/// /** * @author Richard Davey * @copyright 2013 Photon Storm Ltd. * @license https://github.com/photonstorm/phaser/blob/master/license.txt MIT License * @module Phaser */ module Phaser { /** * A collection of methods useful for manipulating and comparing Point objects. * * @class PointUtils */ export class PointUtils { /** * Adds the coordinates of two points together to create a new point. * @method add * @param {Phaser.Point} a The first Point object. * @param {Phaser.Point} b The second Point object. * @param {Phaser.Point} out Optional Point to store the value in, if not supplied a new Point object will be created. * @return {Phaser.Point} The new Point object. */ public static add(a: Phaser.Point, b: Phaser.Point, out: Phaser.Point = new Phaser.Point): Phaser.Point { return out.setTo(a.x + b.x, a.y + b.y); } /** * Subtracts the coordinates of two points to create a new point. * @method subtract * @param {Phaser.Point} a The first Point object. * @param {Phaser.Point} b The second Point object. * @param {Phaser.Point} out Optional Point to store the value in, if not supplied a new Point object will be created. * @return {Phaser.Point} The new Point object. */ public static subtract(a: Phaser.Point, b: Phaser.Point, out: Phaser.Point = new Phaser.Point): Phaser.Point { return out.setTo(a.x - b.x, a.y - b.y); } /** * Multiplies the coordinates of two points to create a new point. * @method subtract * @param {Phaser.Point} a The first Point object. * @param {Phaser.Point} b The second Point object. * @param {Phaser.Point} out Optional Point to store the value in, if not supplied a new Point object will be created. * @return {Phaser.Point} The new Point object. */ public static multiply(a: Phaser.Point, b: Phaser.Point, out: Phaser.Point = new Phaser.Point): Phaser.Point { return out.setTo(a.x * b.x, a.y * b.y); } /** * Divides the coordinates of two points to create a new point. * @method subtract * @param {Phaser.Point} a The first Point object. * @param {Phaser.Point} b The second Point object. * @param {Phaser.Point} out Optional Point to store the value in, if not supplied a new Point object will be created. * @return {Phaser.Point} The new Point object. */ public static divide(a: Phaser.Point, b: Phaser.Point, out: Phaser.Point = new Phaser.Point): Phaser.Point { return out.setTo(a.x / b.x, a.y / b.y); } /** * Clamps the Point object values to be between the given min and max * @method clamp * @param {Phaser.Point} a The point. * @param {Number} min The minimum value to clamp this Point to * @param {Number} max The maximum value to clamp this Point to * @return {Phaser.Point} This Point object. */ public static clamp(a: Phaser.Point, min: number, max: number): Phaser.Point { Phaser.PointUtils.clampX(a, min, max); Phaser.PointUtils.clampY(a, min, max); return a; } /** * Clamps the x value of the given Point object to be between the min and max values. * @method clampX * @param {Phaser.Point} a The point. * @param {Number} min The minimum value to clamp this Point to * @param {Number} max The maximum value to clamp this Point to * @return {Phaser.Point} This Point object. */ public static clampX(a: Phaser.Point, min: number, max: number): Phaser.Point { a.x = Math.max(Math.min(a.x, max), min); return a; } /** * Clamps the y value of the given Point object to be between the min and max values. * @method clampY * @param {Phaser.Point} a The point. * @param {Number} min The minimum value to clamp this Point to * @param {Number} max The maximum value to clamp this Point to * @return {Phaser.Point} This Point object. */ public static clampY(a: Phaser.Point, min: number, max: number): Phaser.Point { a.y = Math.max(Math.min(a.y, max), min); return a; } /** * Creates a copy of the given Point. * @method clone * @param {Phaser.Point} output Optional Point object. If given the values will be set into this object, otherwise a brand new Point object will be created and returned. * @return {Phaser.Point} The new Point object. */ public static clone(a: Phaser.Point, output: Phaser.Point = new Phaser.Point): Phaser.Point { return output.setTo(a.x, a.y); } /** * Returns the distance between the two given Point objects. * @method distanceBetween * @param {Phaser.Point} a The first Point object. * @param {Phaser.Point} b The second Point object. * @param {bool} round Round the distance to the nearest integer (default false) * @return {Number} The distance between the two Point objects. */ public static distanceBetween(a: Phaser.Point, b: Phaser.Point, round: bool = false): number { var dx = a.x - b.x; var dy = a.y - b.y; if (round === true) { return Math.round(Math.sqrt(dx * dx + dy * dy)); } else { return Math.sqrt(dx * dx + dy * dy); } } /** * Determines whether the two given Point objects are equal. They are considered equal if they have the same x and y values. * @method equals * @param {Phaser.Point} a The first Point object. * @param {Phaser.Point} b The second Point object. * @return {bool} A value of true if the Points are equal, otherwise false. */ public static equals(a: Phaser.Point, b: Phaser.Point): bool { return (a.x == b.x && a.y == b.y); } /** * Determines a point between two specified points. The parameter f determines where the new interpolated point is located relative to the two end points specified by parameters pt1 and pt2. * The closer the value of the parameter f is to 1.0, the closer the interpolated point is to the first point (parameter pt1). The closer the value of the parameter f is to 0, the closer the interpolated point is to the second point (parameter pt2). * @method interpolate * @param {Phaser.Point} pointA The first Point object. * @param {Phaser.Point} pointB The second Point object. * @param {Number} f The level of interpolation between the two points. Indicates where the new point will be, along the line between pt1 and pt2. If f=1, pt1 is returned; if f=0, pt2 is returned. * @return {Phaser.Point} The new interpolated Point object. */ //public static interpolate(pointA, pointB, f) { // TODO! //} /** * Converts a pair of polar coordinates to a Cartesian point coordinate. * @method polar * @param {Number} length The length coordinate of the polar pair. * @param {Number} angle The angle, in radians, of the polar pair. * @return {Phaser.Point} The new Cartesian Point object. */ //public static polar(length, angle) { // TODO! //} /** * Rotates a Point around the x/y coordinates given to the desired angle. * @method rotate * @param {Phaser.Point} a The Point object to rotate. * @param {Number} x The x coordinate of the anchor point * @param {Number} y The y coordinate of the anchor point * @param {Number} angle The angle in radians (unless asDegrees is true) to rotate the Point to. * @param {bool} asDegrees Is the given rotation in radians (false) or degrees (true)? * @param {Number} distance An optional distance constraint between the Point and the anchor. * @return {Phaser.Point} The modified point object */ public static rotate(a: Phaser.Point, x: number, y: number, angle: number, asDegrees: bool = false, distance: number = null): Phaser.Point { if (asDegrees) { angle = angle * Phaser.GameMath.DEG_TO_RAD; } // Get distance from origin (cx/cy) to this point if (distance === null) { distance = Math.sqrt(((x - a.x) * (x - a.x)) + ((y - a.y) * (y - a.y))); } return a.setTo(x + distance * Math.cos(angle), y + distance * Math.sin(angle)); } /** * Rotates a Point around the given Point to the desired angle. * @method rotateAroundPoint * @param {Phaser.Point} a The Point object to rotate. * @param {Phaser.Point} b The Point object to serve as point of rotation. * @param {Number} angle The angle in radians (unless asDegrees is true) to rotate the Point to. * @param {bool} asDegrees Is the given rotation in radians (false) or degrees (true)? * @param {Number} distance An optional distance constraint between the Point and the anchor. * @return {Phaser.Point} The modified point object */ public static rotateAroundPoint(a: Phaser.Point, b: Phaser.Point, angle: number, asDegrees: bool = false, distance: number = null): Phaser.Point { return Phaser.PointUtils.rotate(a, b.x, b.y, angle, asDegrees, distance); } } }