;
var ub = (((b.x - a.x) * (a.y - e.y)) - ((b.y - a.y) * (a.x - e.x))) / uc;
if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1)
{
return result;
}
else
{
return null;
}
}
return result;
};
/**
* Checks for intersection between two lines.
* If asSegment is true it will check for segment intersection.
* If asSegment is false it will check for line intersection.
* Returns the intersection segment of AB and EF as a Point, or null if there is no intersection.
* Adapted from code by Keith Hair
*
* @method Phaser.Line.intersects
* @param {Phaser.Line} a - The first Line to be checked.
* @param {Phaser.Line} b - The second Line to be checked.
* @param {boolean} [asSegment=true] - If true it will check for segment intersection, otherwise full line intersection.
* @param {Phaser.Point} [result] - A Point object to store the result in, if not given a new one will be created.
* @return {Phaser.Point} The intersection segment of the two lines as a Point, or null if there is no intersection.
*/
Phaser.Line.intersects = function (a, b, asSegment, result) {
return Phaser.Line.intersectsPoints(a.start, a.end, b.start, b.end, asSegment, result);
};
/**
* Checks for intersection between the Line and a Rectangle shape, or a rectangle-like
* object, with public `x`, `y`, `right` and `bottom` properties, such as a Sprite or Body.
*
* An intersection is considered valid if:
*
* The line starts within, or ends within, the Rectangle.
* The line segment intersects one of the 4 rectangle edges.
*
* The for the purposes of this function rectangles are considered 'solid'.
*
* @method Phaser.Line.intersectsRectangle
* @param {Phaser.Line} line - The line to check for intersection with.
* @param {Phaser.Rectangle|object} rect - The rectangle, or rectangle-like object, to check for intersection with.
* @return {boolean} True if the line intersects with the rectangle edges, or starts or ends within the rectangle.
*/
Phaser.Line.intersectsRectangle = function (line, rect) {
// Quick bail out of the Line and Rect bounds don't intersect
if (!Phaser.Rectangle.intersects(line, rect))
{
return false;
}
var x1 = line.start.x;
var y1 = line.start.y;
var x2 = line.end.x;
var y2 = line.end.y;
var bx1 = rect.x;
var by1 = rect.y;
var bx2 = rect.right;
var by2 = rect.bottom;
var t = 0;
// If the start or end of the line is inside the rect then we assume
// collision, as rects are solid for our use-case.
if ((x1 >= bx1 && x1 <= bx2 && y1 >= by1 && y1 <= by2) ||
(x2 >= bx1 && x2 <= bx2 && y2 >= by1 && y2 <= by2))
{
return true;
}
if (x1 < bx1 && x2 >= bx1)
{
// Left edge
t = y1 + (y2 - y1) * (bx1 - x1) / (x2 - x1);
if (t > by1 && t <= by2)
{
return true;
}
}
else if (x1 > bx2 && x2 <= bx2)
{
// Right edge
t = y1 + (y2 - y1) * (bx2 - x1) / (x2 - x1);
if (t >= by1 && t <= by2)
{
return true;
}
}
if (y1 < by1 && y2 >= by1)
{
// Top edge
t = x1 + (x2 - x1) * (by1 - y1) / (y2 - y1);
if (t >= bx1 && t <= bx2)
{
return true;
}
}
else if (y1 > by2 && y2 <= by2)
{
// Bottom edge
t = x1 + (x2 - x1) * (by2 - y1) / (y2 - y1);
if (t >= bx1 && t <= bx2)
{
return true;
}
}
return false;
};
/**
* Returns the reflected angle between two lines.
* This is the outgoing angle based on the angle of Line 1 and the normalAngle of Line 2.
*
* @method Phaser.Line.reflect
* @param {Phaser.Line} a - The base line.
* @param {Phaser.Line} b - The line to be reflected from the base line.
* @return {number} The reflected angle in radians.
*/
Phaser.Line.reflect = function (a, b) {
return 2 * b.normalAngle - 3.141592653589793 - a.angle;
};