phaser/Phaser/physics/circle/ProjCircleHalf.ts

234 lines
No EOL
9 KiB
TypeScript

/// <reference path="../../_definitions.ts" />
/**
* Phaser - Physics - Projection
*/
module Phaser.Physics.Projection {
export class CircleHalf {
public static Collide(x, y, oH, oV, obj: Phaser.Physics.Circle, t: Phaser.Physics.TileMapCell) {
//if obj is in a neighbor pointed at by the halfedge normal,
//we'll never collide (i.e if the normal is (0,1) and the obj is in the DL.D, or R neighbors)
//
//if obj is in a neigbor perpendicular to the halfedge normal, it might
//collide with the halfedge-vertex, or with the halfedge side.
//
//if obj is in a neigb pointing opposite the halfedge normal, obj collides with edge
//
//if obj is in a diagonal (pointing away from the normal), obj collides vs vertex
//
//if obj is in the halfedge cell, it collides as with aabb
var signx = t.signx;
var signy = t.signy;
var celldp = (oH * signx + oV * signy);//this tells us about the configuration of cell-offset relative to tile normal
if (0 < celldp)
{
//obj is in "far" (pointed-at-by-normal) neighbor of halffull tile, and will never hit
return Phaser.Physics.Circle.COL_NONE;
}
else if (oH == 0)
{
if (oV == 0)
{
//colliding with current tile
var r = obj.radius;
var ox = (obj.pos.x - (signx * r)) - t.pos.x;//this gives is the coordinates of the innermost
var oy = (obj.pos.y - (signy * r)) - t.pos.y;//point on the circle, relative to the tile center
//we perform operations analogous to the 45deg tile, except we're using
//an axis-aligned slope instead of an angled one..
var sx = signx;
var sy = signy;
//if the dotprod of (ox,oy) and (sx,sy) is negative, the corner is in the slope
//and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy)
var dp = (ox * sx) + (oy * sy);
if (dp < 0)
{
//collision; project delta onto slope and use this to displace the object
sx *= -dp;//(sx,sy) is now the projection vector
sy *= -dp;
var lenN = Math.sqrt(sx * sx + sy * sy);
var lenP = Math.sqrt(x * x + y * y);
if (lenP < lenN)
{
obj.reportCollisionVsWorld(x, y, x / lenP, y / lenP, t);
return Phaser.Physics.Circle.COL_AXIS;
}
else
{
obj.reportCollisionVsWorld(sx, sy, t.signx, t.signy);
return Phaser.Physics.Circle.COL_OTHER;
}
}
}
else
{
//colliding vertically
if (celldp == 0)
{
var r = obj.radius;
var dx = obj.pos.x - t.pos.x;
//we're in a cell perpendicular to the normal, and can collide vs. halfedge vertex
//or halfedge side
if ((dx * signx) < 0)
{
//collision with halfedge side
obj.reportCollisionVsWorld(0, y * oV, 0, oV, t);
return Phaser.Physics.Circle.COL_AXIS;
}
else
{
//collision with halfedge vertex
var dy = obj.pos.y - (t.pos.y + oV * t.yw);//(dx,dy) is now the vector from the appropriate halfedge vertex to the circle
var len = Math.sqrt(dx * dx + dy * dy);
var pen = obj.radius - len;
if (0 < pen)
{
//vertex is in the circle; project outward
if (len == 0)
{
//project out by 45deg
dx = signx / Math.SQRT2;
dy = oV / Math.SQRT2;
}
else
{
dx /= len;
dy /= len;
}
obj.reportCollisionVsWorld(dx * pen, dy * pen, dx, dy, t);
return Phaser.Physics.Circle.COL_OTHER;
}
}
}
else
{
//due to the first conditional (celldp >0), we know we're in the cell "opposite" the normal, and so
//we can only collide with the cell edge
//collision with vertical neighbor
obj.reportCollisionVsWorld(0, y * oV, 0, oV, t);
return Phaser.Physics.Circle.COL_AXIS;
}
}
}
else if (oV == 0)
{
//colliding horizontally
if (celldp == 0)
{
var r = obj.radius;
var dy = obj.pos.y - t.pos.y;
//we're in a cell perpendicular to the normal, and can collide vs. halfedge vertex
//or halfedge side
if ((dy * signy) < 0)
{
//collision with halfedge side
obj.reportCollisionVsWorld(x * oH, 0, oH, 0, t);
return Phaser.Physics.Circle.COL_AXIS;
}
else
{
//collision with halfedge vertex
var dx = obj.pos.x - (t.pos.x + oH * t.xw);//(dx,dy) is now the vector from the appropriate halfedge vertex to the circle
var len = Math.sqrt(dx * dx + dy * dy);
var pen = obj.radius - len;
if (0 < pen)
{
//vertex is in the circle; project outward
if (len == 0)
{
//project out by 45deg
dx = signx / Math.SQRT2;
dy = oV / Math.SQRT2;
}
else
{
dx /= len;
dy /= len;
}
obj.reportCollisionVsWorld(dx * pen, dy * pen, dx, dy, t);
return Phaser.Physics.Circle.COL_OTHER;
}
}
}
else
{
//due to the first conditional (celldp >0), we know w're in the cell "opposite" the normal, and so
//we can only collide with the cell edge
obj.reportCollisionVsWorld(x * oH, 0, oH, 0, t);
return Phaser.Physics.Circle.COL_AXIS;
}
}
else
{
//colliding diagonally; we know, due to the initial (celldp >0) test which has failed
//if we've reached this point, that we're in a diagonal neighbor on the non-normal side, so
//we could only be colliding with the cell vertex, if at all.
//get diag vertex position
var vx = t.pos.x + (oH * t.xw);
var vy = t.pos.y + (oV * t.yw);
var dx = obj.pos.x - vx;//calc vert->circle vector
var dy = obj.pos.y - vy;
var len = Math.sqrt(dx * dx + dy * dy);
var pen = obj.radius - len;
if (0 < pen)
{
//vertex is in the circle; project outward
if (len == 0)
{
//project out by 45deg
dx = oH / Math.SQRT2;
dy = oV / Math.SQRT2;
}
else
{
dx /= len;
dy /= len;
}
obj.reportCollisionVsWorld(dx * pen, dy * pen, dx, dy, t);
return Phaser.Physics.Circle.COL_OTHER;
}
}
return Phaser.Physics.Circle.COL_NONE;
}
}
}